Samenvatting verplichte stof en collegeaantekeningen deel 1

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Verplichte stof

 

Clinically Oriented Anatomy, hoofdstuk 3: Pelvis and Perineum

Pagina 376-380, 382-389

Ductus deferens/ vas deferens (zaadleider)

Dit is het vervolg van de ductus epididymis. Het heeft een smal lumen met dikke spierwanden. Het gaat door het inguinale kanaal de buik binnen, kruist over de arteria iliaca externa en loopt buiten het peritoneum langs de bekkenwand. Er komt een kleine arterie vanuit de blaasarterie naar het vas deferens. Deze loopt door in een anastomose met de arteria testicularis. De vene mondt uit in de vena testicularis.

 

Vesicula seminalis (zaadblaasje)

Een blaasje van ongeveer vijf centimeter tussen de fundus van de blaas en het rectum. Het scheidt een vloeistof uit met fructose (om de zaadcellen energie te geven) en een coagulans dat zich met de zaadcellen vermengt. Ze zijn superieur bedekt door peritoneum en liggen posterieur ten opzichte van de ureters, gescheiden van het rectum door de rectovesicale ruimte. Het inferieure gedeelte is slechts door een septum van het rectum gescheiden. De ductus van de vesiculae seminales voegt zich bij de ductus deferens om samen de ductus ejaculatorius te vormen.

 

Ductus ejaculatorius

Deze dunne buis is ongeveer 2,5 centimeter lang en ontspringt in de buurt van de blaashals. De ductus loopt door de prostaat, maar de secreties van de prostaat komen er pas in de urethra bij. De arteriën hebben dezelfde oorsprong als die van de ductus deferens. De venen voegen bij de veneuze plexussen van prostaat en blaas.

 

Prostaat

Het formaat is ongeveer de grootte van een walnoot. Het omhelst de urethra. Eén derde is fibromusculair (onder andere de isthmus) en de rest is klierweefsel. Het ligt vlak bij de hals van de blaas en vormt een deel van de urethrale sfincter. De geproduceerde vloeistof is dun en melkachtig, het vormt twintig procent van het sperma en helpt de zaadcellen te activeren. De arteriën zijn takken van de arteria iliaca interna. De venen vormen een plexus die draineert in de vena iliaca interna. Die plexus is verbonden met de plexussen van de blaas en met de plexus vertebralis inferior.

 

Bulbourethrale klieren (klieren van Cowper)

Deze klieren zijn allemaal ongeveer zo groot als een erwt en liggen achter de urethra (grotendeels ingebed in de externe urethrale sfincter).

 

Ovaria en eileiders

De ovaria hebben de vorm en het formaat van een amandel. In de ovaria ontwikkelen de oöcyten zich en worden hormonen uitgescheden. Elke ovarium is opgehangen aan een mesovarium, wat een gedeelte is van het ligamentum latum. Tot de puberteit zijn ze grijsachtig, door een mesotheellaag. Later bevatten ze steeds meer littekens van de corpora lutea door de regelmatige eisprong. De vaten en zenuwen dringen door het ligamentum suspensorium ovarii, dat continu is met het ligamentum latum. Het ligamentum ovarium zorgt voor verbinding met de uterus. Het ovarium is niet bedekt met peritoneum, waardoor de eicel kort in de vrije buikholte terecht komt. Het wordt dan snel opgevangen door de fimbriae van de eileider, waarna het bevrucht kan worden. De eileiders zijn ongeveer tien centimeter lang en liggen in de mesosalpinx, dat de vrije rand van het ligamentum latum vormt. Van lateraal naar mediaal:

  • Infundibulum: het gedeelte dat opent naar de buikholte. Het bevat de fimbriae, waarvan de grootste vastzit aan het ovarium.

  • Ampulla: het wijdste en langste gedeelte. Dit is waar bevruchting meestal plaatsvindt.

  • Isthmus: het dikwandige gedeelte dat de uterus binnendringt.

  • Uterine gedeelte.

 

De arteria ovarica komt uit de aorta, gaat langs de posteriore buikwand, kruist over de arteria iliaca externa en gaat het ligamentum suspensorium binnen. De arteria uterina komt uit de arteria iliaca interna en gaat langs de laterale zijde van de uterus naar de mediale kant van de ovaria en eileiders. De beide arteriae uterinae zijn verbonden door collateralen en vormen zo samen een netwerk rond zowel ovaria als eileiders. De venen vormen een pampiniforme veneuze plexus in het ligamentum latum. Deze plexus vormt een gezamenlijke vena ovarica. De rechter vena ovarica gaat naar de vena cava inferior en de linker naar de vena renalis sinistra. De zenuwen komen van de plexus ovaricus en de plexus uterina. De viscerale sympathische vezels gaan naar wervelniveau T11-L1 en de parasympatische vezels naar S2-S4.

 

Uterus

De niet-zwangere uterus is peervormig en ligt meestal in het kleine bekken waarbij het corpus over de blaas ligt en de baarmoederhals (cervix) tussen blaas en rectum. De uterus ligt dan in anteflexie, de stand is afhankelijk van de vulling van de blaas. De uterus bestaat uit twee delen, namelijk het corpus en de cervix. Het corpus is het bovenste twee derde gedeelte, inclusief de fundus aan de bovenkant. Het ligt tussen de lagen van het ligamentum latum en is hierdoor bewegelijk. Het wordt door de isthmus van de cervix gescheiden. De cervix is cilindrisch van vorm, 2.5 centimeter lang en vrij smal. Het wordt gescheiden in een supravaginaal en een vaginaal gedeelte. Het vaginale gedeelte omvat het externe vaginale os. Tussen het supravaginale gedeelte en het rectum ligt de recto-uterine ruimte (ook wel bekend als de Ruimte van Douglas). De uteruswand bestaat uit drie gedeelten:

  • Perimetrium: een laag peritoneum, ondersteund door bindweefsel

  • Myometrium: glad spierweefsel. Het omvat de voornaamste vaten en zenuwen. Bij de geboorte zorgt hormonale stimulatie voor samentrekking van deze spierlaag.

  • Endometrium: een laag mucosa die verandert met de stadia van de menstruele cyclus. Een blastocyst kan zich innestelen in het endometrium, anders wordt het uitgescheiden tijdens de menstruatie.

 

Ligamenten van de uterus:

  • Ligamentum ovaria: loopt van de ovaria naar de posteroinferior kant van de uterus

  • Ligamentum teres uteri (‘round ligament’): deze hecht op dezelfde plek aan als het ligamentum ovaria

  • Ligamentum latum (‘broad ligament’): een dubbele laag peritoneum van de zijkant van de uterus naar het bekken. De twee lagen zijn continu bij de eileider. Het vormt ook het ligamentum suspensorium ovarii.

  • Ligamentum cardinale / transversum cervicis: van de supravaginale cervix en vagina naar de bekkenwand

  • Ligamentum uterosacrale: loopt vanaf posterieur van de zijkanten van de cervix naar het midden van het sacrum. Deze kan gevoeld worden bij rectaal toucher.

 

De bloedvoorziening van de uterus komt van de arteria uterina en soms ook vanuit collateralen van de arteria ovaria. De venen gaan met de arteriën door het ligamentum latum en vormen een veneuze plexus aan elke kant van de cervix. Ze draineren naar de vena iliaca interna.

 

Vagina

De vagina is zeven tot negen centimeter lang en loopt van de cervix naar de vaginaopening. Het superieure gedeelte omvat de cervix van de uterus. Functies zijn het kwijtraken van menstruele vloeistof, vorming van het geboortekanaal en het ontvangst voor de penis en ejaculaat. De voorkant van de vagina ligt tegen de urethra en de fundus van de baarmoeder aan. De zijkanten liggen tussen de musculus levator ani, viscerale bekkenfascia en ureters. De achterkant ligt bij het anaalkanaal, het rectum en de recto-uterine ruimte. Het superieure gedeelte wordt van bloed voorzien door de arteria uterina. Het midden en inferieur worden voorzien door de arteria pudenda interna en arteria vaginale. De vaginale venen vormen een veneuze plexus langs de zijkanten van het kanaal, die continu is met de uteriene veneuze plexus, die draineert naar de vena iliaca interna.

 

 

Geneeskundig Proces, hoofdstuk 3: Van probleem naar differentiële diagnose

Pagina 66-74

Een diagnose stellen is een kwestie van een gecompliceerd proces volgen dat in verschillende stappen te leren is. De moeilijkste stap is het bedenken van welke mogelijke diagnoses overwogen moeten worden (inductie). Hoe meer ervaring een dokter heeft, hoe beter de differentiaaldiagnose (DD; een lijst met alle mogelijke ziekten) zal zijn. Vervolgens moet hiërarchie in de lijst worden aangebracht naar aanleiding van waarschijnlijkheid. Als laatste kan door middel van de anamnese, lichamelijk onderzoek en aanvullend onderzoek de echte diagnose uitgezocht worden (deductie). Hier is kennis voor nodig, om gericht te kunnen kijken en zoeken.

 

Naarmate meer kennis wordt vergaard, zal sneller tot een DD gekomen kunnen worden, omdat patronen steeds eerder herkend worden. Het is wel van belang om waakzaam te zijn op de minder voor de hand liggende diagnoses die sneller vergeten worden. Om hiërarchie aan te brengen in de DD zijn drie opeenvolgende stappen nuttig om toe te passen:

  • Hiërarchie op basis van incidentie; kans op een zeldzame ziekte is klein

  • Hiërarchie op basis van geslacht en leeftijd

  • Hiërarchie op basis van voorkennis en contextuele factoren; als een arts de patiënt goed kent, zullen aandoeningen in de DD anders gerangschikt worden

 

Histology, hoofdstuk 22: Male Reproductive System

Pagina 784-792, 798-808

Het mannelijke voortplantingssysteem bestaat uit de testes, de genitale tubuli, de geslachtsklieren en de penis. De testes zorgen voor de spermatogenese en steroïdogenese (productie van androgenen, oftewel geslachtshormonen). Het belangrijkste androgeen is testosteron. Het is essentieel voor de spermatogenese, maar ook voor embryonale ontwikkeling en mannelijk gedrag. Bij het vormen van geslachtscellen (gameten) spelen zowel mitose als meiose een rol.

 

Een man heeft twee testes, deze liggen in het scrotum onder de lichaamsholtes. Om de testes ligt een spierlaag heen, die gelijk is aan die van de abdominale lichaamswand. De zaadstrengen verbinden de testes met de lichaamswand, de scrotale ligamenten zijn overblijfselen van het guberniculum en verbinden de testes met het scrotum. In de zevende week van de embryonale ontwikkeling wordt het geslacht bepaald door het SRY-gen op het Y-chromosoom. Als dit gen wél aanwezig is ontwikkelen zich testes, bij afwezigheid ontwikkelen zich ovaria. Het SRY-gen is een master-gen dat andere chromosomen tot de ontwikkeling van mannelijke geslachtsorganen aanzet. Dit gaat met TDF (Testis Determining Factor), een speciale transcriptiefactor. Naast SRY zijn ook het WT-1-gen, SOX-gen, AMH-gen SF-1-gen en DAX-1-gen belangrijk voor de ontwikkeling van het urogenitale stelsel.

 

De testes ontwikkelen zich retroperitoneaal bij de posterior lichaamswand. Ze bestaan uit intermediair mesoderm (Leydigcellen en in de tubulus myoïdcellen), mesodermaal epitheel (Sertolicellen) en primordiale geslachtscellen. Laatstgenoemde migreren vanuit de dooierzak in de geslachtsorganen en differentiëren daar tot spermatogonia. Door deze migratie prolifereren de cellen van de urogenitale groeve en de mesotheelcellen zich tot primaire geslachtsdraden. Deze bestaan in eerste instantie uit primordiale geslachtscellen, pre-Sertollicellen en myoïdcellen. Later differentiëren de geslachtsdraden zich tot de seminifereuze draden, waar de seminifereuze tubuli, tubuli recti en rete testis uit ontstaan.

