Samenvatting Rekenproblemen en dyscalculie (Ruijssenaars), Deel 2

6. Voorbereidende rekenvaardigheid en rekenproblemen

Het in de dagelijkse praktijk leren van ervaringen met getallen wordt incidenteel leren genoemd wat leidt tot informele kennis. Dit is kennis die zonder doelbewust onderwijs tot stand is gekomen. Formele kennis komt tot stand door min of meer gericht onderwijs of intentioneel leren.

Kleuters en getallen

De rekenvaardigheden die kinderen tot zeven jaar zich eigen maken worden beschreven. De begrippen getalbegrip, voorbereidende rekenvaardigheid, en ontluikende gecijferdheid worden als synoniem gebruikt. Getalbegrip hebben betekent dat men zich bewust is dat een getal meerdere betekenissen of functies kan hebben, zoals een kardinaal aspect (aanduiding van het aantal), als ordinaal aspect (telgetal), als meetaspect (meetgetal), als coderingsgetal (getal als naam of label), en als relationeel aspect (verband tussen de verschillende getallen). Ver voor een kind het onderwijs ingaat is er al getalgevoeligheid. Dit kan ook bij volwassenen een rol spelen, bij het makkelijk omgaan met getallen of snel schatten of omrekenen van prijzen. Zeer jonge kinderen reageren onbewust op kleine hoeveelheden. Peuters zijn zich bewust van hoeveelheden en kunnen enigszins aantallen benoemen. Ze kunnen een kleine hoeveelheid (tot vier) in een keer herkennen zonder te tellen, wat ook wel subiteren (subiet betekent direct) wordt genoemd. Bij het tellen van de vingers van de hand weet een kleuter: dat een getal verwijst naar een verzameling als geheel; dat de volgorde van tellen geen invloed heeft op de hoeveelheid; dat de voorwerpen niet identiek hoeven te zijn; dat het niet uitmaakt of de voorwerpen in een rij liggen of chaotisch door elkaar; dat getallen betrekking hebben op de absolute hoeveelheid; en dat een telgetal een eigen plaats in de getallenrij heeft. Vanaf vier jaar komen de voorbereidende rekenvaardigheden tot ontwikkeling en wordt er voorbereid op het rekenen in groep 3 en 4. Dit maakt de overgang van groep 2 naar groep 3 waar meer formeel rekenonderwijs is, makkelijker. Er zijn meerdere deelvaardigheden te onderscheiden: de meer traditionele rekenvoorwaarden en de telvaardigheden. Een goed voorbereidende rekenvaardigheid is als ze de deelvaardigheden beheersen. De traditionele rekenvoorwaarden zijn de kenmerken van het logisch leren denken naar Piaget: conserveren, classificeren, corresponderen en seriëren. Deze voorwaarden worden gezien als voorwaarde voor het ontstaan van getalbegrip en dus als rekenvoorwaarde. Vanaf vijf jaar kunnen kinderen makkelijke conservatie-van-aantal taken goed oplossen. Ook kunnen ze dan corresponderen van hoeveelheden en seriëren. Het kunnen oplossen van andere conservatie taken komt vanaf zes jaar, evenals het classificeren.

De voorwaarden zijn geen noodzakelijke voorwaarde voor getalbegrip. Goed getalbegrip is voornamelijk afhankelijk van inzicht in het begrip eenheid, wat inhoudt dat er een gekozen maat is in relatie tot de te meten hoeveelheid. Getallen zijn relatief en een eenheid kan worden samengesteld uit meerdere eenheden. Van Erp geeft aan dat er in principe drie aspecten zitten aan het meten: de hoeveelheid (wat er wordt gemeten), de maat (waarmee wordt gemeten) en het aantal meethandelingen (hoe vaak er wordt gemeten). Pas als deze aspecten bereikt zijn, dan is er sprake van getalbegrip. Tellen is ook een belangrijke voorwaarde voor getalbegrip. In het leren tellen zijn verschillende elkaar opvolgende fasen te zien. Eerst het herkennen van hoeveelheid gevolg door subiteren. De tweede fase is het akoestisch tellen is de tweede fase. Dit is het tellen waarbij de juiste volgorde van de telrij nog niet wordt aangehouden en het tellen wordt niet altijd begonnen met het getal één. In de derde fase gaan kinderen van ongeveer vier jaar daadwerkelijk tellen. Asynchroon tellen is het aanwijzen van meerdere voorwerpen of overslaan van voorwerpen, nog niet wetend dat bij één object één telwoord hoort. Bij synchroon tellen wordt er gelijktijdig geteld en objecten aangewezen. Dan komt de fase van het ordenen van voorwerpen tijdens het tellen, dit wordt ook wel structurerend tellen genoemd. Vanaf vijf jaar kunnen kinderen resultatief tellen, waarbij ze weten dat ze bij één moeten beginnen met tellen, elk voorwerp maar één keer mag tellen en dat het laatste telwoord de hoeveelheid aangeeft. Elementair getalbegrip is dat daarnaast bekend is bij het kind dat de getallen serieel geordend zijn en opeenvolgende getallen steeds grotere hoeveelheden aangeven. Door meer ervaringen ontstaat het besef van kortere manieren om hoeveelheden te bepalen, het resultatief verkort tellen. Er is dan een duidelijk beeld van de getallenrij, hoe getallen aan elkaar gerelateerd zijn en ze kunnen deel-geheel relaties leggen. Vanaf drie jaar is er een gelijktijdige ontwikkeling van tellen en andere rekenvoorwaarden. Van der Rijt onderscheidt acht aspecten van voorbereidende rekenvaardigheid: vergelijken, classificeren (groeperen van objecten), correspondentie leggen (één op één relaties leggen), seriëren (ordenen), telwoorden gebruiken, gestructureerd tellen, resultatief tellen en toepassen van algemene kennis van getallen (gebruiken van getallen tot twintig).

Kinderen met een Turkse en Marokkaanse achtergrond hebben in Nederland en in aangrenzende landen een onderwijsachterstand. Om deze achterstand tegen te gaan wordt er voornamelijk op talig gebied ingezet. Meer aandacht aan rekenvaardigheid zou gunstig zijn. Een vroege onderkenning vraagt om systematische signalering en toetsing. Veel problemen beginnen al in de kleuterperiode. Het signaleren kan met de Utrechtse Getalbegrip Toets. Er zijn twee vormen, A en B, van de toets met bij elk van de acht onderdelen 40 items. Uit de score op de UGT komt een vaardigheidsscore, die de mate van ontwikkeling voorbereidende rekenvaardigheid aangeven. Een hoge score wijst dan op een hoge mate van beheersing. De vaardigheidsscore kan worden omgezet in niveau-aanduidingen: niveau A is goed tot zeer goed; niveau B is ruim voldoende tot goed; niveau C is matig tot ruim voldoende; niveau D is zwak tot matig; en niveau E is zeer zwak tot zwak.

Er is aandacht voor individuele verschillen en adaptief onderwijs, maar een gerichte interventie vindt voornamelijk pas plaats vanaf groep 3. Er blijken enkele programma’s te zijn voor jongere kinderen, maar slechts een beperkt aantal leraren maakt hier systematisch gebruik van. Een voorbeeld van een programma is Rekenhulp Kleuters om de onderlinge relaties van vaardigheden kunnen ontdekken en toepassen. Dit programma heeft een positief effect op de ontwikkeling van voorbereidende rekenvaardigheid zowel direct als zeven maanden later in vergelijking met kinderen die een reguliere methode hebben gehad. Een hoge score op de UGT is in samenhang met een relatief hoge score op de CITO.

Van Parreren noemt een aantal voor en nadelen van banende en sturende instructie. Sturende instructie biedt meer garantie voor het bereiken van leerresultaten. Bij banende instructie is er het risico dat leerlingen lang met verkeerde of onvolledige ideeën over de oplossingsstrategie van de opdracht blijven zitten. Een voordeel van banende instructie is dat kinderen een meer open instelling krijgen en meer creatieve oplossingen bedenken. Daarnaast laat deze vorm van instructie meer ruimte voor eigen stijl en eigen inbreng van werken. Als laatste kan deze instructie zorgen voor het opdoen van ervaringen die niet gelijk formuleerbaar zijn. Kinderen die zwakker zijn in het leren raken ontmoedigd door banend instructie. Er is nog geen eenduidige opvatting over de voor en nadelen, het hangt af van meerdere factoren welke instructie beter is. Bij kinderen met rekenproblemen geeft een sturende instructie door de compleetheid van de instructie houvast en mogelijkheden om zelf dingen te doen.

7. Rekenvaardigheden en rekenproblemen in de basisschoolperiode

Procedurele of declaratieve kennis of een combinatie van beide is nodig om sommen op te lossen. Als de informatie in het langetermijngeheugen zit als rekenfeit dan kan het snel worden opgehaald. Een telprocedure kost meer tijd, er kan sneller een procedurefout worden gemaakt en er is een belasting van het werkgeheugen. Als de informatie uit het langetermijngeheugen wordt gehaald (retrieval), dan is hier geen sprake van. Wanneer er moeilijke problemen moeten worden opgelost dan kost dit veel werkgeheugen capaciteit bij de uitvoering en dan is het belangrijk dat er geen extra capaciteit wordt gebruikt. Bij kinderen met rekenproblemen en dyscalculie zijn er vaak problemen met het automatiseren (memoriseren) van rekenfeiten.

Bekend over automatisering?

De antwoordtijd bij optelsommen tot 20 neemt toe wanneer de grootte van de getallen toeneemt. Het gaat dan vooral om de grootte van het bijtelgetal (addend) dat wordt opgeteld bij het andere getal (augend). Dit heet het som-grootte effect, oftewel problem size effect. Elke stap in een optelprocedure kost vier- tot vijfhonderd bij volwassenen en vijf- tot zevenhonderd milliseconden bij kinderen. In de totale antwoordtijd zit ook nog een vaste tijd van één tot twee seconden die niet afhankelijk zijn van de telstappen, bijvoorbeeld voor het lezen van de som. Het som-grootte effect vindt ook plaats bij geoefende rekenaars, waarbij het effect dan echter veel kleiner is (20 tot 30 milliseconden per eenheid). Uit onderzoek blijkt dat er toch sprake is van een verkort telmechanisme in het geautomatiseerde systeem, waardoor er een somgrootte effect is. Een andere veronderstelling is dat voor rekenfeiten hetzelfde geldt als voor de herkenningssnelheid bij woorden. Dat heet het frequentie-effect. Dit houdt in dat frequent voorkomende woorden of rekenfeiten sneller worden herkend dan weinig voorkomende woorden of rekenfeiten. Het blijkt dat er in de didactische opvatting eerst veel met kleine getallen moet worden geoefend om de principes te leren, waardoor kleine getallen sneller worden herkend en verwerkt. De vraag blijft of er sprake is van een causale relatie tussen som-grootte effect en frequentieverklaring. Het som-grootte effect kan zowel worden verklaard door de frequentie als het gebruik van telprocedures.

Over automaticiteit kan gezegd worden dat rekenfeiten associatief zijn opgeslagen. Als opgaven vaker zijn opgelost dan hebben ze een hoge associatieve sterkte, wat zich uit in een korte antwoordtijd. Herhaling moet dus een groot deel zijn in het rekenprogramma. Siegler heeft een model wat voortbouwt op de associationistische zienswijze, het Distributions of Associations model. De eerste formulering bestaat uit twee componenten. De eerste is een kennisrepresentatie in termen van associatiesterkte van som en antwoord. Dit houdt in dat een som een aantal antwoorden als associatie heeft. De associatieve sterkte bepaalt of het antwoord uit het langetermijn geheugen wordt opgehaald. De informatie die uit het geheugen wordt opgehaald hoeft niet perse het antwoord te zijn dat gegeven wordt. Het Distribution of Associations model heeft een zekerheidscriterium. Alleen als de sterkte van het antwoord (de associatieve sterkte) het criterium overschrijdt, dan wordt dit antwoord gegeven. Als het criterium niet wordt overschat, dan wordt er een nieuw antwoord uit het geheugen gehaald. Als er dan niet wordt voldaan aan het criterium dan kan er terug worden gevallen op een bufferstrategie (backup strategy) door hulpbronnen te gebruiken of een vorm van tellen. Het is een lerend model, waarbij bij een fout antwoord helaas een sterkere associatie tussen de som en het foute antwoord zal ontstaan. Siegler en Jenkins (1989) hebben computersimulaties gedaan met het model, wat de fouten, oplossingstijden en strategiekeuze van kinderen goed nadoet. Deze simulatie verklaart de instabiliteit en de strategiekeuze wat in de praktijk en in onderzoek wordt gevonden. De instabiliteit wordt veroorzaakt door variaties in de ingestelde waarde van het zekerheidscriterium en het maximum aantal zoekpogingen. Door het leerproces wordt het juiste antwoord qua associatie sterker en neemt de invloed van de twee ingestelde parameters af. Siegler en Shipley (1995) hebben hun model aangepast in het Adaptive Strategy Choice Model (ASCM), omdat in het vorige model het leerproces niet voldoende werd meegenomen. Het nieuwe model slaat ook informatie op over hoe effectief de strategie in het algemeen is en voor opgaven met dezelfde kenmerken als de gemaakte opgave. Ook wordt er rekening gehouden met toename van snelheid en correctheid van strategieën. Het beschikbaar hebben van verschillende strategieën lijkt een positief verband te houden met latere leerprestaties. Dit model heeft als didactische implicatie dat fouten zoveel mogelijk moeten worden vermeden. Het stimuleren van snel uit het hoofd rekenen maakt de kans groter dat er een verkeerde koppeling wordt gemaakt.

