Chapter 12: Direct restrictions on variables

Steps optimization without restrictions:

- 1. Compute the first order conditions (FOCs) f_1 and f_2 .
- 2. Solve FOCs
- 3. Compute the Hessian Matrix (H):

$$\begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}$$

- 4. $H_1 = f_{11}$ and $H_2 =$ determinant of H
 - \circ if H₁(abs) < 0 and H₂ (abs) > o \rightarrow the point is a maximum
 - \circ if $H_1(abs) > 0$ and $H_2(abs) > 0 \rightarrow$ the point is a minimum
 - $\circ \quad \text{if } f_{_{11}} \text{ and } f_{_{22}} \text{ have opposite signs} \rightarrow \text{the point is a saddle point}$

Steps optimization with restrictions:

- 1. Compute the first order conditions (FOCs) f_1 and f_2 . From these conditions one can calculate x_1 and x_2 .
- 2. Check for an interior solution. If x_1 and x_2 are both in the given range, then there is an interior solution. Then set up the **Hessian Matrix (H)**:

$$\begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}$$

 $H_1 = f_{11}$ and $H_2 =$ determinant of H

- if $H_1(abs) < 0$ and $H_2(abs) > o \rightarrow$ the point is a maximum
- if H₁(abs) > 0 and H₂ (abs) > 0 → the point is a minimum
- if $f_{_{11}}$ and $f_{_{22}}$ have opposite signs \rightarrow the point is a saddle point
- otherwise, the point is neither an extremum or saddle point.
- 3. Check for boundary solutions
- 4. Derive the boundary solutions
- 5. Check theorem: condition for maximum or minimum

One of the following conditions must hold for a **maximum**:

•
$$f_i(x^*) \le 0$$
 and $(x^* - a_i) f_i(x^*) = 0$

•
$$f_i(x^*) \ge 0$$
 and $(b_i - x^*_i) f_i(x^*) = 0$

for all i = 1, ..., n

One of the following conditions must hold for a **minimum**:

•
$$f_i(x^*) \ge 0$$
 and $(x^*_i - a_i) f_i(x^*) = 0$

•
$$f_i(x^*) \le 0$$
 and $(b_i - x^*_i) f_i(x^*) = 0$

for all
$$i = 1, ..., n$$

Note: if $a_i < x_i^* < b_i$ then both conditions hold.