 

In de eerste fase van de ontwikkeling van de gonaden is er geen verschil tussen de geslachten. De primordia van de gonaden vormen zich op de urogenitale groeve. Door het SRY-gen ontwikkelen zich Sertolli en Leydigcellen, de laatste produceren testosteron. Hierdoor ontwikkelt de geslachtsloze primordiale gonade zich in een testis. Ook zorgt testosteron voor de verdere ontwikkeling van de buis van Wolff dat de genitale buizen zal vormen. De Sertolicellen produceren MIF (Müller-inhibiting factor) waardoor de buis van Müller zich niet verder ontwikkelt en er geen vrouwelijk geslachtssysteem wordt aangelegd. Dihydrotestosteron (DHT) ontstaat uit testosteron en zorgt voor de ontwikkeling van de externe genitaliën. Als er geen DHT aanwezig is, ontstaan er vrouwelijke externe genitaliën. Testosteron, MIF en DHT zijn dus bepalend voor het hormonale geslacht.

 

Rond de 26e week dalen de testis in naar het scrotum. Dit komt voornamelijk doordat de abdominale holte groter wordt en het guberniculum, dat de testis met het scrotum verbindt, door testosteron wordt ingekort. Bij het afdalen passeert de testis het inguinale kanaal dat de abdominale holte met het scrotum verbindt. Bij het afdalen worden alle vaten en zenuwen meegenomen. In 30% van de neonaten zijn de testes niet goed ingedaald. Ook wordt een verlengd deel van het abdominale peritoneum meegenomen, dit heet de tunica vaginalis en bedekt het anterolaterale oppervlak van de testes. In het scrotum is de temperatuur 2 tot 3 graden lager dan in de rest van het lichaam, dit is essentieel voor de spermatogenese. Als de testes niet in het scrotum liggen, worden er wel hormonen maar geen sperma geproduceerd.

 

Elke testis krijgt bloed van een a. testicularis, die direct uit de abdominale aorta ontspringt. In en rond de testis wordt de arterie omringd door de pampiniforme plexus, die de veneuze afvoer van de testis regelt. Deze plexus zorgt ervoor dat het bloed in de arterie afkoelt alvorens het de testis binnenkomt, een proces met de naam countercurrent heat exchange mechanism. Daarnaast reageert de m. cremaster op temperatuurverschillen. Deze spier beweegt de testes bij koude dichter naar het lichaam toe en bij warmte verder van het lichaam af. Bij koude ontstaat ook vasoconstrictie van de m.dartos, waarop de testes inkrimpen.

 

Over een testis ligt een dikke laag bindweefsel, de tunica albigunea. De binnenste laag hiervan heet de tunica vasculosa en bevat de vaten van de testis. Het bindweefsel straalt de testes binnen en vormt 250, niet goed gescheiden, lobuli. Op het posterior oppervlak vormt de tunica albigunea het mediastinum van de testis, hier gaan de vaten en kanalen van de testis doorheen. Elke lobulus bestaat uit één tot vier seminifereuze tubuli waar spermacellen worden geproduceerd. Om de tubuli ligt bindweefsel heen, waar zich Leydigcellen bevinden. De tubuli zijn bijzonder lang en liggen in een loop gekronkeld in de lobulus. De uiteindes zijn recht en lopen naar het mediastinum. Dit deel heet de tubulus rectus en staat in verbinding met de rete testis. De rete testis is het systeem van kanalen in het mediastinum.

 

Elke seminifereuze tubulus is rond de 50 cm lang en bestaat voornamelijk uit Sertolicellen en cellen voor de spermatogenese. Sertolicellen zijn kubusvormige cellen, zorgen voor de organisatie van de tubuli en bestrijken de wanden. Spermatogenese cellen repliceren veel en differentiëren in sperma. Ze ontstaan uit de primordiale geslachtscellen die vanuit de dooierzak in de testis migreerden. De minst volwassen spermatogenese cellen heten spermatogonia en liggen op het basaal membraan, de meest volwassen heten spermatiden. Zij liggen aan de apicale kant van de Sertolicellen en kunnen het lumen van de tubuli in. Om de tubuli heen ligt de tunica (lamina) propria. Deze bestaat uit drie tot vijf lagen myoïdcellen en collageenvezels en lijkt daardoor op glad spierweefsel. Tevens bevat de tunica propria Leydigcellen en bloedvaten. Door ritmische contracties van de tunica propria worden de spermatozoa en testisvloeistof door de tubuli naar de genitale tubuli vervoerd. Als de leeftijd toeneemt, wordt de lamina propria dikker en neemt de spermaproductie af.

 

Het functioneren van de testis is afhankelijk van endo- en paracriene stoffen. De belangrijkste endocriene stof is testosteron, dit wordt voor het grootste deel door de testis gemaakt. Testosteron is essentieel voor de spermatogenese. Het remmen van de testosteronproductie is dus een mogelijkheid voor anticonceptie, al werkt dit niet altijd. Testosteron heeft meerdere functies:

  • Differentiatie van het centrale zenuwstelsel en de genitaliën

  • Groei en onderhoud van de secundaire geslachtskenmerken

  • Groei en onderhoud van de externe genitalia, geslachtsklieren en –kanalen

  • Anabole en metabole processen, zoals skeletgroei en nierfunctie

  • Gedrag en libido

 

De activiteit van de testes wordt geregeld door de hypothalamus, de anterior hypofyse en de gonadale cellen. De anterior hypofyse produceert LH, FSH en PRL. LH stimuleert de synthese van testosteron en in combinatie met PRL zorgt het voor meer steroïdogenese in de Leydigcellen. FSH is belangrijk voor de spermatogenese.

 

Leydigcellen zijn grote, eosinofiele cellen. Ze bevatten vetdruppels en vaak ook cytoplasmatische kristallen, de kristallen van Reinke. Leydigcellen produceren en secreteren testosteron vanaf de vroeg foetale periode. In de verschillende levensfases heeft het testosteron een andere functie. In het embryo is testosteron nodig voor de ontwikkeling van de gonaden. Tijdens de puberteit is testosteron nodig voor het initiëren van de spermaproductie en de secretie door de geslachtsklieren. Daarnaast is het nodig voor de ontwikkeling van de secundaire geslachtskenmerken. In het volwassen leven is testosteron nodig om de spermatogenese op gang te houden en de secundaire geslachtskenmerken, -kanalen en -klieren te onderhouden. De Leydigcellen zijn na vroege foetale periode een periode inactief. Tijdens de puberteit worden ze gereactiveerd door gonadotrofen, hierna blijven ze actief. Tumoren in de Leydigcellen leiden tot een vroege puberteit en bij volwassen mannen tot ontwikkeling van vrouwelijke geslachtsorganen en/of borsten.

 

Figuur 22.9 op bladzijde 794 van Ross toont de fases van de spermatogenese. Alleen in de spermatogonia van het type A-dark zijn de cellen volledig van elkaar gescheiden, in de volgende deling blijft het cytoplasma van de cellen aan elkaar vastzitten. Er zitten dus intercellulaire bruggen tussen de cellen, terwijl deze mitotische en meiotische delingen ondergaan. De cellen splitsen als ze door het seminifereuze epitheel heen zijn. Hierbij laten ze een lichaampje achter, de lichaampjes zijn nog wel met elkaar verbonden en worden gefagocyteerd door Sertolicellen.

 

Doordat de spermatogonia aan elkaar vastzitten, vormen ze groepjes van cellen die in dezelfde fase zitten. Omdat de lengte van elke fase vaststaat, verloopt de ontwikkeling synchroon. De spermatogenese is een cyclisch proces, elke ontwikkeling van de groep is een stadium van deze cyclus. De cyclus heet de cyclus van het seminifereuze epitheel. De cyclus kent zes stadia en duurt ongeveer 16 dagen. De spermatogenese van stamcel tot spermatogonium duurt meer dan één cyclus, namelijk 74 dagen. Omdat op hetzelfde moment meerdere groepen in verschillende stadia zitten én er meerdere plaatsen zijn waar sperma wordt geproduceerd, wordt er elke dag sperma gevormd (en niet om de 74 dagen). In de meeste zoogdieren is er een patroon van de verschillende stages in het epitheel van het seminifereuze epitheel, maar bij de man is zo'n patroon niet te vinden. Bij de man zijn de groepjes naar het lijkt willekeurig verdeeld.

 

Sertolicellen zijn kolomvormige epitheelcellen die op de basale lamina van het seminifereuze epitheel liggen. In feite vormen zij het echte epitheel van de seminifereuze tubuli. De nucleus van een Sertolicel is euchromatisch en is meestal ovaal of driehoekig. Bij de man bevinden zich 'inclusion bodies' in het cytoplasma, deze zijn waarschijnlijk bij het vettransport betrokken. De Sertolicellen staan in verbinding via unieke junctionele complexen. Dit complex bestaat uit een grote zonula occludens (tight junction), maar ook uit een cisterna van sER en bundels van actinefilament. De Sertolicellen zijn op een soortgelijke manier aan de spermatiden verbonden. Het verschil is dat er bij de spermatiden geen tight junctions aanwezig zijn. Tevens zitten de actinefilamenten en het sER alleen aan de kant van de Sertolicellen.

 

Door het complex van de Sertolicellen ontstaan er twee compartimenten: een basaal epitheelcompartiment en een lumen. In het basale compartiment liggen de primaire spermatocyten. Hoe volwassener deze worden, hoe dichter ze bij het lumen komen. Voor de differentiatie en de meiose moeten spermatocyten in het lumen zijn, dus moeten ze door de junction. De Sertolicellen helpen waarschijnlijk bij de differentiatie en heten daarom de 'supporting cells'. Sertolicellen helpen ook met het schoonhouden van het lumen: ze fagocyteren de achtergebleven lichaampjes van de spermatozoa en cellen die niet goed differentiëren.

 

Sertolicellen vormen de bloed-testisbarrière. Deze barrière zorgt ervoor dat de seminifereuze tubuli en de genitale tubuli een andere samenstelling hebben dan het bloed en de lymfevaten. Het belangrijkste verschil is dat de tubuli en kanalen geen plasma eiwitten of antilichamen bevatten. Omdat de spermatogonia haploïd zijn worden ze als vreemd lichaam gezien, zonder aanwezigheid van de bloed-testisbarrière zouden ze dus worden aangevallen door het afweersysteem. Het lumen bevat wel veel ABP, wat door de Sertolicellen wordt geproduceerd. Dit ABP zorgt ervoor dat testosteron en DHT in het lumen een hoge concentratie bereiken, wat de spermatogenese bevordert.

 

Sertolicellen produceren de vloeistof binnen het lumen, maar zoals gezegd ook ABP. Daarnaast secreteren ze endocriene stoffen, waaronder inhibine. Dit remt de secretie van FSH in de anterior hypofyse. Naast verschillende eiwitten produceren Sertolicellen ook glycoproteïnes die als groeifactor of paracriene factor werken, zoals MIF (Müller-inhibiting factor). Aan het einde van een seminifereuze tubulus bevindt zich een tubulus rectus. Dit is een korte tubulus die alleen door Sertolicellen is omringd en uitkomt in de rete testis.

 

De genitale tubuli ontwikkelen zich uit de buis van Wolff en de mesonefritische tubuli. Dit wordt gestimuleerd door testosteron uit de ontwikkelende Leydigcellen. De mesonefritische tubuli ontwikkelen zich tot de kanalen van de epididymis (bijbal). Een ander deel van de mesonefritische tubuli ontwikkelt zich tot de ductuli efferentes (enkelvoud: ductus efferens) die de rete testis met de epididymis verbinden. Ook de ductus ejaculatorius en de vesicula seminalis ontstaan uit de mesonefritische tubuli.

 

De ductuli efferentes hebben pseudomeerlagig kolomepitheel. Hiertussen bevinden zich stamcellen. Ook zijn er cellen met microvilli aanwezig en cellen die de vloeistof van de seminifereuze tubuli grotendeels resorberen. De ductuli efferentes bestaan uit zes tot tien kolommen die alle in een kanaal van de epididymis uitmonden. De beweging van de vloeistof wordt geregeld door de microvilli en een spierlaag die om de ductuli heen ligt.