Baroody (1999) laat in zijn onderzoek naar voren komen dat Sieglers theorie niet klopt, wat blijkt uit andere foute antwoorden die kinderen geven na de training. Dit zou volgens het Distributions of Associations model niet kunnen gebeuren. Volgens Baroody schatten kinderen eerst het antwoord op basis van inzicht in getalrelaties. Door een groeiend inzicht en niet door het automatisch ophalen van het antwoord.

Priming onderzoeken hebben aangetoond dat rekenfeiten automatisch uit het langetermijngeheugen worden gehaald. Er wordt dan nagegaan wanneer een prime (in dit geval een getal of opgave) automatisch en onbewust invloed heeft op een volgende rekenopgave. Dit lijkt erop te wijzen dat rekenfeiten zijn opgeslagen in neurale netwerken van knopen. De knopen staan voor getallen, operaties en antwoorden. Als een knoop wordt geactiveerd dan volgt er een spreiding van activatie door het netwerk. Campbell (1987) heeft onderzoek gedaan naar priming. Hij noemt het error-priming effect, wat inhoudt dat de gemaakte fout en de antwoordtijd bij een vermenigvuldigopgave beïnvloedt worden door een voorafgaande opgave van dezelfde tafel. Als er geen fout wordt gemaakt dan wordt de antwoordtijd vertraagd, doordat het juiste en foute antwoord worden vergeleken. Ook ander onderzoeken hebben aanwijzingen voor een associatief netwerk gevonden.

Ander onderzoek kijkt naar de verschillen tussen optel en vermenigvuldigopgaven. Bij dit onderzoek wordt er kort voor of na de som het operatieteken (+ of x) kort getoond. Alleen als het optelteken voor de som wordt getoond, dan is de reactietijd korter. Het plusteken heeft een priming effect voor telprocedures. Bij vermenigvuldigen wordt de kennis uit het geheugen gehaald. Hierbij is het werken met het associatieve netwerk efficiënter dan het gebruiken van een procedure. Ook neuropsychologisch onderzoek lijkt dit uit te wijzen. Hieruit blijkt dat vermenigvuldigen net als verbale verwerking plaatsvindt in het langetermijngeheugen en dat aftrekopgaven door procedures worden uitgerekend. Optelsommen worden gemaakt door het ophalen van rekenfeiten uit het associatieve netwerk.

Zowel bij jonge als oude rekenaars komen geautomatiseerde telprocedures bij optellen voor. Dit staaft de kritiek van Baroody op het model van Distributions of Associations, maar de spreiding van activatie naar de som of het product kan er niet goed mee worden verklaard. Priming-experimenten tonen aan dat bij het vermenigvuldigen het mest een associatief netwerk aanwezig is wat zorgt voor een automatisch antwoord. Voor de automaticiteit is oefening nodig.

Problemen bij automatiseren

Er is door Geary en collega’s (1992) onderzoek gedaan naar automatiseringsproblemen bij kinderen met rekenproblemen. Dit onderzoek bevestigd dat zelfs bij langdurige hulp aan deze kinderen het beantwoorden van eenvoudige optelopgaven tot 20 moeilijk te automatiseren is. In het onderzoek krijgen de kinderen met rekenproblemen in groep 3 en 4 een jaar lang remediele ondersteuning van 20 minuten per dag en vijf dagen per week. De miniprocedure of minstrategie wordt gebruikt, wat een doortelprocedure is waar de kleinste van de twee getallen van een optelsom bij de grootste wordt opgeteld. Dit is makkelijker dan het grootste getal bij de kleinere te tellen (maxprocedure) of alles op te tellen (somprocedure). Ongeveer de helft van de kinderen ging beter rekenen op een algemene rekenprestatietest. Opvallend is dat kinderen zonder rekenproblemen een strenger zekerheidscriterium kiezen en bij opgaven met een lagere associatieve waarde vallen ze terug op tellen als bufferstategie. Bij kinderen met problemen is deze relatie tussen somgrootte en strategiekeuzen niet of minder terug te zien, ze lijken meer te gokken waarbij ze een minder streng zekerheidscriterium hebben en geen veilige bufferstrategie.

De verklaring voor het minder automatiseren lijkt te zijn dat kinderen met rekenproblemen een beperktere capaciteit van het werkgeheugen hebben, waardoor het telproces wordt vertraagd. Gevolg is dat als ze tellend de oplossing zoeken ze de opgave vergeten zijn en er geen associatie plaatsvindt tussen opgave en antwoord. De oorzaak van het automatiseringsprobleem wordt dan gezocht in het disfunctioneren van cognitieve processen die niet specifiek zijn voor het rekenen. Er is een verband tussen lees en rekenproblemen. Een tweede verband is dat het ophalen van informatie uit het langetermijngeheugen bij leerlingen met rekenproblemen langzamer gaat dan bij kinderen zonder problemen. Het kunnen benoemen van letters en cijfers is een indicatie voor het ophalen van informatie uit het langetermijngeheugen en het hangt samen met de mate van automaticiteit van de reproductie van rekenfeiten en woordherkenning. Er wordt ook over gesproken als de alfanumerieke benoemsnelheid. Kortom is te zeggen dat kinderen met rekenproblemen met vertraging wel automaticiteit behalen door veel herhaling om het associatieve netwerk op te bouwen. Anderen zal dit niet lukken mogelijk door deficiënte cognitieve processen die ook bij leesproblemen een rol spelen.

Trainen van automatiseren

Om kinderen met rekenproblemen te leren automatiseren is er dan pure herhaling nodig? Bij optelsommen tot de tien zijn er 66 opgaven mogelijk. De sommen van X+0 hoeven niet uit het hoofd geleerd te worden omdat ze door inzicht te beantwoorden zijn. Voor de sommen X+1 volstaat kennis van de telrij. Naast deze oplossingsmethoden kunnen antwoorden ook afgeleid worden uit reeds geleerde rekenfeiten, ook wel afgeleide feiten genoemd. Op basis van het principe van commutativiteit (verwisselbaarheid) kunnen er twintig sommen worden opgelost (x+y=y+x). Dubbelen (bijv. 2+2) zijn vaak sterk geautomatiseerd, waardoor ook de sommen van dubbele +1 eenvoudig opgelost kunnen worden. Met een compensatie of gelijkmakingstrategie kunnen sommen met twee verschillende gegeven getallen (5+3) worden opgelost door de twee getallen gelijk te maken. Ook bij opgaven tussen de 10 en 20 reducties als deze mogelijk, waarbij bijvoorbeeld de vijf (eerst 5+5 oplossen en dan rest van som) of tienstructuur (eerst som tot 10 optellen en dan de rest) gebruikt kan worden.

Als rekenfeiten minder uit het hoofd worden geleerd, heeft dit als gevolg dat er meer rekenregels bekend moeten zijn, moet weten wanneer ze toepasbaar zijn en hoe ze toe te passen zijn. In een onderzoek van Steinberg naar het aanleren van strategieën voor afgeleide feiten (derived facts strategies) (dubbele+ x, dubbele-x en splitsen tot 10) blijkt dat kinderen zonder rekenproblemen soms de strategieën niet goed begrijpen en hierdoor fouten maken. Kinderen met afgeleide rekenfeiten presteerden beter in het onderzoek dan kinderen die de drill-en-practice groep (alleen maar oefenen). Bij leerlingen met rekenproblemen geeft het positieve resultaten om veelvuldig de minstrategie te gebruiken. Er zijn verder weinig aanwijzingen dat afgeleide rekenfeiten voor kinderen met leerproblemen helpen bij het automatiseren. Bij eenvoudige opgaven helpt het veel herhalen en de doortel(min)strategie hen wel.

Informele rekenkennis, redactierekenen en contexten

De relatie tussen rekenen, taal en lezen is het duidelijkst bij het oplossen van (school)vraagstukken, ook wel redactieopgaven. Deze opgaven kunnen problemen geven, maar ook informele oplossingswijzen bieden. Met het realistisch rekenonderwijs is de redactieopgave minder in gebruik. Er zijn meerdere redenen om aandacht aan redactierekenen te besteden. De eerste reden is dat het onderzoek naar het oplossen van redactieopgaven veel informatie heeft opgeleverd over de informele kennis van het oplossen van kwantitatieve problemen. De tweede reden is dat ze met goed gekozen opgaven en speciale vormen van context in staat zijn om informele rekenhandelingen uit te lokken die helpen bij het rekenonderwijs. Als laatste reden wordt er aangevoerd dat de opgaven ook nog worden gebruikt in het CITO leerlingvolgsysteem.

De redactieopgave of het schoolvraagstuk is eigenlijk een ingeblikte werkelijkheid in verbale vorm. Er wordt een kwantitatief probleem beschreven of voorgesteld zoals deze in het dagelijks leven zich kan voordoen. Bij deze opgaven maakt de oplosser een probleemrepresentatie of een opgave of situatiemodel (volgens Kintsch). Kintsch ziet het oplossen van rekenvragen als het verwerken en begrijpen van tekst waarbij er eerst een logische tekststructuur wordt gevormd. De Corte, Verschaffel en De Win hebben een model gemaakt waarbij het antwoord wordt bereikt door een tekstverwerkingsproces dat tot een ex of interne representatie leidt. De representatie is dan de basis voor het kiezen van een formele rekenstrategie of informele telstrategie. De controlehandelingen geven de mogelijkheid om de juistheid te controleren. Er wordt volgens dit model pas gehandeld nadat er een representatie van het probleem is gemaakt.

Semantische opgavenstructuur en oplossingsstrategieën

De manier waarop een redactieopgave door kinderen wordt gerepresenteerd en opgelost wordt sterk beïnvloedt door de semantische structuur (betekenisstructuur). De drie meest gebruikte semantische categorieën waar redactieopgaven in worden verdeeld zijn: oorzaak-veranderingsopgaven (ov), combinatieopgaven (c), en vergelijkingsopgaven (vg). De oorzaak-veranderingsopgaven gaat het om een beginhoeveelheid, een verandering daarvan en een eindhoeveelheid. De verandering kan een toe of een afname zijn en elke hoeveelheid (begin, verandering en eind) kan de onbekende zijn. Dit betekent dat er zes mogelijke oorzaak-veranderingsopgaven zijn. Kinderen in groep 3 en 4 lossen dit soort sommen door materiaal te tellen op aan de hand van de trial and error methode. De combinatieopgaven zijn sommen die een deel-geheel situatie beschrijven. Het deel of het geheel kan de onbekende zijn. Deze sommen kunnen op dezelfde manier worden opgelost als de oorzaak-veranderingsopgaven met als verschil dat er rekening gehouden moet worden met de chronologie van gebeurtenissen in de opgaven. De vergelijkingsopgaven zijn sommen met drie verzamelingen: een uitgangs- of referentieverzameling, een daarmee te vergelijken verzameling en een verzameling die het verschil tussen beide vormt. Elk van zojuist genoemde kan de onbekend zijn in de som, wat zorgt voor zes typen sommen. De sommen kunnen met materiaal worden opgelost net als de voorgaand beschreven opgaven, maar ook door de referentieverzameling en de vergelijkingsverzameling samen af te beelden. Hierdoor is het verschil gelijk te zien of worden er paren gevormd. Soms wordt als vierde opgaventype de gelijkmakingsopgave onderscheiden (x heeft er 4 en y heeft er 7, hoe kan x er evenveel krijgen als y). Dit is een som die opgelost kan worden door aan te vullen.

De relatie tussen redactieopgave en realiteit is belangrijk door het belang wat deze opgaven in het rekenonderwijs kunnen spelen. Ze hebben een rol als toepassingssituatie en hebben als tweede functie dat het uitlokkers zijn van informele oplossingen die in het basisrekenonderwijs kunnen worden gebruikt. Het opgaventype en de context bepalen welke oplossingsstrategie wordt gebruikt. Een oorbeeld is het busmodel, wat een som is waarbij mensen in en uit een bus stappen, waarbij de situaties concreet worden neergezet en in hokjes de operatietekens staan. Dit wordt progressief schematiseren genoemd.

