Chapter 24: Systems of differential equations A linear system of autonomous differential equations can be expressed as: $$\dot{y}_1 = a_{11}y_1 + a_{12}y_2 + b_1$$ $$\dot{y}_2 = a_{21}y_1 + a_{22}y_2 + b_2$$ The system can be solved either through using the substitution method or the direct method. The direct method is more generally used since it can also be used to solve systems with more than two equations. With I we refer to the identity matrix: $$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ A⁻¹ refers to the **inverse matrix**. ## Solving a system of linear, autonomous, first-order differential equations System form is : $\dot{y}_1 = a_{11}y_1 + a_{12}y_2 + b_1$ $$\dot{y}_2 = a_{21}y_1 + a_{22}y_2 + b_2$$ 1. Write the system in general matrix form $$\begin{bmatrix} \dot{\mathbf{y}}_1(t) \\ \dot{\mathbf{y}}_2(t) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$ Can also be written as $\dot{y}(t) = Ay(t) + b$ A is called the **matrix coefficient** and b is called the **vector of terms**. - 2. Compute the homogeneous solution: - compute the roots (λ) using the equation λ^2 trA λ + Determinant A = 0 where trA = a_{11} + a_{22} The smallest root is used as the first root (λ_{λ}) • compute the corresponding eigenvectors $$(A - \lambda_1 I) v_1 = 0$$ and $(A - \lambda_2 I) v_2 = 0$ · report homogeneous solution $$y_h(t) = C_1 v_1 e^{\lambda_1 t} + C_2 v_2 e^{\lambda_2 t}$$ if λ_1 is not equal to λ_2 $$(C_1 + C_2 t)v_1 e^{\lambda t} + C_2 v_2 e^{\lambda t}$$ if $\lambda_1 = \lambda_2 = \lambda$ 3. Compute the particular solution, which in a system is \bar{y} : $$\bar{y} = -A^{-1}b$$ 4. Report general solution $$y(t) = y_h(t) + \bar{y}$$ - 5. Compute constants $\rm C_{\scriptscriptstyle 1}$ and $\rm C_{\scriptscriptstyle 2}$ such that the initial conditions are satisfied - 6. Report solution ## Stability analysis: • if λ_1 and λ_2 have opposite signs \rightarrow saddle-point • if λ_1 , $\lambda_2 = \rightarrow$ stable node • if λ_1 , λ_2 = + \rightarrow unstable node • if $\lambda_1 = \lambda_2 = \lambda < 0$ \rightarrow improper stable node • if $\lambda_1 = \lambda_2 = \lambda > 0$ \rightarrow improper unstable node • if λ_1 , λ_2 are complex with $a_{11} + a_{22} < 0$ \rightarrow stable focus • if λ_1 , λ_2 are complex with $a_{11} + a_{22} > 0$ \rightarrow unstable focus • if λ_1 , λ_2 are complex with $a_{11} + a_{22} = 0$ \rightarrow center The steady-state solution to a system of equations is stable only if the characteristic roots are negative. If one of the characteristic roots is positive while the other is negative, then the steady-state equilibrium is unstable and called a **saddle-point equilibrium**. However, y_1 and y_2 do converge toward the steady-state solutions if the initial conditions satisfy the following equation: $$y_2 = \frac{r_1 - a_{11}}{a_{12}} (y_1 - \bar{y}_1) + \bar{y}_2$$ In this equation r_1 is the negative root. The points defined by this formula are called the **saddle** path. A graph of a system with y_1 and y_2 on the axes is called a **phase plane**. ## Deriving a phase plane with y_1 and y_2 on the axes: - 1. Draw a plane with y_1 on the horizontal axis and y_2 on the vertical axis. - 2. Compute isoclines by setting \dot{y}_1 = 0 and \dot{y}_2 = 0. Draw these lines in the plane - 3. Draw the saddle path using the equation on the previous page. - 4. Draw arrows of motion with arrows in the graph - if $d\dot{y}_{_{i}} / dy_{_{i}} < 0$ then $y_{_{i}}$ moves towards the isocline - if $d\dot{y}_i / dy_i > 0$ then y_i moves away from the isocline The path followed by the pair y_1 and y_2 in the phase plane is called the **trajectory**.