 

In de kop van de epididymis bevinden zich de ductuli efferentes, in de romp en de staart de ductuli van de epididymis. In de epididymis leert de spermacel hoe te zwemmen en hoe te bevruchten. De spermacel wordt vruchtbaar door een oppervlakte-decapacitatie-factor. Eenmaal aangekomen in de vrouwelijke geslachtskanalen, vindt capacitatie plaats waardoor bevruchting kan plaatsvinden. Door veranderingen die in de epididymis plaatsvinden, kan sperma zich uiteindelijk binden aan de zona pellucida van het ei.

 

De tubuli in de epididymis bestaan uit pseudomeerlagig kolomepitheel, voornamelijk 'principal cells' met stereocilia (speciale microvilli) en kleine basale cellen. Ook zijn er lymfocyten te vinden, deze heten 'halo cells'. De meeste vloeistof van de Sertolicellen wordt geresorbeerd in het proximale deel van de epididymis, hier worden ook resterende lichaampje opgeruimd. De principal cells secreteren stoffen die helpen bij het volwassen worden van het sperma. Het spierweefsel in de epididymis neemt van kop naar staart toe: het begint met een circulaire laag en hier komen 2 longitudinale lagen bij. In de kop en de romp zijn er veel peristaltische bewegingen, de staart dient meer als reservoir. Bij ejaculatie trekken de drie spierlagen samen en duwen ze het sperma in de ductus efferens.

 

De ductus deferens is het langste deel van de genitale tubulus en komt uit de staart van de epididymis. Het stijgt langs de posterior wand van de testis op en gaat het abdomen binnen als een component van de spermatische draad, via het inguinale kanaal. Hier gaan ook kleine arteriën en de m. cremaster doorheen. Ter hoogte van de blaas vormt de ductus deferens de ampulla van de ductus deferens. Deze ampulla heeft een secretoire functie en is verbonden met de ductus van de vesicula seminalis. Samen gaan ze door de prostaat naar de urethra, hier vormen ze de ductus ejucularis. Deze lijkt erg op de tubulus in de epididymis maar is veel minder glad en bevat geen spierweefsel.

 

Histology, hoofdstuk 23: Female Reproductive System

Pagina 830-840, 845-852

Het vrouwelijke voortplantingssysteem bestaat enerzijds uit de interne geslachtsorganen, gelegen in de pelvis. Anderzijds uit de externe genitale structuren, gelegen in de vulva. De geslachtsorganen zijn de ovaria (eierstokken, enkelvoud: ovarium), tubae uterinae (eileiders, enkelvoud: tuba uterina), uterus (baarmoeder) en vagina. De externe genitaliën zijn de mons pubis, de labia majora en labia minora (binnenste en buitenste schaamlippen), de clitoris, de vestibule, de opening van de vagina, hey hymen en de externe urethrale opening. Van de puberteit tot de menopauze veranderen de ovaria, tuba uterina en uterus door de menstruele cyclus.

 

Ook tijdens de zwangerschap ondervinden deze organen veranderingen. Deze worden veroorzaakt door hormonen. De eerste menstruatie noemen we de menarche, dit is meestal tussen de 9 en 14 jaar. De menarche is het begin van de periode dat een vrouw zich voort kan planten. Hierna zijn er regelmatige menstruele cycli tot een leeftijd tussen de 45-55 jaar. Dan worden de cycli onregelmatig, waarna ze geheel verdwijnen. Deze periode van veranderingen noemen we de menopauze. Hierna produceren de ovaria geen oöcyten meer en neemt ook de activiteit van de andere organen af.

 

De ovaria produceren gameten (oögenese) en steroïde hormonen. Ontwikkelende vrouwelijke gameten heten oöcyten, volwassen vrouwelijke gameten heten ova. De hormonen die de ovaria produceren zijn oestrogenen en progestagenen. Oestrogenen zorgen voor de groei en ontwikkeling van de (interne en externe) geslachtsorganen en (vrouwelijke) geslachtskenmerken. Progestagenen bereiden de interne geslachtsorganen voor op zwangerschap en zorgen voor de lactatie (borstvoeding) na de zwangerschap. Beide hormonen spelen een rol in de menstruele cyclus.

 

Bij een vrouw die nog geen kind heeft gekregen (nullipara) zijn de ovaria gepaarde, kleine structuren. Via het mesovarium zitten ze vast aan het ligamentum latum. De superior pool van het ovarium zit aan de pelviswand vast door middel van het ligamentum suspensorium, hier lopen ook de vaten en zenuwen doorheen. Het ligamentum ovaria, een overblijfsel van het guberniculum, verbindt de inferior pool van het ovarium met de uterus. Voor de puberteit is het oppervlak van de ovaria glad, maar door de cycli vormt zich veel littekenweefsel op deze organen. Na de menopauze zijn de ovaria veel kleiner dan daarvoor.

 

De ovaria bestaan uit een medulla en een cortex. De medulla ligt centraal en bevat de vaten en zenuwen. De cortex ligt perifeer en bevat de ovariële follikels. De scheiding tussen medulla en cortex is moeilijk te zien. Het oppervlak van de ovaria bestaat uit kubus en plaveiselcellen. Het heet het germinale epitheel en gaat over in het mesotheel van het mesovarium. Men dacht dat de primordiale geslachtscellen in het germinale epitheel ontstonden, maar deze blijken te migreren vanuit de dooierzak. Tussen het germinale epitheel en de cortex ligt een laag straf bindweefsel: de tunica albigunea. In het stroma van de cortex ontstaan follikels, elk met één oöcyt. De grote van de follikel geeft aan hoe ver deze is ontwikkeld. De oöcyten zijn na de geboorte bevroren in de eerste meiose, in de puberteit ontwikkelen de follikels in kleine groepjes. De eerste ovulatie is meer dan een jaar na de menarche. Daarna wordt een cyclisch patroon van ontwikkeling en ovulatie aangehouden. Normaal gesproken ontwikkelt slechts één oöcyt zich volledig tijdens een cyclus. Mochten er toch meerdere oöcyten volwassen worden, zou dat kunnen leiden tot meerlingen. De meeste primaire oöcyten worden overigens nooit volwassen. De apoptose van oöcyten begint al voor de geboorte, in de foetale periode gaat 80% van de oöcyten alweer verloren.

 

De ovaria krijgen bloed via de a. ovaria en a. uterina. De a. ovaria is een tak van de abdominale aorta en is de primaire bloedstroom voor de ovaria en tuba uterina. Er is veel anastomose met de ovariële takken van de a. uterina. Deze arterie komt van de a. iliaca communis. Vanuit de anastomose komen vrij grote vaten de hilus van de ovaria in, deze vaten heten de spiraalarteriën. De venen van de ovaria vormen een pampiniforme plexus in de hilus, hier komt de v. ovaria in uit. Om alle grote ontwikkelende follikels en de corpora lutea (gele lichamen, enkelvoud: corpus luteum) zitten lymfevaten heen, deze bevinden zich in de theca interna.

 

De innervatie van de ovaria is via de autonome ovariële plexus. Deze bevat zowel sympathische als parasympatische vezels. De zenuwvezels komen niet door de basale lamina van de follikels heen. De sensorische vezels komen uit bij de dorsale ganglia van L1.

 

Het is vooral belangrijk om te weten welke hormonen er worden geproduceerd in de verschillende fases. De follikels beginnen als primordiale follikels en eindigen als Graafs follikel. Primordiale follikels komen al in de derde foetale maand voor en bevinden zich net onder de tunica albigunea. Een dunne laag plaveiselcellen, follikelcellen genaamd, omringt de oöcyt. Hieromheen ligt nog een basale lamina. De follikels liggen dicht tegen elkaar aan. Een primordiaal follikel groeit tot een primair follikel. Dit secreteert speciale eiwitten die de zona pellucida vormen, welke zich tussen de oöcyt en de follikelcellen in bevindt. De follikelcellen delen snel en vormen de membrana granulosa. Tussen de granulosacellen ontstaan grote gap junctions. Extern van de basale lamina ontstaat een laag bindweefsel, die bestaat uit stromale cellen. Hieruit ontwikkelt de theca interna waar de LH-receptoren zich bevinden. Als reactie op LH worden stoffen geproduceerd, die op hun beurt de oestrogeenproductie verder stimuleren. In de primaire follikel rijpen de oöcyten, waarna ze door microvilli worden beschermd tegen de omringende granulosacellen. Deze granulosacellen groeien naar de oöcyt toe en oefenen hierop invloed uit.

 

Als het follikel zich verder ontwikkelt, verplaatst het zich richting de medulla. De groei van het follikel wordt gestimuleerd door FSH, groeifactoren en Ca2+-ionen. FSH zorgt voor de proliferatie van granulosacellen. Als het aantal granulosacellen genoeg is toegenomen, secreteren de cellen vloeistof. De met vloeistof gevulde ruimtes die hierdoor ontstaan smelten samen tot het antrum, wat kenmerkend is voor een secundair follikel. OMI (Oocyte Maturation Inhibitor) zorgt ervoor dat de oöcyt niet verder groeit. De granulosacellen rond de oöcyt vormen een berg (cumulus oophorus). Deze berg sluit de oöcyt in, de cellen die de oöcyt direct omringen heten de corona radiata. Deze cellen hebben microvilli die door de zona pellucida contact maken met de microvilli van de oöcyt.

 

Het volwassen follikel heet een Graafs follikel en heeft een diameter van meer dan 10 mm. Deze omvang veroorzaakt een bobbel in het ovarium. De laag granulosacellen wordt dunner naarmate het antrum groter wordt. Hierdoor nemen de ruimtes tussen de granulosacellen toe en worden de oöcyt en cumulus langzaam losgemaakt van de omringende cellen. De theca interna en theca externa worden groter en secreteren onder invloed van LH oestrogenen. Na de LH piek die 24 uur voor de ovulatie plaatsvindt produceren de theca geen oestrogenen meer, ook wordt de proliferatie van de granulosacellen geremd. De LH-piek zorgt er ook voor dat de eerste meiose van de oöcyt verdergaat. Daarna ondergaan de granulosacellen en theca luteïnisatie, waardoor ze progesteron produceren.

 

De ovulatie is een, door hormonen geregeld, proces waarbij de secundaire oöcyt uit het Graafs follikel komt. Al in de eerste dagen van de cyclus wordt bepaald welke van de ontwikkelde oöcyten zal ovuleren. Het losraken van de oöcyt wordt geregeld door een aantal factoren:

  • Toename van het volume en de druk van de vloeistof binnen het follikel

  • Enzymatische proteolyse van de follikelwand

  • Hormonaal geregelde herpositionering van het cumuluscomplex en het stratum granulosum

  • Contractie van gladde spiercellen in de theca externa

 

Vlak voor de ovulatie stopt de bloedflow in het gedeelte van het ovarium waar het follikel in uitstulpt. Dit deel, de macula pellucida genaamd, droogt uit en scheurt, net als het follikel. De oöcyt, met de corona radiata en de cumulus, komt vrij en belandt in de fimbriae. Deze liggen ten tijde van de ovulatie zeer dicht op de ovaria. Vanuit de fimbriae wordt het cumuluscomplex in de tuba uterina geveegd. Hier blijft de oöcyt 24 uur intact, daarna begint afbraak van de oöcyt in de tuba. Oöcyten die niet in de tuba terecht komen worden meestal in het peritoneum afgebroken, maar soms vindt er bevruchting plaats. Als een bevruchte eicel niet (zoals normaal gesproken) in de uterus terecht komt, spreken we van een buitenbaarmoederlijke zwangerschap (EUG). Als er meerdere secundaire oöcyten in de tuba worden vrijgelaten, bestaat er een kans op een meerling.

 

Na de eerste meiotische deling ontvangen beide dochtercellen evenveel chromatine, maar één dochtercel ontvangt veel meer cytoplasma. Dit wordt de secundaire oöcyt. De dochtercel met een minimale hoeveelheid cytoplasma wordt het eerste polaire lichaam. De secundaire oöcyt begint met de tweede meiotische deling maar stopt in de metafase. Pas als de zona pellucida is gepenetreerd door een spermatozoön gaat de tweede meiose verder. Bij bevruchting wordt zo een volwassen ovum (eicel) gecreëerd met een kern met 23 chromosomen. Ook ontstaat er een tweede polaire lichaam. Meestal is het eerste polaire lichaam bij de bevruchting al verdwenen.