Problemen bij het oplossen van redactieopgaven

Er kunnen problemen zijn op verschillende momenten in het oplossingsproces, waarbij het reeds begint bij het maken van een representatie van het probleem. De talige vorm van de opgave kan problemen opleveren die niets te maken hebben met andere aspecten van het oplossingsproces. Als woorden of woordcombinaties (samen, ieder, meer dan) niet worden begrepen, dan leidt dit tot een verkeerde probleempresentatie. Als kinderen de som navertellen voordat ze deze oplossen dan is er een grotere kans om weinig fouten te maken. Als ze de som navertellen nadat ze de som hebben gemaakt, dan kan er een verkeerde representatie van de opgave zijn waarbij het foute antwoord past. Problemen kunnen ook ontstaan door een onjuiste symbolische representatie in de vorm van een somnotatie. Dit kan vooral bij moeilijkere sommen een rol gaan spelen, omdat makkelijkere opgaven kunnen worde opgelost door te tellen.

Strategietrainingen

Training van metacognitie en specifieke strategieën

De vaardigheid van het oplossen van redactieopgaven is te trainen en op die manier te verbeteren. Dit kan gericht zijn op het verbeteren van metacognitie of op het leren van een specifieke strategie. Meestal zijn de strategieën een mengvorm met de nadruk op een van beiden. Metacognitie omvat kennis van factoren die het eigen cognitieve presteren beïnvloeden en inzicht in de cognitieve verrichtingen bij het maken van een opdracht en het sturen van de specifieke strategie. Om de metacognitie te versterken worden er voornamelijk algemene vuistregels (heuristiek) aangeleerd om de problemen op te lossen. Deze bevatten vaak de volgende stappen: probleemidentificatie of –omschrijving (wat is het probleem, wat moet ik doen); plannen (hoe pak ik het aan); uitvoering (uitvoeren van strategiestappen); controle of zelfevaluatie (kijken of antwoord past bij de vraag); omgaan met fouten (anders proberen als gedacht wordt dat niet goed is); en zelfbekrachtiging (ik heb het goed aangepakt).

Het tweede soort trainingen gaat om het aanleren van een specifieke strategie bij een bepaalde taak, zoals een probleempresentatie. Vaak worden elementen van beide trainingen in dezelfde training gebruikt. Het aanleren gebeurt door directe instructie en zelfinstructie. Bij het aanleren van een strategie kan er gebruik worden gemaakt van de principes van cognitieve gedragsmodificatie met de nadruk op zelfinstructie en zelfregulatie.

Training van concreet representeren

Er wordt kinderen geleerd om opgaven uit te beelden met concrete objecten en daarbij consistent rekening te houden met de semantische structuur van de opgave. Bij OV-opgaven kan er gebruik worden gemaakt van een toevoegstrategie, waarbij de beginhoeveelheid wordt aangevuld tot de eindhoeveelheid. Bij vergelijkingsopgaven kan er een matchingstrategie worden gebruikt, waarbij er eerst eenzelfde hoeveelheid wordt gemaakt en er vervolgens meer aan wordt toegevoegd. Uit onderzoek blijkt dat het generaliseren van wat met een representatietraining is geleerd naar een situatie zonder materiaal toch moeilijk is.

Training van het schematisch of symbolisch representeren

Er kan ook abstracter worden gewerkt dan met concreet materiaal. Een overgangsvorm van concreet naar abstract is dat er puntjes op papier worden gezet. Door de puntjes die weg moeten of die het antwoord vormen wordt de structuur van de opgave gerepresenteerd. Er zijn vier hoofdtypen van opgaven te onderscheiden: het combinatietype, het vergelijkingstype, toename in het oorzaak-veranderingstype en afname in het oorzaak-veranderingstype. Van deze vier zijn visuele schema’s te maken die gebruikt kunnen worden om de relatie tussen de bekende en onbekende verzamelingen te bepalen en op grond daarvan de operatie te kiezen. Nog abstracter dan een visueel schema is de symbolisch-mathematische representatie. Dit zijn de bekende somvormen a+/-b=c, waarbij een van de letters de onbekende kan zijn. Indirecte sommen worden ook wel punt of vleksommen genoemd (2+.=6) en er is bekend dat deze voor veel kinderen moeilijk zijn omdat de betekenis van de notatie niet wordt begrepen. Deze vorm van sommen kan ook in een redactieopgave worden geplaatst waardoor er een representatie kan worden gemaakt met een betekenis die bij de somnotatie past. Er kan dan informele kennis worden gebruikt om formele somnotaties duidelijk te maken. Dit is een overeenkomst met het realistisch rekenen. Het verschil is dat er bij het realistisch rekenonderwijs een sterke nadruk ligt op het vinden van een oplossingsmethode, terwijl er bij de genoemde trainingen de nadruk ligt op het voorschrijven en inoefenen van een bepaalde oplossingsmethode. Kinderen die zwak presteren op rekengebied profiteren meer van een directe instructie en aangeboden oplossingsstrategieën dan dat ze deze zelf moeten bedenken. Een directe strategietraining in combinatie met principes van zelfinstructie lijken belangrijk voor kinderen met rekenproblemen, waarbij metacognitief bewustzijn en zelfregulatie wordt versterkt. Er zijn in het ‘spel der schoolvraagstukken’ stilzwijgende regels, waarbij bedoeld wordt dat als een leraar een redactieopgave voorlegt dat er een operatie wordt uitgevoerd met de twee gegeven getallen. Kinderen kunnen bijvoorbeeld moeite hebben met de tekst.

Rekenen tot 100

Er wordt nu aandacht besteed aan het rekenen met getallen boven de twintig, en voornamelijk het optellen en aftrekken tot 100. Er zijn twee methoden om deze sommen op te lossen: cijferen (met pen en papier) en hoofdrekenen. De sommen zijn sterk procedureel van aard en komen tot stand met rekenprocedures. Het langetermijngeheugen speelt wel een rol door de declaratieve kennis die eruit gebruikt wordt. Cijferen is het opschrijven van de som in verticale vorm en kolomsgewijs op te lossen aan de hand van bijvoorbeeld een standaardalgoritme. De tussenresultaten kunnen hierbij worden opgeschreven. Het traditionele algoritme is het boven elkaar schrijven van de eenheden onder de eenheden, de tientallen onder de tientallen. Vervolgens wordt er met de eenheden begonnen en vervolgens worden de tientallen opgeteld. Bij het realistisch cijferen worden HTE-tabellen gebruikt (H=honderdtallen, T=tientallen, E=eenheden). Eerst wordt er per kolom uitgerekend wat eruit komt, en dan worden de tientallen en honderdtallen op de juiste plek gezet. Voor zwakke rekenaars heeft Van Luit (1987) het Speciaal Onderwijs Rekenhulp Programma (SORP) ontwikkeld, wat later is uitgegeven als Speciaal rekenhulpprogramma optellen en aftrekken tot 1000. Dit programma laat kinderen door zelfinstructie een strategie te leren om eerst met blokkenmateriaal en later alleen met cijfers met de traditionele cijferende manier de sommen op te lossen. De strategie is gebaseerd op een taakanalyse van het cijferen als een proces van stap voor stap handelingen uitvoeren en beslissingen nemen. De instructie wordt in eerste instantie voorgedaan en elke stap wordt hardop geverbaliseerd als evaluatie. Daarna voeren de leraar en kind de opdracht samen uit en moet het kind zelf de verbalisering doen. Als het goed gaat, wordt het fluisterend gedaan en ten slotte in stilte (verinnerlijkt). Het effectiefst van het programma blijkt de zelfinstructiecomponent. Het blijkt dat MLK-leerlingen beter presteren bij een sterk gestructureerde training. Bij LOM-leerlingen zijn zowel de een terughoudende versie waarbij de stappen geen feedback kregen als op de gestructureerde versie.

Er is bij kinderen met rekenproblemen weinig onderzoek naar schattend rekenen gedaan, maar er zijn aanwijzingen dat er andere vaardigheden nodig zijn dan bij hoofdrekenen en cijferen. In plaats van een beroep op taalvaardigheden doet schattend rekenen een beroep op visuo-spatiële informatieverwerking doordat er snel een voorstelling moet worden gevormd. Cijferen kan worden vervangen door een rekenmachine. Voor het hoofdrekenen wordt het werkgeheugen sterk belast door het gebruik van opgavenkenmerken en van oplossingswijzen.

Bij het hoofdrekenen worden vaak zelf bedachte strategieën gebruikt om de som zonder pen en papier op te lossen. Bieshuizen heeft de meerdere strategieën geïnventariseerd. De meest voorkomende zijn: splitsstrategie, rijgstrategie, splits-rijgstrategie, rond af eerste getal en rond af tweede getal. De variëteit hangt af van de voorkeur en capaciteiten van de individuele rekenaar, van opgave kenmerken, de aan of afwezigheid van tientalpassering, de context en de getalkenmerken. Hoog presterende kinderen gebruiken vaker de rond af tweede getal-strategie bij optelopgaven. Er wordt vaak aangeleerd om vanaf een van de getallen langs een denkbeeldige getallenrij te springen, wat de rijg of sprongstrategie heet. Vaak wordt er ook spontaan gebruik gemaakt van de kardinale eigenschappen door te splitsen in tientallen en eenheden. Hierbij zijn ze sterk georiënteerd op de plaatswaarde van de getallen. Uit onderzoeken blijkt dat de splitsstrategie, ook wel 1010-procedure, door laag presterende kinderen veel wordt gebruikt en voor het maken van fouten zorgt. De rijgstrategie lijkt een succesvollere strategie ook bij kinderen met leerproblemen. De rijg, rond af op eerste getal-strategie en rond af op tweede getalstrategie zijn meer van ordinale aard (de oplossingsmethode start bij een van de getallen en gaat dan langs de getallenlijn naar de oplossing). De splits-rijgstrategie begint als een splitsstrategie maar gedraagt zich meer als een rijgstrategie. Het verschil in effectiviteit van de rijg en splitsstrategie ontstaat door het resultaat van het omgaan met de beperkte capaciteit van het geheugen. Hoe langer informatie over tussenstappen in het werkgeheugen moeten worden vastgehouden, des te meer informatie vergeten wordt. Er is tussen de twee strategieën een verschil tussen het aantal stappen. Bij de splitsstrategie zijn er meer stappen nodig dan bij de rijgstrategie. Bij het hoofdrekenen is het visueel ruimtelijke schetsboek minder belangrijk dan de klanklus. De klanklus slaat tijdelijke informatie op tijdens het rekenen (subvocaal= onhoorbaar). Het centraal uitvoerende orgaan is betrokken bij deze onthoud operaties.

Waarom wordt de lastige splitsstrategie gebruikt? De kennis die is opgedaan over optellen en aftrekken onder de tien wordt gegeneraliseerd naar sommen met grotere getallen. Dit hoeft niet altijd een nadeel te zijn, maar minder goede leerlingen kunnen hun oplossingsstrategieën overgeneraliseren naar moeilijkere sommen met tientalpassering. Een fout die dan kan optreden is de groter van kleiner-fout (5-8=3). Er kan dan ook een dubbele fout worden gemaakt (eerst groter dan kleiner fout en dan aftrekken in plaats van optellen) waardoor ze toch een goed antwoord hebben. De context beïnvloedt ook de keuze van de strategie. Als er al een rijgstrategie wordt gebruikt dan kan er als aanvulstrategie ook de rond af eerste getal-strategie worden gebruikt. Zwakkere rekenaars zijn minder flexibel en blijven de splitsmethode gebruiken, waardoor ondersteuning noodzakelijk zou kunnen zijn. Ook materiaal kan van invloed zijn op de strategiekeuze. Bij het gebruik van blokjes blijkt er gebruik te worden gemaakt van de splitsstrategie. Een honderdveld en een (lege) getallenlijn zijn beter geschikt om de rijgstrategie uit te lokken. De andere besproken strategieën behalve de splitsstrategie zijn goed af te beelden op de getallenlijn. Kinderen in het MLK en LOM onderwijs hebben meer baat bij een directe instructie op een getallenlijn dan met een splitsmethode met een getalpositieschema. Deze resultaten waren ook beter dan de eigen inbreng van de kinderen.

