Chapter 13: Constrained optimization

In constrained optimization problems Lagrange multipliers are used. The Lagrangian **function**, with x_1 and x_2 , is:

$$L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda g(x_1, x_2)$$

Steps for constrained optimization with equality constraints

Format of the problem is: max y = ... s.t. $x_1 = a$

- 1. Identify the objective function f(x)
- 2. Rewrite the constraint as g(x) = 0
- 3. Construct the Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$
- 4. Compute the FOCs of the Lagrangian:
 - $dL/dx_1 = 0$, $dL/dx_2 = 0$ etc.
 - $dL/d\lambda = 0$
- 5. Solve FOCs

The **Bordered Hessian**, H*, is:

- If the determinant of $H^* > 0$, then we have a maximum.
- If the determinant of H* < 0, then we have a minimum.

Weierstrass's Theorem: If f is a continuous function and x is a nonempty, closed and bounded set, then f has both a minimum and a maximum on x.

If in a constrained maximization problem f is quasi-concave and all g functions are quasi-convex, then any locally optimal solution is also globally optimal.