 

Na de ovulatie klapt het follikel in en vormt het 'corpus luteum'. Door bloeding van de capillairen in de theca interna ten gevolg van de ovulatie komt er bloed in het lumen van het gele lichaam. We noemen het nu een corpus hemorrhagicum. Bindweefsel uit de voormalige stroma groeit hier steeds dichter in. Granulosacellen en de theca interna ondergaan luteïnisatie, waarbij ze groter worden en vetdruppels opnemen. De luteïnecellen van de granulosa zijn groter dan luteïnecellen van de theca. In het corpus luteum ontstaat uit de theca interna een groot vaatnetwerk. Hieraan worden oestrogenen en progesteron afgegeven. Deze hormonen bereiden het endometrium, de binnenkant van de uterus, voor op innesteling van de zygote als er bevruchting plaatsvindt. Als er geen bevruchting en innesteling plaatsvindt, wordt het corpus luteum na 14 dagen inactief. We noemen het dan een corpus luteum van de menstruatie. De inactivatie komt door de afwezigheid van hCG, wat door een ingenestelde zygote zou worden geproduceerd. Na afloop van een zwangerschap vindt het dus ook plaats. Het corpus luteum wordt kleiner en gevuld met vet, uiteindelijk vormt het een wit litteken: het corpus albicans. Dit komt diep in de cortex te liggen of is na een aantal maanden weer verdwenen.

 

De tubae uterinae (eileiders) zijn twee tubuli die aan twee kanten van de uterus naar de ovaria lopen. Ze begeleiden het ovum van ovarium naar uterus en zorgen voor een omgeving waar bevruchting kan plaatsvinden. Ook vindt de eerste ontwikkeling van de eventuele zygote hier plaats. De opening van de tuba aan de kant van het ovarium opent in de peritoneaalholte. Elke tuba is 10-12 cm lang en bestaat uit vier onderdelen:

  • Het infundibulum is de kant van het ovarium, vanaf de mond lopen de fimbriae naar het ovarium

  • De ampulla is het langste deel van de tuba, hier vindt de eventuele bevruchting plaats

  • De isthmus is een dun deel dat de ampulla met de uterus verbindt

  • Het uterine of intramurale deel ligt in de uteruswand en opent in de uterusholte

 

De wand van de tuba uterina bestaat uit drie lagen. De serosa is de buitenste laag van de tuba uterina en bestaat uit mesotheel en een dunne laag bindweefsel. De muscularis bestaat uit een dikke circulaire en een dunne longitudinale laag. De mucosa is de binnenste laag, hier zitten vouwen die in het lumen projecteren. Deze vouwen zijn vooral in de ampulla terug te vinden. Het epitheel is enkel kolomepitheel. De meeste cellen in de mucosa bevatten microvilli en hebben dus cilia (trilhaartjes, enkelvoud: cilium). De microvilli zorgen voor een 'wave' richting de uterus. De cellen zonder cilia zijn secretoir en voeden het ovum. Tijdens de folliculaire fase van de cyclus ondervinden de epitheelcellen hypertrofie, tijdens de luteale fase juist atrofie. Dit komt voornamelijk door oestrogenen (stimuleren de aanmaak van microvilli) en progestagenen (doen het aantal secretoire cellen toenemen).

 

Vlak voor de ovulatie bewegen de fimbriae naar het ovarium toe en zoeken ze de plek waar de scheuring zal plaatsvinden. Na het vrijkomen van de oöcyt vegen de cellen (met cilia) de oöcyt van het infundibulum naar de ampulla, waarmee ze voorkomen dat de oöcyt in de peritoneaalholte terecht komt. In de tuba uterina gaat het transport via peristaltische bewegingen, maar ook de microvilli dragen hieraan bij. Hoe spermacellen precies worden verplaatst, is onbekend omdat deze veel sneller bewegen. Het ovum blijft ongeveer drie dagen in de tuba, maar is slechts één dag vruchtbaar.

 

In de uterus vinden alle fases van de embryonale en foetale ontwikkeling plaats. De uterus neemt bij zwangerschap dan ook zeer toe in grootte. De uterus is een hol orgaan dat tussen de blaas en het rectum in het pelvis ligt. Het platte lumen loopt over in zowel de tuba uterina als de vagina. De uterus bestaat uit een romp en een cervix. De romp beslaat het grootste deel van de uterus, de bovenkant van de romp heet de fundus. De cervix is het onderste deel van de uterus, de isthmus scheidt dit van het corpus. Het lumen van de cervix, het cervicale kanaal, heeft aan de bovenkant een opening (os interna ) met de uterusholte en aan de onderkant (os externa) met de vagina. De wand van de uterus bestaat uit endometrium (mucosa), myometrium (een dikke spierlaag, verbonden met de vagina, tuba en de ligamenten om de uterus heen) en perimetrium (een viscerale peritoneale laag die met het pelvis en abdominale peritoneum in verbinding staat). Het perimetrium bestaat uit mesotheel en bindweefsel. Het perimetrium bedekt het hele posterior oppervlak maar slechts een deel van het anterior oppervlak van de uterus. De rest van het anterior oppervlak is bedekt met een adventitia. Zowel het endometrium als het myometrium ondervindt grote veranderingen gedurende de menstruele cyclus.

 

Het myometrium is een structureel en functioneel syncytium. Het bestaat uit drie lagen, de middelste laag (stratum vasculare) is het dikst en bevat de vaten. De spieren in de binnenste en buitenste laag lopen parallel aan de as van de uterus. Tijdens het samentrekken werken alle drie de lagen als een functioneel syncytium. De groei tijdens zwangerschap komt vooral door hypertrofie van het spierweefsel. Na de zwangerschap keren de meeste spieren terug naar hun oorspronkelijke grootte.

 

Tijdens elke cyclus ondervindt het endometrium veranderingen die innesteling en ontwikkeling van de embryo mogelijk maken. De secretoire functie van het endometrium heeft een relatie met de ontwikkeling van de follikels. Het eind van een menstruele cyclus wordt gekenmerkt door gedeeltelijke vernietiging en afstoting van het endometrium. Hier komt bloed van de musocavaten bij. Het afstoten duurt 3 tot 5 dagen en heet de menstruatie. De menstruele cyclus begint op de eerste dag van deze menstruatie. Tijdens de vruchtbare levensfase bestaat het endometrium uit een functionele en een basale laag. De functionele laag is de laag die wordt afgestoten, de basale laag dient om de functionele laag weer op te kunnen bouwen. Tijdens de menstruele cyclus neemt het endometrium van 1 mm naar 6 mm toe. Het bestaat uit enkellagig kolomepitheel dat uitstulpt in de endometriale stroma (lamina propria van het endometrium). Zo worden de klieren van de uterus gevormd. Het endometrium bevat unieke bloedvaten, de radiale arteriën. Deze komen uit een anastomose in het myometrium. De hoofdtak van de radiale arteriën is erg gekronkeld en heet daarom spiraalarterie. Hieruit ontstaan anastomose die capillairbedden vormen. De dunne, gedilateerde delen hiervan heten lacunae. Het distale deel van de spiraalarteriën ondervindt degeneratie en regeneratie door de menstruele cyclus.

 

De menstruele cyclus wordt in feite geregeld door de gonadotrofe hormonen uit de hypofyse (FSH en LH). De cyclus duurt ongeveer 28 dagen en heeft drie fases:

  • De proliferatieve fase: groei van het follikel en ovariële oestrogeen secretie

  • De secretoire fase: ovulatie en progesteron secretie van het corpus luteum

  • De menstruele fase: menstruatie en hormoonproductie van het ovarium om het corpus luteum af te breken

 

De proliferatieve fase begint onder invloed van oestrogenen. Hierdoor prolifereren cellen in het stratum basale van het endometrium zich versneld. Epitheelcellen migreren over het oppervlak van het endometrium, stromale cellen produceren collageen en grondsubstantie en spiraalarteriën groeien uit. De spiraalarteriën worden pas in een latere fase gekronkeld en zijn nu nog kort en recht. De proliferatiefase gaat door tot één dag na de ovulatie, het endometrium is dan 3 mm dik.

 

De secretoire fase is geregeld door progesteron. Door hypertrofie neemt de functionele laag van het endometrium in dikte toe en worden de lumina gevuld met secretoire producten. Deze zijn voornamelijk om de ingenestelde zygote te voeden. De spiraalarteriën worden langer en beginnen te kronkelen. Als de blastocyste zich innestelt, veranderen de stromale cellen in deciduale cellen, onder invloed van oestrogeen en progesteron.

 

De menstruele fase begint, als er te weinig progesteron en oestrogeen aanwezig is. De eerste dagen na de ovulatie produceert het corpus luteum hormonen, maar zonder stimulans van een ingenestelde zygote stopt dat na tien dagen. Als er niet genoeg hormonen zijn, contraheren de spiraalarteriën urenlang, waardoor het stratum functionale ischemisch wordt (zonder zuurstof komt te zitten). Na twee dagen van contractie, scheuren het epitheel en de bloedvaten. Bloed en vocht van de uterine cellen, de stromale cellen en de epitheelcellen van het stratum functionale worden via de vagina uitgescheiden. Dit bloed komt door de open eindes van de venen en de discontinue contractie van de spiraalarteriën en is meestal 35 tot 50 ml. Als er geen ovulatie optreedt, is er geen corpus luteum en geen progesteronproductie. Hierdoor is er geen secretoire fase en blijft het endometrium in de proliferatieve fase tot de menstruatie.

 

In het ovarium kent de menstruele cyclus een folliculaire fase en een luteale fase. De folliculaire fase begint met de ontwikkeling van een aantal primaire follikels. De eerste dagen is dit onder invloed van FSH. Hierdoor wordt oestrogeenproductie gestimuleerd, wat op diens beurt de FSH-secretie weer remt. Als de hoeveelheid oestrogeen toeneemt, kunnen de follikels zonder invloed van FSH verder groeien. Later neemt de hoeveelheid progesteron toe onder invloed van LH. Een dag voor de ovulatie is er een LH piek, waarna ook FSH nog even toeneemt.

 

De luteale fase begint meteen na de ovulatie. Het opengescheurde follikel verandert in een corpus luteum, dat oestrogeen en vooral progesteron produceert. Hierdoor komt het endometrium in de secretoire fase. LH houdt de eerste dagen het corpus luteum in stand, als er bevruchting optreedt neemt hCG deze taak over. Dit hormoon wordt eerst door het embryo en daarna door de placenta geproduceerd.

 

Medical Physiology, hoofdstuk 55: Female Reproductive System

Pagina 1150-1168

De menstruele cyclus wordt gevormd door twee cycli. De endometriale cyclus bestaat uit menstruele, proliferatieve en secretoire fasen. De gemiddelde cyclus duurt 28 dagen, maar kan erg variëren. Vooral rond de menarche (eerste eisprong) en in de periode vóór de menopauze. De ovariële cyclus bestaat uit:

  • Folliculaire fase: FSH stimuleert rijping van het follikel. Dit duurt ongeveer 14 dagen vanaf het begin van de menstruatie. Oestradiol zorgt er voor dat het endometrium zich gaat ontwikkelen. Dit komt overeen met de proliferatieve fase van het endometrium.

  • De ovulatie: getriggerd door een snelle stijging van oestradiol.

  • Luteale fase: de follikel vormt het corpus luteum. Het produceert progesteron en oestrogeen, wat voor verdere groei en ontwikkeling van het endometrium zorgt. Dit komt overeen met de secretoire fase. Een snelle afname van deze hormonen zorgt voor de menstruatie.

 

De hypothalamus produceert GnRH, slaat het op en geeft het af naar de voorkwab van de hypofyse. Deze afgifte is pulsatiel, ongeveer één keer per uur. De halfwaardetijd van GnRH is 2 tot 4 minuten. De pulsen zorgen voor upregulatie van de receptoren, waardoor gonadotropen telkens worden afgegeven. Wanneer GnRH echter constant zou worden toegediend, dan zouden de receptoren worden gedownreguleerd.