8. Rekenen/wiskunde bij de start in het voortgezet onderwijs en de problemen daarbij

Rekenen heeft in de opbouw een logische structuur. In de voorschool en de kleuterperiode wordt er begonnen met ervaringen in ordenen, hoeveelheidbegrippen, tellen en getalkennis. Vanaf groep 3 begint het meer formele rekenen, waarbij construeren van eenvoudige relaties tussen getallen en gebeurtenissen in realistische contexten aan de orde komen. Dit wordt vervolgens uitgebreid in complexiteit, contexten, grotere getallen, meer samengestelde operaties en onderlinge relaties. In het voortgezet onderwijs is er een diversiteit in schooltypen waardoor er op veel verschillende niveaus wordt onderwezen. In Nederland is het rekenonderwijs tussen het SVO (speciaal voortgezet onderwijs), VMBO en VWO erg verschillend. Probleemgebieden in de brugklas van het voortgezet onderwijs zijn breuken, decimalen, percentages en breuken. Ook kan het zijn dat er problemen zijn met meer basale rekenvaardigheden als kennis van het positiestelsel, de directe beschikbaarheid van eenvoudige rekenfeiten of de toepassing van hoofdbewerkingen. Kinderen met laatstgenoemde problemen hebben specifieke hulp nodig, die remediërend of compenserend (bijvoorbeeld gebruik van tafelkaarten of rekenmachine) van aard is. De gemiddelde ontwikkeling bij rekenproblemen is in twee jaar tijd ongeveer één jaar vooruitgang. In het voortgezet onderwijs laat zich geen versnelling van de leerrendement zien in vergelijking met de basisschool.

Rekenen in het voortgezet onderwijs

In het voortgezet onderwijs is er enige aandacht voor risicoleerlingen en voornamelijk op het gebied van taal. Op het gebied van tal zijn een aantal diagnostische instrumenten aanwezig en ook remediëringssuggesties en speciale programma’s. Bij rekenproblemen is er alleen de mogelijkheid om basisvaardigheden te herhalen. Kinderen die achterblijven met rekenen hebben vaak onderwijs gehad met de realistische rekenmethode. Deze methoden zijn gebaseerd op vijf uitgangspunten: construeren en concretiseren van rekenkennis aan de hand van betekenisvolle contexten; ontwikkelen van modellen die geleidelijk abstracter worden; reflectie en eigen productie aan de hand van de eigen inbreng van leerlingen; interactief onderwijs in een sociale context; en recht doen aan de samenhang tussen leerstofgebieden door middel van structureren en verstrengelen. Het verschil met meer traditionele methoden is dat die meer ruimte hebben om specifieke vaardigheden in te oefenen en aan te leren. Dit kan zorgen voor problemen in de declaratieve kennis wat doorwerkt in het uitvoeren van rekenprocedures (zie hoofdstuk 3).

Om goed te rekenen is het nodig om de volgende kennis en vaardigheden te hebben: algemene, niet-taakspecifieke kennis en vaardigheden (declaratief en procedureel); domein en taakspecifieke kennis en vaardigheden (declaratief en procedureel); en metacognitieve kennis en vaardigheden (niet-taakspecifiek en taakspecifiek).

Algemene, conceptuele kennis en vaardigheden is kennis van begrippen in de wereld om ons heen en algemene oplossingen of procedures die breder kunnen worden toegepast. De probleempresentatie kan worden gemaakt als er inzicht is in de betekenis van de gegevens, als het te bereiken doel wordt begrepen en er wordt beschikt over procedures om problemen te analyseren en om te zetten in een beheersbare vorm. Kinderen met een beperkte woordenschat en taalproblemen zullen problemen ondervinden als zij de gebruikte woorden in de opgave niet begrijpen.

Domeinspecifieke kennis en vaardigheden zijn de kennis van feiten en begrippen, procedures en strategieën die specifiek nodig zijn voor rekenen. Zoals kennis van getallen en het positiestelsel. Het gaat vaak om niet eenduidige (ambigue) kennis. Als deze kennis er niet is dan loopt het kind vast of geeft systematisch onjuiste antwoorden.

Metacognitieve kennis is de kennis over het samenspel van taak-, persoons- en strategiekenmerken. Dit hoeft niet te kloppen. De metacognitieve vaardigheden zijn het oriënteren op een taak, het planmatig en systematisch werken, het controleren en evalueren van het eigen gedrag en het bij elkaar brengen en evalueren van de belangrijkste resultaten (elaboreren). Het probleemoplossinggedrag wordt zo in goede banen geleid en controleert het hele proces. Veel fouten komen door het niet goed gebruiken van de metacognitieve vaardigheden. Kennis en vaardigheden zijn nog specifieker te karakteriseren met een aantal kwalitatieve kenmerken, als de flexibiliteit en de automatisering.

Leerstofdomeinen

De lesstof in de eerste twee jaar van het voortgezet onderwijs is opgedeeld in aantal onderwerpen: basisvaardigheden; cijferen; verhoudingen en procenten; breuken en decimale getallen; meten; meetkunde; algebra, verbanden, grafieken en functies; en statistiek. Deze domeinen bevatten hun eigen subdomeinen zoals bij basisvaardigheden het voor en achteruit tellen, de opteltafels tot 10 en tafels van vermenigvuldigen tot 10. Bij elk deeldomein zijn er problemen na te gaan en te inventariseren ofwel signalering, waarna er extra instructie kan worden gegeven of nadere diagnostiek kan plaatsvinden. Kinderen met rekenproblemen hebben de volgende kenmerken: moeite met leren van willekeurige associaties, afspraken en feiten; weinig profiteren van impliciete en incomplete instructie; niet of weinig automatisering van basiskennis en vaardigheden; moeilijk herkennen wat ze eerder hebben geleerd; moeilijk flexibel wisselen tussen verschillende kennisniveaus (concreet-verbaal-abstract); snelle overbelasting van kortetermijngeheugen en werkgeheugen; en onvoorspelbare resultaten die tot twijfel leiden over het eigen kunnen of competentie (self efficacy). Deze kenmerken vragen om een heldere structurering in stappen bij het aanleren van de vaardigheden voor de uitvoering en toepassing. Bij rekenzwakke kinderen zal het accent moeten liggen op het expliciet aanleren van kennis en vaardigheden en vervolgens een fase van leren toepassen. Bij het remediërend onderwijs is het nodig om doel te stellen per persoon die afhankelijk zijn van het ingeschatte bereikbare kennisniveau.

Leerbaarheid

Kinderen met rekenproblemen profiteren minder van incomplete instructie en lijken daardoor minder leerbaar dan andere kinderen. Dit moet echter met diagnostiek worden uitgezocht en bij bevestiging moet er aanpassing komen van de instructies. Zwakke rekenaars kunnen niet goed de juiste strategie kiezen, de achterstand lijkt voort te komen uit een strategiezwakte. De oriëntatie op de taak is vaak onvolledig of verkeerd wat zorgt voor verkeerde keuzes in aanpak en uitvoering en controle. Er moet rekening gehouden worden met de leerbaarheid. Dit kan individueel maar ook met groepsgericht onderwijs, waarbij het gaat om zo optimaal mogelijke leergroepjes.

Opslag van informatie

Een groot probleem van zwakke rekenaars is hun gebrekkige opslag van informatie. Inefficiënte strategieën kosten veel opslagruimte in het geheugen en veel tijd. Hierdoor zien ze niet snel een relatie tussen aanverwante kennisgebieden en er ontstaat nauwelijks een koppeling tussen de inhoud en de in een nieuwe opgave gebruikte strategie met al gekende taken. Er is een tekort aan transfers. Er ontstaat ook geen automatismen en er moet telkens opnieuw berekend worden. Een gebrek aan geautomatiseerde voorkennis beperkt het gebruik en een verdere inoefening. Bij leerlingen met rekenproblemen, ook met redelijke tot normale cognitieve vaardigheden en leerbaarheid, zijn herhaling en het verschillende keren uitvoeren van dezelfde taken geen garantie voor automatisering en generalisatie.

Self efficacy

Individuele kenmerken zoals cognitieve ontwikkeling spelen een rol in leerproblemen. Echter voornamelijk ineffectieve instructie is een oorzaak van mislukking. Een aanhoudende ervaring met instructie die leidt tot mislukking geeft de verwachting bij het kind dat het zal mislukken, wat zorgt voor een remmende angst. Volgens Chapman (988) hebben kinderen die aan zichzelf twijfelen: de neiging om hun academische falen hieraan toeschrijven; dat ze de (veronderstelde) lage capaciteiten als onveranderbaar beschouwen; dat ze verwachten in de toekomst te falen; en dat ze snel opgeven als ze geconfronteerd met moeilijke taken. Uit onderzoek blijkt dat kinderen, ook met leerproblemen, redelijk goed weten wat ze wel en niet kunnen (self efficacy) en hoe een taak is gegaan. Er lijkt een redelijk direct relatie tussen effectieve instructie, succes en de inschatting van het eigen kunnen. Bij een positieve instructie neemt de prestatie toe en leidt dit tot een positievere perceptie van wat ze zelf kunnen. Een ineffectieve instructie zorgt voor zwakke prestaties en een negatieve zelfinschatting.

Hulp bij rekenwiskunde problemen

Volgens onderzoek helpt het om bij zwakke rekenaars te herhalen en bewust actualiseren van al eerder aangeleerde en verworden leerstof, inslijpen van nieuwe en pas verworven kennis, relaties leggen met verworven kennis en controleren van de gebruikte oplossingsstrategieën. Rekenproblemen ontstaan niet door onderwijs, maar wel in het onderwijs. De beste aanpak van onderwijs bestaat niet, maar gaat over de wijze waarop een kind omgaat met het onderwijs. Er zijn wel belangrijke orthodidactische principes die belangrijk zijn als er wordt gefaald. De bronnen van deze principes liggen in een aantal theoretische oriëntaties. Uit de cognitieve theorieën zijn getalbeelden, trapsgewijze procedure, zelfinstructie, en empirische taakanalyse principes die goed gebruikt kunnen worden bij een leerachterstand.

In het voortgezet onderwijs moet men zich houden aan de minimum- en aanvullende streefdoelstellingen die er zijn in het rekenwiskundeonderwijs aan het einde van het basisonderwijs. De hulp die zwakke rekenaars krijgen moet gebaseerd zijn op voorwaardelijke kennis voor het onderwijs. Remediërende hulp zal dan gebaseerd moeten zijn op doelstellingen die zijn gebaseerd op Advies kerndoelen voor de basisvorming in basisonderwijs en voortgezet onderwijs, op Kerndoelen basisonderwijs 1998, op de Leerstofbeschrijving wiskunde 12-16, op het Advies over de voorlopige eindtermen basisonderwijs rekenen en wiskunde, en Balans van het rekenonderwijs in de basisschool. Er zijn algemeen aanvaarde doelstellingen waaruit handvatten af te leiden zijn om te signaleren, onderkennen van rekenproblemen en de manier waarop hulp geboden kan worden.

Instructie voor zwakke rekenaars is op te delen in vijf stadia: bepalen van de begrippen en vaardigheden die geleerd moeten worden; identificeren van de belangrijkste relaties tussen begrippen en vaardigheden; onderbrengen van feiten, begrippen en vaardigheden in logische hiërarchieën; ontwikkelen van instructie voorbeelden die eenduidig de reikwijdte illustreren van concepten en vaardigheden die beheerst moeten worden; en het presenteren van instructieve voorbeelden aan de leerling. Carnine (1989) benadrukt dat oefenen een essentiële component moet zijn in instructieprogramma’s. Er zijn een zestal factoren van invloed voor effectieve instructie: de eerdere prestaties van de kinderen (aansluiten bij hun kennisbasis); de perceptie van de self-efficacy door kinderen (beroep doen op hun gevoel van competentie); de inhoud van de instructie (gebruikmaken van herkenbare contexten); management van de instructie (doseren van de stappen in het leerproces); de inspanning van de leraren om instructie te evalueren en te verbeteren (weten wat de effecten van de instructie zijn en bijstellingen kunnen maken); en de overtuiging van leraren over de aard van effectieve instructie (achter de uitgangspunten van de instructie staan en geloven in de leermogelijkheden van de kinderen).

9. Diagnostiek van rekenproblemen en dyscalculie

De betekenis van het Griekse woord voor diagnostiek is taxeren, onderscheiden, beslissen. In het onderwijs is er steeds diagnostiek nodig, namelijk het door de leerkracht bekijken of de instructie duidelijk is, welke problemen er zijn en bedenken waarom een opdracht niet lukt en hoe dit te veranderen is. Het diagnostische proces is meer dan alleen het stellen van een diagnose. Het signaleren van problemen is de eerste stap, waarna informatie wordt verzameld, informatie wordt geordend, testen worden afgenomen, resultaten worden geïnterpreteerd, fouten worden geclassificeerd en geanalyseerd en het bijhouden van de mate waarin instructie en hulp aanslaan. Dit kan een leerkracht in veel gevallen aanpakken en oplossen. Als de problemen blijven dan kan er advies worden gevraagd aan een (intern of extern) begeleider. Er is dan meer individueel maatwerk en specialistische kennis nodig, waarbij gebruik wordt gemaakt van verschillende theorieën. Er zijn dan meer mensen bij betrokken die samenwerken en elkaars deskundigheid aanvullen, er is sprake van een doorgaande lijn (continuüm).

