Answers

Week 1

Theory

- a. Population mean: \bar{x} , Sample mean, μ
- b. H_0 is what we expect to see happen based on the knowledge we have, H_a is what we suppose happens if the null hypothesis is not true
- c. The p-value is the probability that you find what you find
- d. The limit after which we state that the null hypothesis is not true and we assume the alternative hypothesis as probable.

Application

2 and 5 are correct

Week 2

- a. Event A alters event B or vice versa.
- b. Event A and B cannot exist or occur at the same time.
- c. They cannot.
- d. **1.** P(A/B) = P(A) + P(B) P(A&B) **2.** P(A/B) = P(A) + P(B) **3.** 1 P(A) = P(B) **4.** P(A&B) = P(A) × $P(B|A)$ **5.** $P(A\&B) = P(A) \times P(B)$
- e. There is no chance of you knowing the outcome
- f. $P(x) = F(x)/n$
- g. $\mu_{\bar{x}} = \sum \bar{X}_n \times p_n$
- h. $\sigma_x^2 = \sum (x_i \mu_x)^2 \times p_i$
- i. $\mu_{x+v} = \mu_x + \mu_v$
- j. $\sigma_{x+y}^2 = \sigma_{x}^2 + \sigma_{y}^2 + 2p_{xy} \times \sigma_{x} \times \sigma_{y}$

Week 3

- a. Numerical data can only take certain, definite values, while categorical values can be anything.
- b. When they don't alter or influence each other's results in any way.
- c. Goodness of fit, Independence and homogeneity
- d. Number of cells that can be filled in freely with only restrictions of marginal totals
- e. Number of cells that can be filled in freely with only restrictions of marginal totals 1
- f. fe (A and B) = $f(A) \times f(B) / n$
- g. $X^2 = \sum_{n=1}^{\infty}$ (Observed Expected) / Expected

Week 4

- a. H_0 is regular
- b. S_x
- c. $\sigma_{\rm x}$
- d. $T = \bar{x} \mu / S_x$

e. $z = \bar{x} - \mu / \sigma_x$

f. One-sided

Week 5

- a. *H*₀: μ _d = 0 and (if one-sided) H _a: μ _d </> 0 or (if two-sided) H _a: μ _d ≠ 0
- b. *H*₀: μ_1 μ_2 = 0 and (if one-sided) *H_a*: μ_1 μ_2 </> 0 or (if two-sided) *H_a*: μ_1 $\mu_2 \neq 0$
- c. 1. Df = number of pairs observed 1. 2. Df = The smallest of the two n's 1. 3. $n_1 + n_2 2$.
- d. $t = \bar{x}_1 \bar{x}_2 /$ se

$$
se_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}
$$

e. Because most of the time μ_1 - μ_2 is equal to 0

$$
f. \t t = D/sec \t \t sed = Sd/\sqrt{n}
$$

Week 6

Theory

- a. That in 95% of all samples, the mean falls within two standard errors of the population mean.
- b. $Cl_{1-a} = \overline{X} \pm t^* \times SE$ $t^* = t_{\alpha/2}$ (df)

a.
$$
t = t_{\alpha/2}(\alpha)
$$

b. $SE = s/\sqrt{n}$

$$
C1 = (\bar{v} \ \bar{v}) + t^* \vee C
$$

- c. CI_{1 α} = $(\bar{x}_1 \bar{x}_2) \pm t^* \times SE_{\bar{x}_1 \bar{x}_2}$ d. Effect size: $\eta^2 = t^2 / (t^2 + df)$
- e. Cohen's d: d = \bar{x} μ ₀/s

Application

D is correct, a is technically true as well but has nothing to do with the interpretation of the 95% CI

Week 7

Theory

- a. Distribution- free data that does not, or rarely makes claims about a population, as well as for resampling tests or ordinal data
- b. When dealing with ordinal data or with continuous data that has a small n and a skewed sample distribution, in the case when you don't know anything about the population.
- c. Paired = signed rank, Independent = rank sum
- d. You take the average.
- e. $\mu = n(n+1)/4$ $\sigma = n(n+1)(2n+1)/24$
- f. $\mu = n_1 (n_1 + n_2 + 1) / 2$ $\sigma = n_1 \times n_2 (n_1 + n_2 + 1) / 12$
- g. $z = T + -\mu_{T^*}/\sigma_{T^*}$ $T = W \mu_W / \sigma_W$

Application

Inferential Statistics (Psychology, Leiden University), Workgroups by Emy Geertsma,

a. 4, 4, 5, 6, 6, **7, 8,** 9, 9, 9, 10, **14, 14, 15, 15, 17, 18, 19, 22, 36**

No brain damage $(n=9) = 53$ Mean is 115,5 **brain damage (n=11) = 157 Mean is 94.5** Standard dev. = 13.16 $Z = -3.153$ $P = 0.016$ H_0 = rejected

Week 8

a.
$$
\varphi = \sqrt{x^2/n}
$$

b. $V = \sqrt{x^2/n(k-1)}$