 

Als respons op GnRH produceert de hypofyse FSH en LH, om dit vervolgens uit te scheiden. LH en FSH hebben dezelfde alfaketen als TSH en hCG. Zij stimuleren de ovaria om oestrogenen en progestagenen te produceren. De thecacellen van het follikel hebben LH-receptoren, de granulosacellen hebben zowel LH- als FSH-receptoren. Ook produceren ze inhibines (die FSH-secretie inhiberen) en activines (die secretie activeren).

 

De steroïden (oestrogenen en progestagenen) en de peptiden (activines en inhibines) zorgen voor feedback op hypothalamus en hypofyse. Meestal is de feedback negatief. Aan het einde van de folliculaire fase is het echter positief. De oestrogeenspiegel wordt dan langzaam hoger tijdens de eerste helft en stijgt sterk tijdens de tweede helft van de fase. Een verhoogd progesteronniveau tijdens het einde van de folliculaire fase zorgt ook voor positieve feedback en werkt daardoor ook mee aan de LH-piek.

 

Rond dag 13-14 van de cyclus vindt de LH-piek gedurende 48 uur plaats. Ook is er een kleine FSH-piek. Door die piek vindt ovulatie en daarna luteïnisatie plaats. Luteïnisatie zorgt ervoor dat granulosacellen progesteron produceren en ze samen met de thecacellen veranderen om het corpus luteum te vormen. Langzaam wordt de synthese van oestradiol, progesteron en inhibine verhoogd, waardoor gonadotropineniveaus dalen als gevolg van negatieve feedback. Twee dagen voor de menstruatie is LH-afgifte gedaald tot een puls elke 3-4 uur. De afbraak van het corpus luteum zorgt voor een vermindering van oestradiol, progesteron en inhibine. Na de start van de menstruatie keert het systeem terug naar de folliculaire fase van LH-secretie.

 

De ovaria produceren uit cholesterol oestradiol (het voornaamste oestrogeen) en progesteron (het voornaamste progestageen). Oestrogenen worden ook geproduceerd door de bijnier en door adipeus weefsel. LH stimuleert een thecacel om meer LDL-receptoren te produceren. Deze gaat dan meer androsteendion produceren dat naar de granulosacel gaat. FSH stimuleert deze om aromatase te produceren, dat androsteendion omzet in oestron. Op deze manier worden theca-geproduceerde androgenen in de granulosacel omgezet in oestrogenen.

 

De functie van oestrogenen is de stimulatie van cellulaire proliferatie en de groei van geslachtsorganen en andere weefsels. In de circulatie is 60% gebonden aan albumine, slechts een kleine fractie (2%) is ongebonden. Progestagenen zorgen voor klieruitscheiding in en volgroeiing van reproductieve weefsels, vooral het endometrium.

 

De foetus heeft bij 7 weken al ongeveer 10000 oögonia. Deze worden door meiose-1 primaire oöcyten. Rond 20 weken zijn er 6 miljoen, bij de geboorte 2 miljoen en aan het begin van de puberteit 40.000. Ze blijven primaire oöcyten in de profase-1 van meiose tot vlak voor de eisprong. Ze ondergaan veranderingen naar primordiale follikel, dan primaire follikel, vervolgens secundaire follikel, dan vroege tertiaire follikel (het heeft nu een vochtholte) en tot slot Graafs follikel in de folliculaire fase.

 

De selectie van follikels om tot ontwikkeling te komen, is niet helemaal duidelijk. De selectie van de groep potentiële follikels lijkt onder invloed te zijn van FSH, de selectie van de dominante follikel lijkt met oestrogeen te maken te hebben. De dominante follikel heeft meer FSH-receptoren, meer vasculariteit en staat meer onder invloed van FSH dan de andere follikels, die op gegeven moment atresie ondergaan. Oestradiolsecretie door de dominante follikel triggert de LH-piek, die vervolgens weer ovulatie veroorzaakt.

 

Tijdens de LH-piek wordt de meiose afgemaakt, er is dan een klein polair lichaam en een grote secundaire oöcyt. Het gaat dan in meiose 2, maar pauzeert in de metafase tot aan een eventuele bevruchting. Het is omgeven door de zona pellucida en één of meer lagen folliculaire cellen die de corona radiata vormen. LH en progesteron stimuleren eiwit afbrekende enzymen, waardoor de folliculaire wand dunner en zwakker wordt. Er ontstaat een stigma (een plek) die gaat uitpuilen en uiteindelijk scheurt, waardoor ovulatie plaatsvindt. De fimbriae van de eileider vangen de eicel op, waarna het eventueel wordt bevrucht in de ampulla van de eileider. Het blijft hier ongeveer 72 uur, hierna nog 2-3 dagen in de uterus, waarna het aan de uteruswand hecht.

 

Medical Physiology, hoofdstuk 56: Fertilization, Pregnancy and Lactation

Pagina 1185-1192

Libido is een ingewikkeld fenomeen, bestaande uit fysieke en psychologische componenten en gemoduleerd door sekssteroïden. Libido varieert gedurende de cyclus, zo is er meer seksuele activiteit rond de eisprong door de effecten van de LH-piek. De seksuele respons bestaat volgens Masters and Johnson uit vier fasen:

  • Opwinding: veroorzaakt door allerlei verschillende fysieke en psychologische factoren. De respons komt voornamelijk door parasympatische activiteit van het autonome zenuwstelsel. De psychische stimuli op het cerebrum zorgt voor een verhoogde spanning van het lichaam.

  • Plateau: Rond de piek van opwinding is er een plateaufase. Er is op dat moment sprake van vasocongestie door het lichaam.

  • Orgasme: Deze intensieve ontlading (climax) zorgt voor een myotonische respons door het hele lichaam. De samentrekkingen duren van 2-4 seconden na de start van het orgasme en zijn ritmisch elke 0.8 seconden. Het komt vanuit het sympathische deel van het zenuwstelsel. Een ruggenmergreflex zorgt voor ritmische contracties van de perineale spieren.

  • Ontspanning, herstel: een bevredigend gevoel. Een vrouw kan nu direct een nieuwe seksuele cyclus beginnen. Er is dan geen herstelperiode nodig zoals bij de man.

 

Vasodilatatie zorgt voor het vollopen van erectiele weefsels met bloed, erectie van de clitoris en vernauwing van het onderste deel van de vagina. Het parasympatische systeem zorgt voor genoeg lubricatie door middel van activering van de klieren van Bartholin. De vrouwelijke seksuele respons zorgt voor een beter transport van zaadcellen, door de cervix te verwijden en oxytocine af te geven, dat uteruscontracties bevordert.

 

Menopauze is het einde van de vruchtbare periode van de vrouw: de menstruatie stopt en zwangerschap is meestal niet meer mogelijk. In de VS vindt dit gemiddeld plaats na 51,5 jaar. Omdat de ovariële follikels niet meer functioneel zijn, is er minder oestrogeenproductie. Dit heeft een verminderde negatieve feedback naar de hypofyse tot gevolg. Ook een verminderde inhibineproductie zorgt voor een stijging van FSH.

 

Een groot deel van de seksuele organen heeft een dubbele innervatie, van zowel de sympathische als van de parasympatische zenuwen van het autonome zenuwstelsel. De penis ontvangt somatisch efferente (motorische) en afferente (sensorische) innervatie via de n. pudendus uit wervelniveau S2-S4. De sympathisch efferente zenuwen komen uit wel vijf neurale plexi: de plexus coeliacus, mesenterica superior, mesenterica inferior, hypogastricus superior, hypogastricus inferior. Het parasympatische effect op de penis is dat deze zorgt voor ontspanning van het gladde spierweefsel. Hierdoor stroomt er meer bloed naar de penis, wat zorgt voor een toename van volume en rigiditeit. De drie grootste motorische effecten (efferent) zijn parasympatisch (n. pelvicus), sympathisch (n. hypogastricus) en somatisch (n. pudendus).

 

Bij ejaculatie zorgen afferente (sensorische) vezels voor het sein naar de ruggenmerg. Efferente somatische motorneuronen zorgen via de n. pudendus voor ritmische contracties waardoor het zaad uit het lichaam wordt gepompt via de urethra. Ook zorgt het voor contractie van de heupspieren en anale sfincter. Tijdens ejaculatie zorgt het sympathisch systeem voor samentrekking van de interne sfincter van de blaas, om retrograde ejaculatie (ejaculatie naar de blaas) te voorkomen.

 

Prostaglandinen zorgen voor de start van baarmoedercontracties. Prostaglandinen en oxytocine zorgen er voor dat de bevalling in stand wordt gehouden. Prostaglandinen worden geproduceerd door uterus, placenta en foetale membranen. Het effect van prostaglandinen is een contractie van de gladde spiercellen van de uterus. Net als oestradiol, zorgen ze tevens voor meer gap junctions tussen de gladde spiercellen en voor verzachting, dilatatie en verdunning van de baarmoederhals. In de kliniek kunnen prostaglandinen soms gebruikt worden om een bevalling te induceren. Aspirine is een COX-inhibitor, waardoor deze effecten worden tegengegaan.

 

Oxytocine en AVP (uit de supraoptische en paraventriculaire kernen in de hypothalamus) zorgen voor een contractie van het gladde spierweefsel van de uterus, en zorgen ook voor meer productie van prostaglandine. Relaxine, dat door de placenta en het corpus luteum wordt geproduceerd, zorgt voor relaxatie van de uterus tijdens de zwangerschap. Tijdens de bevalling neemt de hoeveelheid toe, en helpt het de cervix te ontspannen. De mechanische uitrekking van de spiercellen zorgt voor ritmische contracties van deze cellen.

 

Groepjes van alveoli die samen een lobulus vormen komen uit in ductuli, welke in een ductus uitkomen. De ampulla is een klein reservoir. Melk is een emulsie van vetten in een waterige oplossing, die suikers, eiwitten en ionen bevat. De eerste dagen na de bevalling wordt colostrum uitgescheiden, een dunne, gelige substantie. Een pasgeborene verdraagt geen koemelk, dat geconcentreerder is en een andere samenstelling heeft. Zuigen aan de tepel is een sterke stimulus voor prolactinesecretie bij de moeder, dat essentieel is voor melkproductie. Oxytocine is een stimulus voor samentrekking van de cellen rondom de alveoli en helpt zo ook de borstvoeding. Ook psychische factoren zijn van invloed, zo kan het horen van de baby de melkproductie bevorderen, terwijl angst en boosheid deze juist kunnen deze afremmen. Borstvoeding geven, zorgt voor een sterk verminderde GnRH-afgifte, waardoor de menstruele cyclus geremd wordt.

 

Medical Physiology, hoofdstuk 59: Regulation of Body Temperature

Pagina 1237-38, 1242-46

De mens is een homeotherme soort, wat inhoudt dat de lichaamstemperatuur zelfstandig (onafhankelijk van de omgeving) geregeld kan worden. Het thermoregulatoire systeem zorgt ervoor dat het interne milieu redelijk stabiel blijft rond het optimum, voor reactiesnelheden. Het bestaat uit sensoren, afferenten, het Centrale Zenuwstelsel, efferente paden en organen zoals huid (zweten) en spieren (rillen).

 

De normale lichaamstemperatuur is 37 (36-37.5) graden Celsius, gemeten in oor, rectum of onder de tong. Het rectum geeft de meest betrouwbare meting. Deze kerntemperatuur is afhankelijk van tijdstip (op zijn laagst tussen 03-06uur, op zijn hoogst tussen 15-18u), menstruatiecyclus (+0.5 graden rond de ovulatie), mate van activiteit en leeftijd. Kleine kinderen en ouderen kunnen hun temperatuur minder goed reguleren. Kinderen door een hoge ratio oppervlakte/gewicht en het onvermogen om te zweten of rillen, ouderen door een verminderde gevoeligheid en vermindert vermogen om warmte te produceren of kwijt te raken.

 

De productie van warmte door het lichaam is variabel, door onder andere spieractiviteit, voedingsstoffen en hormonen. Het kwijtraken van warmte is hierop afgestemd, om de warmtebalans te handhaven. Thermoreceptoren, speciale vrije sensorische zenuwuiteinden, zijn verspreid over het gehele huidoppervlak (perifere sensoren) en zijn aanwezig in de lichaamskern (centrale sensoren). Vooral in het preoptisch gebied en de anterior hypothalamus. De hypothalamus verwerkt de thermale informatie en kan de efferente activiteit aanpassen.