Aanknopingspunten voor diagnostiek

Rekenproblemen kunnen voortkomen uit een tekort aan inzicht en of tekort aan automatisering. Bij dyscalculie is er vaak sprake van moeite met leren en snel/accuraat beschikken over rekenfeiten en afspraken (fact retrieval). Diagnostiek bestaat uit meerdere stappen, als signalering, onderkenning, verklaring, indicatie en advisering. Signalering en onderkenning zorgen voor een onderkennende diagnose (wat). Hierbij wordt het liefst gebruik gemaakt van goed ontwikkelde instrumenten. Een verklarende diagnose (waarom) kan soms worden bepaald om in de beste aanpak te voorzien. Er wordt dan gebruik gemaakt van verschillende theorieën, die aandacht besteden aan factoren in het onderwijs als individugebonden factoren.

Het continuüm van zorg en deskundigheid kan uitgebeeld worden op een getallenlijn. Met het cijfer 1 wordt aangegeven dat de gangbare didactiek voldoet en dat er in het onderwijs geen grote problemen zijn. Soms is er extra uitleg of ondersteuning nodig bij wijze van eerste hulp bij onderwijsleerproblemen, wat wordt aangegeven met 1a,1b,1c enzovoort. Als dit onvoldoende is dan volgt meer planmatige en systematische hulp op maat als remedial teaching. Bij punt 2 wordt de probleemsituatie uitgebreider diagnostisch geanalyseerd. Na deze gerichte diagnostiek kan er specifieke hulp volgen in de klas, bijstelling van de remedial teaching, specialistische behandeling of een combinatie hiervan. Bij punt 3 wordt de behandeling geëvalueerd en indien nodig bijgesteld. Er vindt dan ook nazorg en follow-up plaats. Het is belangrijk dat er in de analyse en de volgende aanpak gebruik wordt gemaakt van alle bekende informatie en dat de bevindingen worden teruggekoppeld naar alle betrokkenen. De diagnostische cyclus kan slaan op de stappen die een diagnosticus zet als professioneel antwoord op problemen, maar het kan ook in bredere zin de diagnostische stappen van bijvoorbeeld de leerkracht omvatten. Bij het nemen van beslissingen op het continuüm spelen observaties en toetsen een rol.

Groepsgewijs en individueel onderzoek

Er zijn meerdere factoren die bepalen welke vorm van onderzoek wordt gebruikt, afhankelijk van het doel van de toetsing. Om een eerste globale indruk te krijgen van prestaties en eventuele problemen, kan er groepsgewijs worden getoetst. Dit wijst dan op de nog niet beheerste stof en waar extra instructie nodig is. Een voorwaarde is dat de toets niet te grofmazig van opbouw is en aansluit bij wat er in de rekenlessen is behandeld. Dit is de eerste stap in signalering en onderkenning. Als er opvallende afwijkingen zijn van de norm-, vergelijkings- of klassengroep dan volgt een individuele toetsing. Er kan dan worden gekozen voor een toets die het specifieke prestatieniveau in kaart brengt (als de Toets rekenenen-wiskunde 1,2,3; Utrechtse Getalbegrip Toets; de Rekenproeven van Dudal) of een instrument wat gericht is op het rekenproces (als de Kwantiwijzer voor Leerkrachten). Als er meer stappen op het continuüm worden gezet zal de zorg in de diagnostische cyclus zich uitbreiden. De groepsgewijze toetsing is dus te gebruiken als informatiebron over prestatieniveau, als signalering/onderkenning en evaluatie van de groepsgerichte aanpak. Individuele toetsing is te gebruiken voor informatie over het prestatieniveau of het rekenproces, voor onderkenning ten opzichte van een statische of theoretische norm, voor een verklaring op taak en procesniveau, voor indicatieonderzoek voor de best passende aanpak en voor een evaluatie van individuele hulp.

Niveautoetsen en criteriumtoetsen

Niveautoetsen geven aan hoever een kind is gevorderd ten opzichte van de gemiddelde vooruitgang. Deze toetsen worden redelijk onafhankelijk van een rekenmethode ontwikkeld en zijn daarom algemeen bruikbaar. Er is een indruk van het totale prestatieniveau en van de omvang van eventuele achterstand en van specifieke hiaten. Het geeft echter slechts een globale beoordeling omdat er niet duidelijk wordt hoe oplossingen tot stand komen. Niveautoetsen geven meer informatie wanneer er achteraf wordt geprobeerd te analyseren wat er precies fout en goed is gegaan en door de niveautoetsen longitudinaal meerdere keren met ruime tussenpozen af te nemen en te gebruiken als een indicatie voor het leerrendement.

Met criteriumtoetsen worden instrumenten bedoeld die zijn ontwikkeld binnen een methode om bij afsluiting van een leerstofonderdeel na te gaan of en in welke mate het specifieke doel is bereikt. Bij een gedetailleerde opbouw zijn criteriumtoetsen gevoeliger voor kwalitatieve veranderingen in het leerproces dan niveautoetsen. Ook criteriumtoetsen zijn aan te vullen met een foutenanalyse en ze zijn bruikbaar in longitudinale diagnostiek.

Foutenclassificatie en foutenanalyse

Bij goede antwoorden op niveau en criteriumtoetsen wordt verondersteld dat het oplossingsproces goed is verlopen en dat er bij fouten een verkeerd oplossingsproces is. Er zijn dan twee mogelijkheden: fouten worden geordend (classificatie) en er worden specifieke verwachtingen opgesteld over het proces dat tot deze antwoorden heeft geleid (fouten analyse) en dit wordt bij het kind getoetst; of de lage prestatie wordt opgevat als een signaal dat er meer algemeen diagnostisch onderzoek naar schools rekenen nodig is.

Voor elke toets geldt dat deze goed moet passen bij wat een leerling nog wel en wat net niet kan. Bij een te hoge moeilijkheidsgraad worden er zo veel fouten gemaakt dat ze geen informatie meer geven. Als afzonderlijke antwoorden niet stabiel zijn dan is het wel mogelijk om na te gaan of ze te beschrijven en te ordenen zijn in een beperkt aantal categorieën (foutenclassificatie). Analyse van de fouten is de stap die daarop volgt.

Longitudinale diagnostiek

Om leerprestaties over een langere periode te volgen en te vergelijken zijn er longitudinale toetsgegevens nodig van een voldoende grote groep vergelijkbare kinderen. De vergelijkbaarheid zit hem dan in de duur van het gevolgde onderwijs, en in de cognitieve en zintuiglijke mogelijkheden en beperkingen. Op deze manier kan de relatieve positie van een individuele leerling worden bepaald in vergelijking met de groep. Dit kan door een omzetting in een didactische leeftijdsequivalent. Een kanttekening hierbij is dat kinderen met een verstandelijke beperking vaak worden vergeleken met de gemiddelde prestaties van normaal begaafde kinderen of er wordt geen rekening gehouden met andere ontwikkelingsstoornissen. Herhaalde metingen geven inzicht in het leerrendement. Uitschieters of toevallige storingsbronnen worden dan gecorrigeerd in de leercurve die over een langere tijd is op te stellen. Als de rekenstof onvoldoende wordt beheerst ook na extra inspanning van de leerkracht of remedial teacher gedurende een redelijk tijdsbestek en er geen toenemend prestatieniveau is, dan is er sprake van hardnekkigheid/resistentie van het rekenprobleem. Dit is een kenmerk dat de ernst aangeeft en bijdraagt aan de onderkenning van dyscalculie.

Didactische leeftijd, didactische leeftijdsequivalent en leerrendement

Niveautoetsen geven aan hoever een kind in het leerstofdomein is gekomen. Er wordt vanuit gegaan dat de start van het onderwijsleerproces gelijk staat aan de score van nul. Het resultaat op een later moment geeft de leerwinst aan vanaf de aanvang van het onderwijs in groep 3. Zo is het mogelijk om een score op de niveautoets op te vatten als maat voor de vlotheid van de verwerving van een vaardigheid.

Het didactisch leeftijdsequivalent (DLE) is de prestatie die het kind haalt overeenkomend met een gemiddelde prestatie van de normgroep na een bepaalde periode schoolervaring. Omdat een schooljaar bestaat uit ongeveer 10 lesmaanden wordt de DLE bijvoorbeeld uitgedrukt als equivalent aan de gemiddelde prestatie na 10 maanden onderwijs, equivalent aan een didactische leeftijd van 10 maanden, oftewel DLE=10. Het zittenblijven wordt niet meegerekend in het bepalen van het aantal didactische maanden. DLE’s worden bepaald op basis van gemiddelde prestaties van grote groepen kinderen. De kritiek ligt bij het feit dat er hierdoor een grote spreiding kan zijn in resultaten. Er wordt vanuit gegaan dat de spreiding van de scores op alle momenten in de ontwikkeling vergelijkbaar blijft en dat het om een ontwikkeling in gelijkmatige stappen gaat. Als dit echter niet het geval is (wat meestal zo is) dan is er over een individuele score in vergelijking met het gemiddelde weinig te zeggen en kan er moeilijk een interpretatie worden gegeven of er sprake is van een voor of achteruitgang. Er wordt daarom steeds meer gebruik gemaakt van de itemresponstheorie, waarbij de aandacht verschuift van de prestatie van het groepsgemiddelde naar de ontwikkeling van de individuele leerling in vergelijking met zichzelf. Het gebruik van DLE’s is niet wenselijk.

De stappen in de diagnostische cyclus

De diagnostische cyclus bestaat uit een aantal stappen die als doel hebben om tot een zo goed mogelijk en onderbouwd antwoord te komen op een hulpvraag. In hoofdstuk 10 wordt de aanpak als een cyclus met verschillende stappen beschreven, namelijk de behandelings- of interventiecyclus. De combinatie van de diagnostische en behandelingscyclus wordt de hulpverlenings of klinische cyclus genoemd.

In de diagnostische cyclus worden de volgende stappen doorlopen: klachtanalyse, probleemanalyse, verklaringsanalyse en indicatieanalyse. Het herhalen van stappen of het teruggaan of door te gaan hangt af van de mate van zekerheid van de verkregen informatie. Er wordt gestart bij de aanmelding en het eindigt bij het advies. Elke stap levert een conclusie op, wat als uitgangspunt van de volgende stap geldt. De klachtanalyse is een verhelderende diagnose, waarbij uitspraken naar voren komen die aangeven dat de situatie of het gedrag van het kind of de gevolgen ervan als negatief worden ervaren. Klachten weerspiegelen ervaringen en belevingen die worden verzameld en er wordt nagegaan welke hulpvragen er zijn. De klachten worden geordend. In de probleemanalyse wordt er een verband gelegd tussen problemen en klachten, er wordt een groepering aangebracht en de problemen worden benoemd en de ernst wordt getaxeerd. Er is sprake van een onderkennende diagnose. De verklaringsanalyse worden er hypothesen (verklarende uitspraken die nog niet zijn getoetst), er worden empirisch toetsbare voorspellingen uit afgeleid, deze worden geformuleerd en getoetst en er wordt een integratief beeld gemaakt. Er komt een verklarende diagnose uit. In de indicatieanalyse worden er in samenspraak met de betrokkenen een globaal interventiedoel geformuleerd, er wordt geïnventariseerd wat de in aanmerking komende typen interventies zijn, het nut van de mogelijke alternatieven wordt in overleg bepaald, er wordt onderzocht of de indicatiecriteria voor de verschillende interventies van toepassing zijn, de kans van slagen van de mogelijke keuzes wordt ingeschat en een uiteindelijke aanbeveling wordt geformuleerd. Er komt een indicerende analyse uit.

Er zijn meerdere redenen waarom het belangrijk is om het diagnostisch probleemoplossingproces in stappen te ontleden: een kenmerk van een probleemsituatie is meestal dat je het niet meer overziet en behoefte hebt aan een goede analyse; er kunnen soms meer dingen aan de hand zijn dan je tegelijkertijd kunt aanpakken, wat het nodig maakt om voorafgaand aan de aanpak eerst de deelproblemen van elkaar te onderscheiden; soms is er al van alles geprobeerd om tot een oplossing te komen, maar blijkt het probleem hardnekkiger en ernstiger dan op het eerste gezicht leek; het kan nodig zijn om te beslissen welke aanpak uit verschillende alternatieven het meest verantwoord, het meest efficiënt en het minst risicovol is. In deze situaties is het nodig om meer bewuste beslissingen te nemen. Het nadenken over de verschillende stappen voorkomt fouten en kan bij de reflectie achteraf aanwijzingen geven waar het misging.