 

De huidsensoren werken goed bij veranderingen van de omgevingstemperatuur, maar niet goed bij lichaamsbeweging. Bij laatstgenoemde duurt het namelijk erg lang voordat de huid in temperatuur stijgt. Er zijn thermoreceptoren voor kou en voor warmte. Een temperatuursverandering zorgt voor een aanpassing van de vuursnelheid van de neuronen, statisch (lang) of dynamisch (kort). De informatie van de huidsensoren gaat ook naar de cerebrale cortex, waardoor we ons bewust worden van de omgevingstemperatuur. Omdat de huid haar temperatuur niet zelf kan aanpassen, wordt de verandering gezien vooral gezien als een anticiperend en niet als een negatief feedbacksysteem.

 

De sensoren in de kern kunnen juist veranderingen van de omgevingstemperatuur niet goed waarnemen, maar een verhoging door lichaamsbeweging wel. De voornaamste sensor is in de hypothalamus. De sensoren in de lichaamskern vormen onderdeel van een negatief feedbacksysteem. De meest waarschijnlijke manier waarop deze twee soorten sensoren samenwerken, is dat de huidsensoren de sensitiviteit voor het signaal van de kern aanpassen.

 

De effectoren van het thermale systeem zijn de subcutane vaten, zweetklieren en spieren die verantwoordelijk zijn voor rillen. Aanpassing van de gladde spierspanning van de vaten door het autonome zenuwstelsel zorgt voor een aangepaste bloedflow en dus warmteafgifte naar de huid.

 

Wanneer bij sporten de kerntemperatuur stijgt, probeert het lichaam meer warmte kwijt te raken. Op een gegeven moment wordt evenveel warmte afgescheiden als geproduceerd. Er is dan al een verhoogde kerntemperatuur - een hyperthermie- veroorzaakt door de disbalans die in eerste instantie ontstaan was. Deze hyperthermie houdt aan, totdat het sporten gestaakt wordt.

 

Wanneer de omgevingstemperatuur stijgt, kan er steeds minder warmte kwijtgeraakt worden door middel van straling en convectie. Wanneer de omgevingstemperatuur rond de 30 graden is, is zweten nog de enige overgebleven manier. Wanneer er ook een hoge luchtvochtigheidsgraad is, wordt verdamping echter ook verminderd. Er kan dan sprake zijn van progressieve hyperthermie. Hypothermie wordt meestal veroorzaakt door een langdurig verblijf in koud water. Water is een betere geleider dan lucht, dus je koelt veel sneller af. Vasoconstrictie kan zorgen voor meer isolatie, rillen voor meer warmteproductie.

 

Wanneer de lichaamskerntemperatuur ernstig stijgt, zorgt vasodilatatie voor een verminderde arteriële bloeddruk en daardoor een verminderde hersenperfusie. Wanneer de kerntemperatuur de 41 graden nadert, treedt verwardheid en uiteindelijk bewustzijnsverlies op. Dit staat bekend als zonnesteek. Afbraak van spieren treedt op en bloedstolling wordt minder waardoor bloedingen en trombose kunnen optreden.

Collegeaantekeningen

 

HC-01: Inleiding (31-03-2014)

Al het leven is onderworpen aan alle fysische wetten, dus ook aan die van de chemische thermodynamica. Stofwisseling omvat alle chemische en fysische processen van het lichaam in alle levensfasen die betrokken zijn bij de productie van energie, energieafgifte en groei. Dit kunnen anabole of katabole processen zijn. Mensen zijn warmbloedig (homeotherm) en er is gedurende alle levensfasen een constante lichaamstemperatuur (Nulde wet). Alle energie uit voeding manifesteert zich uiteindelijk als groei, arbeid of warmte (eerste wet). Biochemische omzettingen leiden altijd tot warmteverlies, waardoor er minder energie overblijft voor groei en arbeid (tweede wet). Men heeft voortdurend energie nodig om in leven te blijven. De lichaamstemperatuur is absoluut (derde wet). Er is geen warmte uitwisseling tussen mensen wanneer ze elkaar aanraken.

 

Energie: een getal dat de hoeveelheid warmte of beweging aangeeft. Energie wordt uitgedrukt in calorie (warmte eenheid) en joule (bewegingsenergie eenheid). Bij stofwisseling worden calorie (cal) en kilocalorie (kcal of Cal) gebruikt. Een calorie is de hoeveelheid warmte om één gram zuiver water 1°C in temperatuur te doen stijgen = 4,1868 joule (J). Een eiwit bevat 4 Cal per gram, net als een koolhydraat. Een vet bevat 9 Cal per gram. Een gezonde jongeman heeft in rust 30 Cal/kg lichaamsgewicht nodig per dag.

 

De toename van inwendige energie is de som van de opgenomen vrije energie en de verloren energie (warmteverlies). Het warmteverlies is het product van de absolute temperatuur en de entropieverandering (T x S). In cellen is de belangrijkste energiedrager ATP, buiten cellen is dit glucose. De lichaamstemperatuur is in alle levensfasen constant (37 °C of 310,15 K). De normale variatie van hiervan is slechts 1 °C. De regulatie hiervan begint tijdens de foetale ontwikkeling, maar zuigelingen hebben moeite om hun lichaamstemperatuur op peil te houden.

 

Alle benodigde energie voor mensen komt uit de voeding. Koolhydraten, vetten en eiwitten zijn de belangrijkste nutriënten. Vertering: transformatie van voedsel tot geschikte moleculen voor de verbranding en opbouw. Deze laatste twee processen vinden plaats in het waterig milieu van de lichaamscel, bij 37°C. Gaswisseling en waterhuishouding horen bij de stofwisseling. De stofwisseling is op elk niveau (cel, weefsel, orgaan, organisme) strikt geregeld en elk niveau heeft zijn eigen regelingen, die ook op hogere niveaus op elkaar zijn afgestemd. Deze regelingen kunnen zeer eenvoudig zijn, maar ook zeer complex. De stofwisseling wordt door verscheidene regelkringen op alle niveaus beheerst.

 

De biologische klok is een voorbeeld van de sturing van ons dagelijks ritme. Zogenaamde klokgenen geven een prikkel af, die een negatieve feedback geeft op de klokgenen. De moleculen zelf hebben een 24-uurs ritme. Dit wordt beïnvloed door het zonlicht. Overdag in het licht geeft het weefsel in de klokgenen signalen af. Dit weefsel verdeeld zich met vuren over de periode dat het licht is. In de zomer zijn er lange dagen, er worden dan over een langere periode signalen afgegeven maar de piek is korter. In de winter zijn de dagen kort, dit zorgt voor een hoge piek maar een korte periode met signalen. De biologische klok heeft invloed op veel verschillende fysiologische processen in het lichaam:

  • Brein activiteit

  • Hormoongehaltes

  • Cognitieve functies (Het helderst is men rond 10.00)

  • Prestaties, reactie tijd

  • Hartritme, bloeddruk

  • Slaap (diepste slaap om 2.00)

  • Melatonine niveaus (wordt je slaperig van begint om 21.00 te stijgen)

  • Temperatuur (hoogste om 19.00 laagst om 4.30)

  • Zuurgraad in de maag, lever en darm

  • Gevoeligheid voor medicatie

 

HC-02: Regeling van de voortplanting (31-03-2014)

Menstruatiecyclus: Per maand is er slechts één eicel tot bevruchting in staat. Er worden ongeveer 400 primordiale follikels gerekruteerd voor één dominante follikel. In de leeftijd van 18 tot 31 jaar is de optimale vruchtbaarheid. Organen die betrokken zijn bij de menstruatiecyclus zijn de hypothalamus (produceert GnRH wat de hypofyse activeert), de hypofyse (de voorkwab en de adenohypofyse produceren FSH en LH) en het ovarium. FSH is het follikelstimulerend hormoon en het stimuleert de mitose (deling) van granulosacellen (deel van de primordiale follikels) in het ovarium. Aan het begin van een cyclus is FSH nodig, zodat de granulosacellen gaan delen. Deze granulosacellen gaan oestradiol produceren.

 

Oestradiol heeft negatieve feedback op de productie van FSH. Wanneer deze feedback er niet zou zijn, zouden er te veel ontwikkelde eicellen ontstaan. Nu komt er maar één ontwikkelende eicel. Als de drempelwaarde van oestradiol wordt bereikt, gaat er positieve feedback plaatsvinden naar de hypofyse. Hierdoor is er afgifte van een grote hoeveelheid LH (luteïniserend hormoon) aan de circulatie, waardoor het ovulatieproces in gang wordt gezet. Deze ovulatie komt op de piek van de LH.

 

Het ovulatie proces gaat als volgt:

  • Granulosacellen gaan naast oestradiol ook progesteron produceren;

  • De reductiedeling in de eicel gaat verder. De eicel bevindt zich nog halverwege meiose I;

  • De wolk granulosacellen (cumulus) rondom de eicel maakt zich los van de granulosacellen in de follikelwand.

  • Prostaglandines en het complementsysteem in de wand van de follikel worden gestimuleerd, waardoor een gat in de follikelwand ontstaat. Dit komt mede door toenemende druk van het follikelvocht. De eicel kan de follikel en het ovarium verlaten en zal in de tuba worden opgenomen door de fimbriae.

 

Hierna komt de luteale fase (deze naam komt mede door het LH), waarvoor de ovulatie heeft plaatsgevonden. Tijdens deze luteale fase gaan de achtergebleven geluteïniseerde granulosacellen naast oestradiol ook progesteron produceren. Het endometrium (baarmoederslijmvlies) blijft door progesteron in de secretoire fase. Progesteron zorgt ook voor negatieve feedback voor de productie en afgifte van LH. Oestradiol zorgt voor een proliferatie van het basale endometrium, het zorgt er dus voor dat het slijmvlies gaat groeien en dikker wordt. Zodra de LH-productie de granulosacellen aanzet tot productie van progesteron, dan wordt het secretoir en hierin kan de innesteling plaatsvinden. Na innesteling verandert het in het deciduaal endometrium. De fase voor de eisprong kan men (op niveau van het ovarium) ook de folliculaire fase noemen. Op niveau van de baarmoeder wordt deze fase de proliferatie genoemd. De luteale fase in de ovaria komt overeen met de secretoire fase van de baarmoeder. Dus: de hypothalamus produceert GnRH, waardoor de hypofyse wordt aangezet tot de aanmaak van FSH en LH. Hierdoor wordt het ovarium aangezet tot de productie van oestradiol en progesteron.

 

Wanneer er geen bevruchting is, komt er geen β-hCG signaal naar het corpus luteum. Het corpus luteum gaat dan te gronde. Hierdoor stopt de progesteronproductie, waardoor het progesteron daalt. Dit heeft tot gevolg dat de spiraal arteriën zich terugtrekken in het stratum basale van het endometrium. Doordat het functionele endometrium geen voeding meer krijgt van de spiraal arteriën, gaat het weefsel dood en ontstaat er necrotisch weefsel. Prostaglandines komen vrij en zetten het myometrium aan tot contractie, waardoor het necrotische weefsel wordt uitgescheiden: de menstruatie. De eisprong vindt gemiddeld twee weken voor de menstruatie plaats.

 

Wanneer er sprake is van een regulaire cyclus (21 tot 35 dagen), dan is de kans op een ovulatie 95%. Bij een constante luteale fase vindt 14 dagen voor de menstruatie de ovulatie plaats. Ook kan er sprake zijn van niet regelmatige cycli: een irregulaire cyclus (oligomenorroe) of geen cyclus (amenorroe). Een amenorroe kan primair of secundair zijn. Primair betekent dat iemand nog nooit een menstruatie heeft gehad, maar wel de leeftijd heeft waarbij dit verwacht mag worden. Secundair betekent dat iemand wel menstruatie heeft gehad, maar dat het menstrueren gestopt is voor langer dan een half jaar. Wanneer er bij een jonge vrouw sprake is van een secundaire amenorroe, dan moet men in elk geval rekening houden met een zwangerschap. Aan de hand van hormoonuitslagen uit het bloed, kan worden gekeken of er wel of geen eisprong is. Zeven dagen voor de menstruatie is er een piek in de hoeveelheid progesteron als er een eisprong heeft plaatsgevonden.

 

Bij een patiënt met een slecht werkende hypothalamus, zal er geen GnRH geproduceerd worden, waardoor er ook geen LH, FSH en oestradiol worden geproduceerd. De hypofyse wordt namelijk niet aangestuurd en het ovarium ook niet. Er is dan geen eisprong. GnRH wordt pulsatiel afgegeven door de hypothalamus. Bij behandeling met GnRH moet het dus door middel van een pomp toegediend worden, zodat het ook pulsatiel gaat. Een andere optie is FSH en LH toedienen. FSH en LH verkregen uit de urine van post-menopausale vrouwen kan dan gebruikt worden. Bij deze vrouwen is er namelijk geen oestradiol meer, waardoor de hypofyse heel veel FSH en LH gaat produceren. FSH en LH toedienen is lastiger omdat de drempelwaarden per vrouw verschillen. Wanneer er een overschot aan FSH wordt toegediend, gaan er te veel follikels rijpen. Wanneer de dosis te laag is zullen er geen follikels rijpen. Met een echo kan in de eierstok gekeken worden of er follikels vormen.

 

Wanneer er een slecht werkende hypofyse is, moet er LH en FSH worden toegediend. Bij een patiënt met een slecht werkend ovarium is er een heel hoog FSH. Er is wel aansturing vanuit centraal, maar perifeer geeft geen reactie. Er wordt dus ook geen oestrogeen gevormd en daardoor is er geen negatieve feedback en blijft FSH stijgen. Dit is een POF: een prematuur ovariaal falen. Er kan door middel van eiceldonatie een zwangerschap verzorgd worden. Daarvoor wordt bij de donateur FSH gegeven, zodat er meerdere follikels tegelijk rijpen. Deze worden dan vlak voor de ovulatie geoogst, door eerst veel LH te geven. De eicellen moeten namelijk los van de follikelwand zijn maar nog niet uit het ovarium.

 

Patiënten met een hoog BMI, zonder menstruatie cyclus, zullen vaak weer een menstruatie cyclus krijgen wanneer ze ongeveer 10% afvallen. Testosteron in vetcellen wordt via aromatase omgezet in oestradiol. Het oestradiol is niet afkomstig uit de follikels en is dus niet aanwezig in het ovarium. Hierdoor is er geen menstruatie waarneembaar. Ook is het zo dat de hypofyse door de hoge concentratie oestradiol ‘denkt’ dat er genoeg FSH is, waardoor de productie wordt geremd. Er is dan te weinig FSH. De zwangerschap kan dus ook mogelijk worden door FSH toe te dienen, maar tijdens de zwangerschap treden meer complicaties op met een hoog BMI. Er kunnen ook anti-oestrogenen gegeven worden, hierdoor komt de FSH afgifte vanzelf weer op gang. Anticonceptie middelen voor de vrouw bevatten progestagenen. De progestagenen leggen het systeem plat door de negatieve feedback op de hypofyse. De minipil, spiraaltje en staafje bevatten alleen progestagenen. Andere pillen (combinatiepil) bevatten ook oestrogenen, deze zorgen ervoor dat het endometrium iets dikker wordt en beter in stand kan worden gehouden. Er vindt dan geen spotting plaats.

 

HC-03: Microscopie van de gonaden (31-03-2014)

De tractus urogenitalis en genitalis hebben een gemeenschappelijke ontstaansgeschiedenis. De tractus urogenitalis bestaat uit de nier, ureter, blaas en urethra. De vrouwelijke tractus genitalis bestaat uit het ovarium, de tuba uterina, de uterus, de vagina en de vulva.

 

Vrouw

De uterus is ongeveer een vuist of mandarijn groot orgaan. De baarmoederhals (cervix) sluit aan op de vagina via de isthmus. Het grootste deel van de uterus is het corpus. De bovenkant van de uterus heet de fundus: de bodem. Aan de zij- en bovenkant van de uterus zitten drie ‘touwtjes’: het ligamentum ovarii proprium (tussen ovarium en uterus), het ligamentum rotundum uteri en het tuba uterina (de eileider). Er hangt een peritoneaal plooi over deze drie touwtjes heen. Dit noemt men het brede ligamentum (oftewel het ligamentum latum). In het brede ligament zit als bovenste touw de eileider. Het brede ligament wordt verdeeld in drie delen: de mesosalpinx (van de tuba uterina), mesovarium (van het ovarium) en mesometrium (van de uterus zelf). Het ligament vouwt zich om de eileiders heen weer terug naar zichzelf.

 

De ovaria zijn hoog in de buikholte ontstaan en ze dalen af naar beneden tijdens de ontwikkeling. Dit is te zien aan de vascularisatie van de ovaria. De arteria ovarica ontspringt namelijk hoog aan de aorta. De linker vena ovarica ontspringt uit de vena renalis en de rechter vena ovarica ontspringt uit de vena cava inferior. De arteria ovarica loopt langs het ligamentum suspensorium ovarii. De arteria ovarica komt binnen via het mesovarium. Er ontspringt een tak aan de arteria ovarica die gaat naar de tuba uterina. De ramus tubarius ontspringt deels uit de arteria ovarica en deels uit de arteria uterina. Bij een buitenbaarmoederlijke zwangerschap knapt dit bloedvat en zorgt voor grote problemen. Uit de arteria uterina ontspringt ook de ramus vaginalis. De arteria uterina, arteria vesicalis superior en de arteria rectalis media ontspringen uit de arteria iliaca interna. De fixatie van de uterus gaat ter hoogte van de cervix met behulp van ligamenten. In het ligamentum latum zit losmazig bindweefsel, wat het ligamentum cardinale heet, oftewel het parametrium (dit ligt als een ‘laken’ over het ligamentum latum heen). Ook zijn er een ligamentum sacro-uterina (naar de rug toe) en een ligamentum pubovesicale (naar de buik toe).

 

Er is een peritoneale omslagplooi tussen de rectus en de uterus, dit is het exclavatio recto-uterium: de Douglas-holte. Dit is altijd het diepste punt van het peritoneum, waarin alle ‘troep’ terecht komt, zoals bloed en etter. Aan de zijkant is de fixatie van de uterus (bij de fundus) met behulp van de ovariumketen (bestaand uit het ligamentum suspensorium, het ovarium en het ligamentum proprium), de tuba uterina en het ligamentum rotundum (ook wel: ligamentum teres uteri). Deze laatste is een analoog van de zaadleider. De exclavatio vesico-uterina bevindt zich tussen de blaas en de baarmoeder. De exclavatio ’s zijn peritoneale omslagplooien. De stand van de uterus is anteversie (buigt naar voren), anteflexie (staat krom naar voren toe), retroversio dextra (de rechterkant staat naar achteren). Het rechter ovarium komt hierdoor in de buurt van de blinde darm, waardoor de diagnose blinde darm ontsteking vroeger erg moeilijk te stellen was.

 

Het ovarium is aan de buitenkant bekleed door peritoneum (kubisch epitheel). Vroeger dacht men dat de eicellen uit het peritoneum kwamen, maar dit is niet zo. Ze noemden het toen het germinatief epitheel. Het bindweefselvlies eromheen is de tunica albuginea. De actie laag is de cortex, hier bevinden zich de eicellen.

 

De medulla is de faciliteitslaag en in de medulla zijn lymfevaten, bloedvaten etc. te vinden. Het ovarium is bevolkt door primordiale follikels. Dit zijn eitjes die al in meiose één deling zijn. Om deze follikels heen zit een folliculaire bindweefsellaag die de follikels beschermt. Elke maand gaat een aantal follikels verder delen en verder ontwikkelen. Voor de geboorte beginnen de oögonia (de oerkiemcellen) aan de reductiedelingen. Halverwege de eerste reductiedeling stopt dit proces en er komt een folliculaire bindweefsellaag omheen. Pas in de puberteit komt de verdere ontwikkeling tot stand. Het Graafs follikel is het follikel van waaruit de eisprong gaat plaatsvinden. Dit is het follikel wat zich het meeste is ontwikkeld. Tijdens de eisprong barst het Graafs follikel open, net als het ovarium. Er ontstaat als het ware een wond op het ovarium, waardoor er steeds meer littekenweefsel ontstaat op het ovarium. In het follikel zitten Granulosa cellen. Dit zijn cellen waaruit een deel van de vrouwelijke hormonen ontstaat. Er ontstaat een bobbeltje in de follikel dat het cumulus oophorus heet: het draagt het eitje.

 

Buiten de lamina basalis zijn er bij het Graafs follikel een theca externa en een theca interna. De theca interna gaat na de eisprong zorgen voor het vervolg van de hormoonproductie. LH en FSH zorgen ervoor dat het ovarium in de juiste staat is voor de eisprong. De zona pellucida is als het ware een eischil om het eitje heen. Verder zit om de eicel ook een corona radiata.

 

De primordiale follikels die geen Graafs follikel worden, gaan dood: atresie. Hieruit ontstaat een atretisch follikel, waarvan het glasmembraan v. Slavjanski overblijft. De meeste follikels bereiken dit stadium. Elke maand is er 1 follikel die Graafs follikels worden. Soms zijn het er meerdere, maar dit is niet de normale situatie. Vervolgens is er de ovulatie en dan kan er wel of geen bevruchting zijn. Wanneer er bevruchting plaatsvindt, ontstaat uit het follikel het corpus luteum (het gele lichaam). Bij het openbarsten van het ovarium komt er bloed in het follikel. Wanneer dit bloed wordt afgebroken ontstaat er bilirubine wat het corpus luteum een gele kleur geeft. Uit het corpus luteum ontstaat het corpus luteum gravidarum en hieruit het corpus albicans (een litteken klontje/weefsel). Ook als er geen bevruchting plaatsvindt, ontstaat er een corpus luteum, want dit moet de eicel onderhouden. Hierna ontstaat direct het corpus albicans. Bij het corpus luteum zorgen de theca interna en de granulosa cellen voor de productie van bepaalde hormonen. Het corpus luteum gravidarum gaat steeds groter worden, tot het bijna alle ruimte in het ovarium inneemt. Dit heeft ermee te maken dat er heel veel hormoon aangemaakt moet worden.

 

De tuba uterina heeft meerdere functies. De cellen in de tuba uterina moeten ervoor zorgen dat er veel glycogeen of glucose aanwezig is voor de voeding van de eicellen (gebeurt door middel van de stiftcellen).

 

In het epitheel van de tuba uterina zitten trilhaarcellen, die ervoor zorgen dat de eicellen verplaats worden naar de uterus door middel van een vloeistofstroom. Het begin van de tuba uterina bestaat uit fimbriae: deze slierten bedekken het ovarium en ze zijn open naar de peritoneaal holte. Deze fimbriae bedekken de plaats van de eisprong, zodat het eitje niet in de peritoneaal holte terecht komt. De fimbriae sluiten aan op het brede deel van de tuba uterina (de ampulla) wat overgaat in het smalle deel van de tuba uterina (de isthmus). Het infundibulum is het gedeelte tussen de ampulla en de fimbriae.

 

Het lumen van de eileider wordt steeds nauwer. Het lumen wordt klein gehouden doordat het voor een groot deel gevuld is door epitheel. Vanuit de tuba uterina komen we terecht in de baarmoeder. De baarmoeder bestaat voor het grootste deel uit glad spierweefsel: het myometrium. Aan de buitenkant van het myometrium zit een bekledende laag: het perimetrium. Aan de binnenkant van het myometrium zit een epitheel (de actielaag), wat het endometrium heet. Het myometrium bestaat uit drie lagen, in de middelste laag bevinden zich de bloedvaten zitten naar het endometrium gaan. Deze middelste laag bestaat uit circulaire gladde spiercellen en de andere twee lagen bestaan uit longitudinale gladde spiercellen. Het endometrium heeft altijd een stratum basale, waaruit elke maand het stratum functionale wordt gevormd. In het stratum basale liggen een groot deel van de kliercellen. Het epitheel bestaat uit stiftcellen (secretoir) en trilhaarcellen. De vascularisatie bestaat uit twee arteriae uterinae, die zich verdelen over het oppervlakte van de uterus. Deze vormen anastomosen, waaruit de arteriae arcuatae ontstaan. De radiale arteriae zijn rechte arteriën die het stratum basale ingaan. Ze gaan verder als spiraalvormige arteriën naar het stratum functionale. Ze liggen daar vlak onder het oppervlak. Deze spiraalvormige arteriën kunnen makkelijk afgeknepen worden, waardoor er ischemie ontstaat in het stratum functionale en het stratum functionale af gaat sterven. De venen bevatten veneuze meren (venous lakes). Dit zijn verdikkingen waarin veel bloed zit in de venen, er zijn namelijk geen lymfe in het endometrium en al het vocht moet toch afgevoerd worden.