De indeling van de cyclus maakt het mogelijk om voorwaarden te formuleren waaraan elke stap moet voldoen: professionele voorwaarden, methodologische voorwaarden en psychometrische voorwaarden. Professionele voorwaarden hebben betrekking op attitude, kennis en vaardigheden van de diagnosticus als hulpverlener. Methodologische voorwaarden geven aan wat de kwaliteit moet zijn van de stappen die in diagnostiek worden gezet. En psychometrische voorwaarden slaan op technische eisen waaraan diagnostische middelen moeten voldoen.

Signalering, klachtanalyse en formulering van de hulpvraag

Het signaleren kan informeel en formeel gebeuren. Informeel gebeurt vaak aan de hand van voortdurende observatie en door na te vragen hoe kinderen taken aanpakken. De leraar zoekt naar niet begrepen instructie en naar kennishiaten als aanknopingspunten van adaptieve instructie. Een professionele voorwaarde is dat de leraar inzicht heeft in instructieprincipes en in het rekenleerproces. Ze moeten de volgende vragen kunnen stellen: om wat voor type kennis gaat het?; wat is de kwaliteit van de rekenkennis?; welk type instructie is nodig?

Een formele werkwijze is het inzetten van toetsen om te vergelijken met een norm of een vooraf opgesteld criterium. Het voordeel is dat toetsen efficiënt en objectief vergelijkend informatie geven. Toetsen moeten zoveel mogelijk voldoen aan psychometrische voorwaarden. Door Resing en collega’s (2002) is een beschrijving en beoordeling van toetsen gemaakt. Er zijn weinig beschikbare rekentoetsen voor jonge kinderen dat aan de eisen voldoet. Er zijn een aantal toetsen die voorlopig aanvaardbaar zijn, als de Utrechtse Getakbegrip Toets, ordenen (Cito), begrippentoets (Cito), DLE-Test Hoofdrekenen en rekenen. In de COTAN wordt de kwaliteit van tests aan de hand van criteria met betrekking tot uitgangspunten van de testconstructie, kwaliteit van het testmateriaal, kwaliteit van de handleiding, normen, betrouwbaarheid, begripsvaliditeit, en criteriumvaliditeit beoordeeld. Er is een beoordeling in vier niveaus: A is een beoordeling van goed op minimaal de eerste zes criteria, voldoende; B is een beoordeling van voldoende of goed op de eerste vijf criteria; C is een beoordeling van voorlopig aanvaardbaar omdat ze nog niet voldoen aan de criteria en er geen alternatief instrument is; D is een beoordeling van onvoldoende als er bij minimaal een criteria onvoldoende wordt gescoord of als er nog geen COTAN beoordeling is en er wel een alternatief instrument is. Het is belangrijk om de juiste vragen te formuleren en te voorkomen dat er antwoorden worden gegeven op niet gestelde vragen of dat vragen onbeantwoord blijven. Essentieel is dat iedereen hetzelfde verstaat onder gehanteerde begrippen en concretiseert wat er wordt bedoeld. In de werkwijze van de Consultatieve Leerling Begeleiding is het vaste startpunt dat de begeleider de leraar helpt bij het nauwkeurig omschrijven van de beleving van diens probleem en vragen. In de handelingsgerichte diagnostiek gebeurt dit in de intakefase.

Probleemanalyse

De probleemanalyse is de onderkenning en benoeming van een probleem. Bij genoeg concrete voorbeelden krijgt men zicht op de stabiele elementen in het rekenprobleem. Het in kaart brengen van de stabiele aspecten is zinvol omdat fouten niet consequent op dezelfde manier blijken voor te komen. Het oplossingsgedrag kan wisselen. De tweede reden om naar stabiele factoren te zoeken heeft te maken met de te geven hulp. Stabiele problemen zijn met een systematische hulp makkelijker aan te pakken dan onvoorspelbare reacties. Het ordenen en beschrijven van probleemgedrag kan door middel van foutenclassificatie en beschrijvende categorie. Een beschrijvende categorie geeft niet aan waarom een fout zich voordoet. In literatuur wordt beschrijving en verklaring vaak aan elkaar gekoppeld. Het lijkt weinig zinvol om een zuiver en theorieloos beschrijvend systeem te maken, omdat er een onafzienbaar aantal mogelijkheden in het rekenwiskunde domein mogelijk zijn. Het is logischer om uit te gaan van een aantal op maat gekozen representatieve opgaven, deze op te lossen en vervolgens bij opvallende hiaten of fouten na te gaan welke redenen hieraan ten grondslag liggen (analyse). De werkwijze gaat van foutenclassificatie naar foutenanalyse naar isoleren en aanbieden van type vragen, naar het geven van hulp en uiteg, dan het isoleren en nagaan van taakspecifieke procedurele voorkennis en dan het isoleren en nagaan van taakspecifieke declaratieve voorkennis.

In de vorm van een diagnostisch gesprek zijn er vier technieken te zien: observeren (manier van aanpakken van de taak, het gebruikmaken van materiaal of vingers), vragen stellen (hardop laten denken, na het oplossen de manier van werken laten uitleggen en doorvragen), variëren van opgaven (alternatieve opgaven die steeds makkelijker zijn geven, na succesvol oplossen teruggaan naar de opgave en het niveau waarop het misging), en het bieden van hulp geleidelijk uitbreiden. Bij het geven van hulp zijn er vier hulpniveaus te zien: aanbieden van qua vraagstelling en moeilijkheid vergelijkbare opgaven; structureren van de opgave; het expliciteren van een oplossingsstrategie; en het modelleren (voordoen van de opdracht).

De probleemanalyse kan naast het ordenen en beschrijven slaan op de classificatie en benoeming van de totale rekenproblematiek, waarbij de stoornis wordt onderkend en er een onderkennende diagnose plaatsvindt. Er kan dan een stoornis worden vastgesteld. De definiëring van stoornis, beperking (belemmering) en handicap wordt gegeven door de Wereld Gezondheid Organisatie (WHO). Er is een internationaal erkend afsprakensysteem (International Classification of Impairments, Disabilities and Handicaps, ICIDH). De ICIDH is een hiërarchisch systeem, waarbij oorzaken leiden tot stoornissen, die vaak beperkingen of belemmeringen meebrengen en kunnen leiden tot handicaps. Er is geen één op één relatie tussen oorzaak en stoornis of tussen stoornis en beperking of handicap, dit betekent onder meer dat verschillende oorzaken tot dezelfde stoornis leiden. Bij dyscalculie is de uitvallende psychologische functie het niet geautomatiseerd raken van declaratieve kennis. Dyscalculie is een stoornis. Hoe hardnekkiger een stoornis is, des te ernstiger de stoornis wordt beschouwd. Er wordt later dieper ingegaan op de taxatie van ernst.

De onderkenning van ontwikkelingsstoornissen gebeurt aan de hand van beschrijvende criteria waaraan de problemen dienen te voldoen. Vaak wordt hiervoor de Diagnostic Statistical Manual of mental disorders (DSM) gebruikt. De meest recente versie is de DSM-IV-TRTM. Bij rekenproblemen is een van de criteria dat de problemen ernstiger zijn dan op grond van de intellectuele mogelijkheden te verwachten is. De kenmerken van een rekenstoornis zijn: er is een verlies of afwijking van een neurofysiologische of psychologische structuur of functie; het rekenniveau ligt betekenisvol beneden het te verwachten niveau op grond van het aangeboden onderwijs, type en niveau van het gevolgde onderwijs, de dagelijkse activiteiten die gewoonlijk worden uitgevoerd, de intellectuele mogelijkheden en de zintuiglijke mogelijkheden; er is een opvallende hardnekkigheid en resistentie voor beïnvloeding in het leerproces waarin de automatisering niet of onvoldoende tot stand komt. Het prestatieniveau van automatisering wordt afgezet tegen een relevante vergelijkingsgroep. Er wordt vanuit gegaan dat het onderwijs minimaal 6 maanden heeft geduurd.

Om probleemgedrag als stoornis te classificeren is een minimale ernst nodig. Er zijn meerdere gradaties van ernst, zoals de mate van resistentie bij remediërende hulp. Genormeerde vragenlijsten en testen zijn een belangrijk middel, als het Cito-leerlingvolgsysteem. Een andere manier is kijken wat er goed gaat en wat niet en wat de verhouding hiertussen is. Ook de langdurigheid van het probleem, het aantal situaties waarin een negatieve ervaring zich voordoet, de mate waarin het tot beperkingen leidt en de hoeveelheid ervaren stress.

Verklaringsanalyse

Het begrip verklaring staat voor de veroorzakende of oproepende conditie, de in stand houdende, versterkende of met een probleem samenhangende conditie. De kennis voor een verklarende conditie komt van wetenschappelijke theorievorming en onderzoek. Er wordt daarin ook wel gesproken over risicofactoren, welke soms wel te beïnvloeden zijn en soms niet. De verklarende conditie is dus waardevol door de theoretische onderbouwing en de praktische relevantie. De empirische onderbouwing heeft over het algemeen betrekking op een vastgestelde relatie tussen problemen en condities wat wordt uitgedrukt als maximaal (percentage) van de variantie in (probleem) wordt verklaard door (verklaring). Er zijn twee zoekrichtingen in de literatuur om diagnostisch bruikbare condities te vinden: van probleem naar conditie en van conditie naar probleem.

Er zijn mogelijke individugebonden (alternatieve) functionele cognitieve condities voor het in stand houden van ernstige problemen bij rekenen: niveau en kwaliteit van de cognitieve ontwikkeling/intelligentie; processen van informatieverwerking; relevante aspecten van taalontwikkeling; en neuropsychologische functies. Voor een beknopte uitleg hierover zie box 9.6, pagina 283-285).

Indicatieanalyse

In de indicatieanalyse wordt de best passende aanpak van de onderkende en verklaarde problemen gekozen. Een belangrijke voorwaarde hierbij is de empirisch gebleken effectiviteit. Effecten zijn weer te geven op verschillende manieren, bijvoorbeeld als hoeveelheid leerwinst of als de verhouding tussen de kosten en baten. De baten geven aan in hoeverre de gestelde doelen worden bereikt en wat eventueel positieve bijeffecten kunnen zijn. De kosten staan bijvoorbeeld voor de tijdsperiode die het gaat duren, de financiële bijdrage van de ouders en de gevraagde inzet van de leraar. Met de kosten-batenanalyse wordt het nut van de aanpak bekeken. Als er meer kosten zijn dan is er een negatief nut en in andere gevallen is er een positief of neutraal nut.

Diagnostiek van dyscalculie en de dyscalculieverklaring

Dyscalculie is een beschrijvend begrip, waarbij er geen verschil is met de onderkenning van dyslexie. In beide gevallen staat het automatiseren van feitenkennis centraal, dij dyscalculie van basale rekenfeiten en bij dyslexie van (sub)woorden. Voor de onderkenning van dyscalculie is het van belang om te achterhalen of de problemen op te heffen zijn wanneer ontbrekende declaratieve kennis wordt gecompenseerd of dat het inzicht erin ontbreekt. De problemen mogen geen gevolg zijn van een te beperkt onderwijsaanbod. Om dyscalculie te onderkennen aan de hand van de DSM is meer nodig dan uitval op een automatiseringstest (zie voor de DSM diagnose box 9.8, pagina 290-293). In de brochure van Diagnose en Dyslexie liggen afspraken over de definitie, over de onderkennende, verklarende en indicerende diagnose en ook de diagnostische verklaring. Er is op deze manier consensus en er is meer overeenstemming in bijvoorbeeld de selectie van subjecten in het wetenschappelijk onderzoek. Daarnaast zijn er verwachtingen voor wat betreft het beleid. Ten eerste is er de verantwoordelijkheid voor het schoolbeleid, omdat de afgegeven dyscalculieverklaring door de school wordt onderschreven en het voor alle betrokkenen duidelijk is waar men zich mee akkoord verklaart en wie aanspreekbaar is voor het verdere verloop. In de tweede plaats is er de verantwoordelijkheid voor het beleid op bovenschools niveau. De overheid heeft de taak om de voorzieningen te verzorgen die het onterecht ontstaan van achterstand voorkomen en tegengaan.

10. Behandeling van rekenproblemen en dyscalculie

Behandelen heeft als betekenis als arts een patiënt van een ziekte proberen te genezen. Daarnaast wordt het woord behandeling ook gebruikt voor het proces, waarmee op basis van wetenschappelijk verantwoorde kennis direct of indirect leerhulp wordt gegeven bij leerproblemen of leerstoornissen. De behandelcyclus is het vervolg op de diagnostische cyclus. De stappen zijn niet heel expliciet, maar er specifiekere hulp nodig is als het leerprobleem resistenter blijkt.

Enkele aanknopingspunten voor behandeling zijn door de leerkracht met adaptieve instructie en differentiatie. Als er meer hulp nodig is, dan kan er intensieve instructie of RT worden gegeven. Als er dan nog niet voldoende hulp is, dan is er verdere diagnostiek nodig. Behandeling is systematisch en planmatig afgestemd op individu en contextgebonden factoren die een positieve of negatieve invloed hebben op de interventie. Bij expliciete instructie past de eigen inbreng van de leerling in een helder gestructureerd leerproces. Aanknopingspunten vanuit de verschillende theorieën komen nu aan bod. De leertheorie legt de nadruk op systematische stimulatie vanuit de omgeving, waarbij er wordt begonnen bij een taakanalyse en functionele gedragsanalyse. Leren is het tot stand brengen van de juiste stimulus-responsverbindingen. Bij de handelingsleerpsychologie gaat de aandacht naar het inhoudelijke leerproces waarmee kinderen tot nieuwe kennis en vaardigheden komen. Door een trapsgewijze aanpak wordt er gewerkt aan meer verinnerlijking van kennis en tot het verminderen van het aantal tussenstappen. Als kinderen minder uit zichzelf oriënteren is er meer complete en sturende didactiek nodig.

Probleemoplossingstheorieën zijn gericht op processen van analyse, herstructurering en representatie van probleemsituaties. De informatieverwerkingsbenadering heeft ook aandacht aan niet-inzichtelijke kennis, aan strategieën van geheugenopslag en automatisering. Verwerkingsstrategieën zijn te leren, ontlasten het cognitieve systeem en verminderen de kans op fouten. Bij de neuropsychologie wordt er aandacht geschonken aan de samenhang tussen het cognitieve systeem en het functioneren van het brein.

Behandeling op het continuüm van zorg en deskundigheid

Alle vormen van interventie of behandeling zijn te plaatsen op het continuüm van zorg. Adaptieve instructie door de leraar en interne begeleiding gaan vooraf aan Remedial Teaching (RT). RT gaat vooraf aan beslissing tot meer gespecialiseerde hulp en behandeling. Elk geval staat in samenwerking en is wederzijdse afstemming essentieel.

Remedial teaching en behandeling

Er wordt een onderscheid gemaakt tussen behandeling en remedial teaching, hoewel beiden als overeenkomsten hebben dat ze taakgericht zijn, bij voorkeur steunen op empirisch onderzoek over effectiviteit en een goed omschreven deskundigheid vereisen. De beroepsgroepen van remedial teachers (LBRT) en academisch geschoolde orthopedagogen en psychologen (NVO, NIP) de deskundigheid door een systeem van beroepsbekwaamheidsregistratie. De verschillen tussen remedial teaching en behandeling gaan over de gebleken ernst of hardnekkigheid van de problemen. Bij behandeling, wat pas wordt ingezet na RT is er bij uitzondering geen sprake van complexe problematiek. RT is een vorm van leerlingbegeleiding met als doel om een gesignaleerd, niet op gang komend of gestagneerd schools leerproces zo goed mogelijk te laten verlopen. RT is afgestemd op het groepsleerplan en bevat een planmatig gebruik van programma’s en methoden die individueel of in groepen door een gespecialiseerde leerkracht wordt gegeven. Het didactische handelen is hierbij afgestemd op de sociaal-emotionele conditie van het kind. Behandeling is het totale en zich steeds veranderende proces van hulpverlening met als doel de belemmeringen die voortkomen uit een te verwachten leerstoornis te voorkomen of de onderkende leerstoornis en de beperkingen daarvan te reduceren of te compenseren. Behandeling is altijd mede gebaseerd op een deskundig uitgevoerde onderkennende, verklarende en handelingsgerichte diagnose, waarbij er gebruik is gemaakt van controleerbare en wetenschappelijke kennis.

De term training wordt ook wel gebruikt in wetenschappelijk onderzoek. Men heeft het dan meestal over korte standaardprocedures voor een vooraf gedefinieerd probleemtype, gecontroleerd op storende invloeden en zo standaard mogelijk uitgevoerd.

Beslissingen bij het inzetten van een RT methode/programma

Een RT maakt idealiter gebruik van deugdelijk ontwikkelde methodes of programma’s. Effectiviteitsonderzoek vergelijkt verschillende aanpakken met elkaar en geeft aan waarin het ene programma sterker is dan het andere. De klinische toepassing van onderzoeksgegevens van kleine en korte trainingsexperimenten vereist kennis met betrekking tot empirisch onderzoek, methodologie en statistiek. Vaak is er geen effectiviteit van een programma bekend. Het is daarom belangrijk om de resultaten van de eigen hulp bij te houden en er een overzicht van te maken, zodat statistische controle mogelijk is. Het gebruik van betrouwbare toetsen en een goed ontwikkeld leerlingvolgsysteem is daarbij voorwaarde.

De voorkeursvolgorde bij het inzetten van RT-programma’s is als volgt: eerst de programma’s die uit onderzoek bij gelijksoortige problematiek herhaaldelijk effectief zijn gebleken; dan programma’s waarvan de resultaten nog niet voldoende vaststaan of waarmee in eigen systematische en goed gedocumenteerde ervaring positieve resultaten zijn bereikt zonder een wetenschappelijke toetsing, waarbij de voorkeur uitgaat naar het gebruik van een bestaand programma wat theoretisch doordacht is en voorziet in instructie die door verschillende betrokkenen te gebruiken is; en als laatste is het geven van hulp zonder bestaand programma (niet wenselijk), zonder systematische ervaringskennis en zonder gerichte toetsing op effectiviteit.

Criteria bij het kiezen van RT-programma’s

Een effectief gebleken RT programma is verstandig om te gebruiken. Dit is echter niet altijd voor handen. Er moet dan op basis van andere gegevens een beslissing worden gemaakt. Bij een rekenprogramma moet er in elk geval worden aangesloten op de diagnostische gegevens van genormeerde rekentoetsen, het moet binnen school toe te passen zijn en afgestemd zijn op het groepsleerplan. De herkenbaarheid voor het kind is dan groter en de kans op toepassing van het geleerde wordt groter. Voordeel van het geven buiten de klas is dat het kind niet gefrustreerd wordt door instructie en discussies op te hoog niveau, dat de essentie van de taak explicieter aan bod komt en de hulp is beter af te stemmen op kindkenmerken. Noodzakelijke voorwaarden/criteria waaraan moet worden voldaan door het programma zijn: taakgerichtheid; aansluiting bij de taakgerichte didactische probleemanalyse; praktische uitvoerbaarheid; concrete toetsen voor evaluatie; en alle betrokkenen staan erachter. Zeer gewenste voorwaarden zijn: gebleken effectiviteit; theoretisch onderbouwd; toepasbaarheid in groep; afstembaar op groepsplan; rechtstreekse instructie en goede structurering van het leerproces; concrete (tussen)doelen; passende doelen in het leerlingvolgsysteem; ondersteuning in collegiaal overleg/interne begeleiding; en mogelijk af te stemmen op gespecialiseerde behandeling. Bij de praktische uitvoering moet er gekozen worden tussen: binnen of buiten de klas; individueel of in groep; door of onder begeleiding van RT; met of zonder extra oefening thuis; wel of geen pc-programma om extra te oefenen. Praktische aandacht verdienen de volgende punten: eventueel financiële implicaties; snelheid om te kunnen beginnen; contra-indicaties of oorzaken van mislukking; verantwoordelijkheid van tussentijdse beslissingen en rapportage; en wie is voor ouders aanspreekbaar.

Van diagnostiek naar behandeling

Er heeft in het diagnostische proces onderkenning plaatsgevonden en er zijn gegevens toegevoegd welke factoren het probleem in stand houden. Er volgt in de indicatieanalyse een uitspraak over de best passende interventie, echter niet de behandeling maar het type interventie wordt aangegeven. De behandelaar zelf geeft de concrete invulling en vult de specifieke tussendoelen in.

De behandelingscyclus heeft vier hoofdstappen die aansluiten op de diagnostische cyclus: (advies) verkennende behandelanalyse; voorspellen van reacties; toetsende behandeling; en evaluatie ten opzichte van het globale doel. De verkennende behandelingsanalyse is het in kaart brengen van factoren die een rol kunnen spelen, waarbij er in positieve en negatieve invloeden wordt gedacht (faciliterende of belemmerende factoren). Op basis van deze factoren wordt het werken aangepast. Het voorspellen van reacties gaat over het inschatten van de effecten van concrete interventies op korte en lange termijn. Een belangrijke bron hierbij is literatuur over effectiviteitsonderzoek. Toetsende behandeling is het voortdurend reflecteren over alternatieven en over de bruikbaarheid van empirisch-wetenschappelijke kennis. Er moeten heldere criteria worden geformuleerd waarmee kan worden nagegaan in hoeverre de behandelingsuitkomst eraan voldoet. De evaluatie van het globale doel is het voortdurend afwegen van de verandering op korte termijn ten opzichte van het uiteindelijke doel. Na afsluiting van de behandeling dient er follow up plaats te vinden over het verdere verloop van het leerproces. De diagnostische cyclus en de behandelcyclus vormen samen de klinische cyclus. Er moeten bij beide cycli bewuste beslissingen worden genomen, zodat er wordt nagedacht over de verschillende stappen en zodat er achteraf reflectie is. Het is ook mogelijk om voorwaarden te formuleren waaraan iedere stap moet voldoen. Een methodologische voorwaarde is dat de effecten van hulp toetsbaar moeten zijn aan de hand van vooraf opgestelde criteria, betrouwbaar en valide vast te stellen. Aan het begin moet er al duidelijk zijn wanneer en hoe de evaluatie gaat plaatsvinden. Een professionele voorwaarde is dat de behandelaar weet dat er mogelijk beoordelingsfouten zijn. Er moeten gegevens worden verzameld die de voorspelling ondersteunen en die hem weerleggen. Als het weerleggen niet wordt gedaan dan kan de eigen werkwijze worden overschat (confirmation bias). Fouten en systematische vertekeningen in de klinische oordeelsvorming vormen een bedreiging: vasthouden aan de eigen mening en overinterpreteren van resultaten; alleen zoeken naar positieve informatie; uitsluiten dan gunstige resultaten een andere oorzaak hebben dan de zelf uitgevoerde ingreep; overwaarderen van exotische oplossingen (als neurolinguïstisch programmeren); en overschatten van het eigen voorspellend vermogen. Naast methodologische en professionele voorwaarden zijn er organisatorische (is er continuïteit van de behandeling) en ethische voorwaarden (is er genoeg expertise aanwezig).

Verkennende behandelingsanalyse

De verkennende behandelingsanalyse is zowel behandelingsgericht als diagnostisch van aard. In deze stap wordt ingeschat welke faciliterende en belemmerende factoren een rol spelen. De informatie is niet altijd expliciet hierover en de behandelaar zal zelf informatie moeten zoeken uit onderzoeksartikelen. Ook uit de diagnostische cyclus kan infomatie worden gehaald.

Voorspellen van reacties

Het voorspellen van reacties op leerhulp doet een beroep op kennis door wetenschappelijk onderzoek of aan gesystematiseerde ervaring. Voorspellen staat impliciet voor het kiezen van een interventie die het meeste kans heeft. Er zijn vier thema’s waarbinnen inhoudelijke keuzes gemaakt kunnen worden: typen kennis en kwaliteit; instructieprincipes; variaties in stimuli, responsen en processen; en typen feedback.

Er zijn verschillende indelingen in typen kennis. Een eerste onderscheid is dat tussen taakspecifieke (of domeinspecifieke) kennis (bijvoorbeeld uitkomsten van tafels) en niet-taakspecifieke kennis (begrippen als verdelen, overhouden of splitsen). Een tweede indeling is die in (declaratieve) feitenkennis (het begrip quotiënt kennen), procedurele kennis (bijvoorbeeld een deling toepassen) en metacognitieve kennis (bijvoorbeeld zelf weten dat een uitkomst goed is). Leren is een proces van kwalitatieve verandering in de verschillende typen kennis. De kwaliteit van kennis is te observeren aan de hand van een aantal kenmerken: abstractieniveau waarop kennis kan worden gebruikt; mate waarin kennis in dezelfde situatie flexibel wordt gebruikt; mate waarin kennis in een andere situatie inzetbaar is; mate waarin tussenstappen in het gebruik van kennis nodig zijn; en mate waarin kennis geautomatiseerd wordt toegepast.

Het type instructie is een belangrijke keuze bij het bieden van leerhulp. Instructie kan impliciet uitlokkend zijn tot expliciet voorschrijven, van het stimuleren van eigen inbreng tot directe instructie. Bij hardnekkige problemen wordt bepleit om uit te gaan van een zekere mate van sturende instructie en bij leerproblemen een directe instructie. De expliciete uitleg, uitgebreide inoefening, sturende opmerkingen over het strategiegebruik en het segmenteren van vaardigheden zijn de instructiecomponenten die een sterke bijdrage leveren aan de positieve effecten. Een minderheid van rekenzwakke kinderen profiteert wel van een impliciete uitlokkende instructie. Er zijn twee hoofdrubrieken die de keuze illustreren tussen hulp die direct op het probleem zelf gericht wordt of hulp die compenserend van aard is en probeert via een ‘prothese’ de beperkingen van de leerstoornis op te vangen. Onder het optimaliseren van een verstoord leerproces vallen het isoleren en afbakenen van een leerinhoud (oriënteren op een taak, inhoud en de eigen inbreng met eventueel een voorbeeldmodel; voldoende oefening en herhaling; verkorten van procedures en door tussenstappen weg te laten; leren zichzelf te controleren; versnellen door reduceren van stimulus of responstijd; en leren onderkennen op welk moment kennis of een vaardigheid van toepassing is), het integreren van kennis door een koppeling te maken met bestaande voorkennis of vaardigheid; en generaliseren van kennis door aanbieding in nieuwe taken en door zelf verbanden te laten zoeken. Onder het compenseren van onvoldoende geautomatiseerde kennis door middelen aan te bieden of zelf te laten zoeken die de uitvoering van de taak mogelijk maken.

Type stimulus, respons en gevraagd proces

Bij het leren van kennis en vaardigheden worden stimuli aangeboden en bepaalde typen respons gevraagd. Als er bij responsen duurzame kwalitatieve veranderingen zijn die leiden tot nieuwe mogelijkheden dan is er sprake van leren. Tussen aanbieding en respons vinden complexe processen plaats. Naast het kiezen van de vorm of modaliteit van de stimulus en respons is er nog de keuze in tijdsduur te maken. De stimulustijd en de responstijd zijn te manipuleren. De stimulus kan visueel, auditief of mentaal (eigen voorstelling) worden aangeboden. Het type proces dat wordt gevraagd kan verschillen van imiteren, naar bewerken 9uit te splitsen in onderkennen en analyseren, en transformeren), en direct identificeren. Over het algemeen is er een opbouw in keuzes: van meer concreet naar meer symbolisch/abstract; van geïsoleerde aanbieding naar simultane presentatie; van een relatief onbeperkte naar een beperkte stimulus en responstijd; en van nadoen naar actief laten bewerken en automatisch toepassen.

Type feedback

Een belangrijk onderdeel van het instructieproces is het geven van feedback op observeerbare responsen in het leerproces. Het is een van de krachtigste instrumenten in het bevorderen van gedragsverandering en leren. In de leerpsychologie wordt er veel onderzoek gedaan naar de effectiviteit van operante bekrachtigingschema’s. Thorndike’s wet van effect houdt in dat feedback de kans groter maakt dat het gedrag waaraan het is gekoppeld de volgende keer weer optreedt. De bekendste principes zijn bekrachtiging (positief/negatief), straffen en negeren. Feedback kan intern (ik deed dat goed) en extern zijn (dat heb je goed gedaan). Een aspect van metacognitie is dat het kind zichzelf uiteindelijk feedback gaat geven, waarbij er door sommigen een verband wordt gelegd met motivatietheorieën en de locus of control. Kinderen met leerproblemen leren niet van fouten en falen, negeren is dan de beste reactie. Er kan feedback worden gegeven over de lerende zelf (persoonsgericht of inspanningsgericht) of over wat of hoe er geleerd wordt (procesgericht of resultaatgericht) of over een externe factor. De feedback kan gegeven worden door de lerende zelf, door degene die instructie geeft of door een neutrale derde (materiaal of computerprogramma). Er kan direct feedback worden gegeven of uitgesteld. Er kan altijd of beperkt feedback worden gegeven. Er kan feedback worden gegeven met een sociale reactie, met informatie, met materiaal of met een gunst.

Toetsende behandeling

Op basis van wetenschappelijke kennis worden er concrete verwachtingen geformuleerd en deze worden in de behandeling getoetst. Er zijn twee typen toetsen: voortdurende toetsing of de aanpak zowel op korte als op lange termijn aan de evaluatiecriteria voldoet, waarbij er toetsing van het prestatieniveau en de kwaliteit van kennis door middel van kortdurende leerproeven met als opzet voormeting, instructie, nameting en follow up of toetsing met een N=1 designs (door het gebruik van basislijn metingen ontstaat experimentele controle); en ook toetsing van de geldigheid ban de conclusies uit de stappen in de diagnostische cyclus.

Evaluatie ten opzichte van het globale doel

Een behandeling gericht op een bepaald doel kan worden uiteengelegd in specifieke tussendoelen voor zover dit passend is bij het gestelde einddoel. Steeds wordt de vraag gesteld of bereikte effecten niet in de weg staan voor het globale doel.

De analyse van effectstudies

Bij het geven van leerhulp worden er keuzes gemaakt uit verschillende handelingsalternatieven. De behandelaar dient te beschikken over relevante en actuele wetenschappelijke kennis. De kennis bestrijkt verschillende niveaus van theorievorming: algemene kennis, empirische effectstudies bij relevante probleem of vergelijkingsgroepen en casuïstiek. Van Strien (1986) noemt deze niveaus als nomothetisch, probleemgericht en ideografisch (of A, B en C niveau). Het zoeken van probleemgerichte kennis wordt bekeken vanuit twee invalshoeken: vanuit het model van behandelingscyclus en vanuit specifieke probleemdomeinen.

De analyse van effectstudie vanuit het model van de behandelingscyclus

De instructieprincipes, typen stimulus, respons, gevraagd proces en feedback zijn onafhankelijke variabelen. De voornaamste te beïnvloeden variabelen in een behandeling zijn: duur van trainingstijd, gebruikte instructieprincipes, type stimulus en stimulustijd, type gevraagde output en toegepaste feedback. De afhankelijke variabelen zijn responstijd en kwaliteit van respons. Als hulpmiddel is er een model voor de analyse van effectstudies in de empirische onderzoeksliteratuur. De interventiestudies bij rekenproblemen hebben voornamelijk de cognitieve psychologie als theoretisch kader en zijn gericht op automatisering. Een directe vertaling van trainingstudie naar directe behandeling is niet vanzelfsprekend. Zie voor een analyse model box 10.7 op pagina 326 en verder.

De analyse van effectstudie vanuit specifieke probleemdomeinen

Voorbeelden van inhoudelijke probleemdomeinen zijn problemen met: voorbereidende deelvaardigheden; het leren van de telrij; het automatiseren van keer en deeltafels; het overschrijden van het tiental bij optellen en aftrekken enzovoort. Er worden enkele onderzoekspublicaties besproken die als voorbeeld dienen voor effectstudies binnen de verschillende probleemdomeinen.

Onderzoek naar rekenproblemen in het leren optellen en aftrekken. In dit onderzoek wordt er gebruik gemaakt van twee dominante strategieën: de rijgstrategie en de splitsstrategie. In de rijgstrategie wordt uitgegaan van het eerste getal, waarbij de tienen en lossen van het tweede getal worden opgeteld of afgetrokken. Bij de splitsstrategie worden het eerste en tweede getal gescheiden in tientallen en lossen en deze worden apart opgeteld of afgetrokken, waarna de uitkomsten worden samengenomen. In het onderzoek is bij 70 kinderen in het speciaal basisonderwijs nagegaan wat het effect is van eigen inbreng en twee meer expliciete instructies. Bevindingen zijn dat zwakke rekenaars vaker de riskante en inefficiënte splitsstrategie; dat hoogbegaafde leerlingen vaker handige en efficiënte strategieën gebruiken; en dat er kwalitatieve verschillen lijken te bestaan tussen de twee groepen in het patroon van oplossingsstrategieën waarbij het niet duidelijk is of dit komt door verschillen in aanleg of door verschil in aantal jaren onderwijs.

Onderzoek naar rekenproblemen in het leren vermenigvuldigen bij kinderen in het speciaal basisonderwijs heeft als belangrijkste resultaten: dat kinderen die oefenen met klassieke tafelsommen de meeste leerwinst halen op de getrainde opgaven, maar op de niet getrainde opgaven niet beter scoren; dat kinderen die oefenen met puntopgaven achteruit gaan op klassieke natoetsen met klassieke tafelsommen en zij doen het slechts licht beter op een posttest die aansluit bij eigen oefenboeken; en dat kinderen die alleen maar het goede antwoord hoeven te herkennen doen het op alle nametingen beter dan de kinderen met de puntopgaven.

Individuele behandeling

Individuele behandeling wordt omschreven als het totale en zich continu wijzigende proces van directe of indirecte hulpverlening dat als doel heeft om de belemmeringen die voortkomen uit een met voldoende zekerheid te verwachten leerstoornis zoveel mogelijk te voorkomen of reduceren of te compenseren. De behandeling is geen rechtlijnig doorlopen van een programma, maar heeft steeds een afstemming op de persoon aan de hand van wetenschappelijke kennis. Bij het formuleren van doelstellingen is het handig om de volgende richtlijnen te gebruiken: vaststellen om welke kennis het gaat; vaststellen wat de huidige kwaliteit van kennis is; de beoogde kwaliteit bepalen; een optimaliserende of compenserende aanpak kiezen; het instructieprincipe kiezen; beslissen of een aanpassing in stimulus, respons of type gevraagd proces nodig is of een ander type feedback; en controleren van de afstemming op mogelijke contra-indicaties. De invulling van deze beslissingen vragen om empirische kennis. Een praktijkmiddel hierbij is de volgende procedure: bedenk voor een taak drie manieren om de instructie vorm te geven; formuleer waarom er tot deze variaties wordt gekomen; kies het alternatief wat het beste te verantwoorden is; en kies ook als er geen beste keuze is. In figuur 10.6 staat het basismodel van behandeling (pagina 338). De opbouw in rubrieken is als volgt: een globale aanduiding van het inhoudelijke deeldomein van de leerstof waarop de behandeling betrekking heeft gegeven de vastgestelde beginsituatie; het globale doel van de reeks sessies, zowel het inhoudelijke domein als het te observeren gedrag; drie rubrieken waarin de inhoud nader gespecificeerd wordt, namelijk tussendoel, typen kennis en het gevraagde proces; variabelen die gemanipuleerd worden (onafhankelijke variabelen) zijn trainingstijd, instructieprincipes, type stimulus, stimulustijd en respons en type feedback; de beoogde kwaliteit van de kennis en vaardigheid (afhankelijke variabele) als snelheid en accuratesse; en geobserveerde kwaliteit.

De combinatie van de methodologie van behandelen en specifieke inhoudelijke kennis vormt de essentiële onderbouwing van de individuele toetsende behandeling. Systematisch toetsen en bijstellen maken onlosmakelijk deel uit van deze werkwijze, waardoor de behandelingen empirisch-wetenschappelijk te evalueren zijn.

 

Access: 
Public
This content is related to:
Behandeling van dyscalculie van Ruijssenaars et al. - 2021 - Chapter 10
Samenvatting artikel Dyslexie en dyscalculie - Ruijssenaars, Luit
Check more of this topic?

Image

Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Comments, Compliments & Kudos:

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Promotions
special isis de wereld in

Waag jij binnenkort de sprong naar het buitenland? Verzeker jezelf van een goede ervaring met de JoHo Special ISIS verzekering

Check how to use summaries on WorldSupporter.org

Online access to all summaries, study notes en practice exams

How and why would you use WorldSupporter.org for your summaries and study assistance?

  • For free use of many of the summaries and study aids provided or collected by your fellow students.
  • For free use of many of the lecture and study group notes, exam questions and practice questions.
  • For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
  • For compiling your own materials and contributions with relevant study help
  • For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.

Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Use the menu above every page to go to one of the main starting pages
    • Starting pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
  2. Use the topics and taxonomy terms
    • The topics and taxonomy of the study and working fields gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
  3. Check or follow your (study) organizations:
    • by checking or using your study organizations you are likely to discover all relevant study materials.
    • this option is only available trough partner organizations
  4. Check or follow authors or other WorldSupporters
    • by following individual users, authors  you are likely to discover more relevant study materials.
  5. Use the Search tools
    • 'Quick & Easy'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject.
    • The search tool is also available at the bottom of most pages

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study for summaries and study assistance

Field of study

Check the related and most recent topics and summaries:
Activity abroad, study field of working area:
Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
1609 1