 

Het endometrium verandert cyclisch. Er is een proliferatieve fase (dag 6-14), waarin het stratum functionale wordt opgebouwd. Het stratum basale is aan het begin ongeveer 1 mm dik. Er zijn alleen nog maar kliercellen. Met behulp van re-epithelialisatie worden er weer epitheelcellen gevormd. Door celdeling vindt er groei plaats van het volume. Aan het einde van deze fase vindt de ovulatie plaats. Het endometrium is dan ongeveer 3 mm dik. De secretoire fase (dag 15-28) is de fase na de ovulatie. Het endometrium is dan klaar. De cellen moeten in deze fase oedeem krijgen. Hierdoor wordt het endometrium 5-6 mm dik. De cellen hypertrofiëren maar worden niet meer. De klieren worden groter en ze bevatten een glucose-rijk vocht. In deze fase ontstaan de gekronkelde vaatjes. Hierna komt (eventueel) de menstruele fase (dag 1-5). Hierin gaan de spiraalvormige vaatjes contraheren, waardoor het stratum functionale ischemisch wordt. De klieren stoppen met het produceren van stoffen. Na twee dagen gaat het epitheel kapot en laat het stratum functionale los.

 

Man

De testes dalen af door het scrotum en ze moeten daarvoor door de buikwand heen. Hierdoor ontstaat er in feite een uitstulping bij de buikwand. De gonaden ontstaan dus intraperitoneaal. De buikwand bestaat (van buiten naar binnen) uit de m. obliquus abdominalis externus en internus, de m. transversus abdominis en de fascia transversalis. Deze lagen bevinden zich ook om de testes. Van buiten naar binnen geeft dit de fascia spermatica externa (m. obliquus abdominalis externus) en m. cremaster (m. obliquus abdominalis interna, zorgt voor de hoogte en zo voor de temperatuur van de testes), de fascia spermatica interna (fascia transversalis) en de tunica vaginalis (peritoneale bekleding). De perfusie gaat via de arteria testicularis. Het plexus pampiniformis voert het bloed weer af. Het vas deferens voert de spermacellen naar de urethra.

 

Het testikel bestaat aan de buitenkant uit een bindweefsellaag: de tunica albuginea. Aan de binnenkant is het weefsel waaruit de spermatozoöen gevormd worden. De ductuli efferentes komen uit de testikels en deze sluiten aan op een lange buis: de epididymis (de bijbal). In de epididymis ‘leren de spermatozoöen zwemmen’ en dus leren ze bevruchten. De binnenkant van het testikel bestaat uit lobuli. In elke lob zit een lang buisje waarin de spermatozoöen worden gevormd: de tubuli seminiferi. De tubuli seminiferi vormen de spermatozoöen. Dit gebeurt nog niet deels voor de geboorte, zoals bij vrouwen wel het geval is. De productie gaat continu en uit elke cel ontstaan vier spermacellen er zijn dus geen poollichaampjes.

 

Het immuunsysteem herkent deze spermatozoöen niet, waardoor ze afgebroken kunnen worden door het immuunsysteem. De sertollicellen vormen de bloed-testis barrière, waardoor de spermatozoöen worden beschermd. Terwijl de spermatozoöen gevormd worden, vormen ze bruggetjes met elkaar (ze gaan ‘hand in hand’) waardoor ze tegelijkertijd door de bloed-testis barrière gaan, van de basale kant naar de luminale kant van de sertollicellen. Het mediastinum testis is in feite de plek waar de tubuli seminiferi bij elkaar komen. De sertollicellen vormen de binnenkant van de buisjes. De Leydig cellen liggen tussen de tubuli seminiferi in en ze vormen allerlei hormonen, zoals androgenen en testosteron, door LH.

 

HC-04: Sturing en Temperatuur (01-04-2014)

De temperatuurregeling is zeer nauwkeurig en wordt op 37°C gehandhaafd, met een normale variatie van één graad Celsius. Het gebied boven de 43 graden Celsius en onder de 25 graden Celsius (hartstilstand) is dodelijk. Bij 34 graden Celsius is er sprake van onderkoeling en bij 33 graden Celsius komt men in de comateuze toestand. Kleine verschillen in lichaamstemperatuur hebben al een grote invloed op de chemische evenwichten in het lichaam. Artsen meten om deze reden vaak de lichaamstemperatuur van patiënten. De temperatuur in het lichaam is niet overal gelijk. Onder de oksel is de temperatuur tussen de 34,7 en de 37,3°C, oraal is dit 15,5-37,5, in het oor is dit 35,8-38,0 en rectaal is de temperatuur het meest gelijk aan de temperatuur in de kern (36,8-38.0°C). Bij een lagere omgevingstemperatuur, zal de gemeten temperatuur van de voeten veel lager zijn. Dit kan dalen tot ongeveer 25°C, waarbij er geen levensgevaarlijke situatie ontstaat. De grafiek van omgevingstemperatuur (X-as) tegen de gemeten lichaamstemperatuur (Y-as) van de voeten is dezelfde lijn als de lijn die koudbloedige (exotherme) dieren volgen. De hoogste lichaamstemperatuur wordt bereikt aan het einde van een werkdag (rond 19:00 uur) en de laagste lichaamstemperatuur wordt net voor het ontwaken bereikt (rond 4:00 uur).

 

Gedurende het leven verschilt de temperatuur ongeveer een halve graad. Dit is afhankelijk van de leeftijd. Bij vrouwen zijn er ook maandelijkse variaties in de lichaamstemperatuur: progesteron zorgt namelijk voor een kleine temperatuurverhoging. Met een basale temperatuurcurve kan hiermee de eisprong worden aangetoond. Dit is wel heel onbetrouwbaar. De belangrijkste bronnen van warmte zijn biochemische reacties en spier activiteit. Bij biochemische reacties kan gedacht worden aan de omzetting van suikers in ATP, waarbij 60% van de energie wordt omgezet in warmte en slechts 40% in ATP. Spieractiviteit is onder andere lichaamsbeweging, die de warmteproductie verhoogt.

 

Het lichaam heeft een aantal mechanismen om warmte te verliezen. Hieronder vallen:

  • Straling (radiation) – de tendens dat warmte stroomt van een warme plaats naar een koudere plaats. Dit kan geregeld worden met behulp van vasodilatatie en vasoconstrictie.

  • Verdamping (evaporation) – zweet verdampt sneller als de lichaamstemperatuur hoger wordt. Dit is moeilijker in een omgeving met een hogere luchtvochtigheid.

  • Uitademing de lucht die wordt ingeademd wordt verwarmd, bij de uitademing gaat deze warmte verloren.

 

Het lichaam regelt de lichaamstemperatuur door middel van regelkringen. In een regelkring is er een regelaar die de gemeten waarde vergelijkt met de gewenste waarde. Als de gemeten waarde anders is dan de gewenste waarde, dan zal er een fout (E) optreden. Deze fout kan positief en negatief zijn. Bij een positieve fout moet de waarde omhoog worden gebracht en bij een negatieve fout moet de waarde naar beneden worden gebracht. De sensor in het lichaam (thermoreceptoren) zet de temperatuurwaarde om in een elektrisch signaal. Het vergelijkende element in het lichaam is te vinden in de anterior hypothalamus. De plek waar de gewenste waarde wordt bepaald, is nog onduidelijk. De controller is de posterior hypothalamus en deze stuurt vervolgens de actiepotentialen naar de lichaamsdelen die het proces uitvoeren. Het proces dat plaatsvindt, kan gaan via o.a. spieren en bloedvaten.

 

Aanpassing aan kou gaat via meerdere mechanismen, zoals vasoconstrictie, rillen (bewegen), haren overeind staan (verminderde straling) en een grotere thyroxine en adrenaline productie (acclimatiseren). De hogere thyroxine en adrenaline productie verhoogt de metabolic rate en hiermee de warmteproductie. Ook ben je gedragsmatig geneigd warm drinken te nemen en meer kleren aan te doen. Aanpassing aan warmte gaat via vasoconstrictie, zweten en een lagere thyroxine en adrenaline productie (acclimatiseren). Gedragsmatig ben je geneigd koud drinken te nemen en kleding uit te trekken.

 

Pasgeboren baby’s zijn nog niet in staat om warmte vast te houden. Ze hebben nog geen controle over de spieren, waardoor ze niet kunnen rillen. Bij baby’s is de hoeveelheid bruin vet (wat warmte produceert) als compensatie hoger dan bij volwassen. Na ongeveer negen maanden verdwijnt dit bruine vet. Wit vet slaat energie op.

 

De regelkring voor temperatuur bij koorts is een bijzondere regelkring. Koorts verhoogt de gewenste waarde in de hypothalamus, waardoor er een positieve fout ontstaat. De temperatuur wordt dan omhoog gebracht, zodat er een ‘evenwicht’ ontstaat op een hogere temperatuur dan normaal (bijvoorbeeld 39°C). Het setpoint is dan hoger dan normaal, waardoor iemand uiteindelijk ook gaat zweten om de warmte weer te verliezen.

 

De thermoreceptoren in de anterior hypothalamus bestaan uit warmte en koudereceptoren. De warmte receptoren vuren bij een te hoge temperatuur de koudereceptoren bij een te lage temperatuur. Het verschil tussen deze signalen bepaald de fout. Er zijn ook warmtereceptoren en koudereceptoren in de huid (de schil) en in de kern. De signalen worden allemaal opgevangen in de anterior hypothalamus. De huidsensoren zorgen voor feed-forward.

 

HC-05: Mechanisme van het baringsproces (01-04-2014)

De baarmoeder is in de niet zwangere situatie bij een vrouw die nog nooit een kind gekregen heeft, zo groot als een mandarijn. Bij een vrouw die al wel een kind heeft gekregen is de baarmoeder zo groot als een sinaasappel. Aan het eind van de zwangerschap is de baarmoeder zo groot als een watermeloen. De baarmoeder bestaat uit een uterus en een cervix (baarmoedermond). Tijdens de zwangerschap moet het gladde spierweefsel van de uterus uitgerekt worden (dit kan doordat er weinig bindweefsel in de wand zit) en de cervix dicht blijven (dit bevat veel bindweefsel). Tijdens de baring moet het gladde spierweefsel van de uterus samentrekken (steviger worden en het kind naar buiten drijven) en de cervix open gaan (het bindweefsel moet weker worden). Als er een cervix insufficiëntie is, blijft de baarmoedermond niet goed dicht waardoor iemand het kind kan verliezen. In het begin van de zwangerschap is de cervix staand en gesloten en aan het eind van de zwangerschap is deze verstreken en open.

 

Bevallingen zonder complicaties vinden vaak ’s morgens plaats en bevallingen met complicaties, in het ziekenhuis zijn vaak aan het einde van de dag. Dit heeft ermee te maken dat vrouwen die in het ziekenhuis bevallen vaak worden ingeleid, de verloskundige stimuleert de bevalling. Dit gebeurt dan ’s morgens, waardoor het kind aan het eind van de dag geboren wordt.

 

Het begin van de eindfase van een zwangerschap is niet exact te geven. Het einde van de fase is het moment dat het kind en de placenta zijn uitgedreven. De eerste fase van de bevalling is het openen van de baarmoedermond. De tweede fase is de uitdrijving van het kind, hierbij treden weeën op en deze fase duurt 1 tot 2 uur. De derde fase is de nageboorte, de placenta verlaat de baarmoeder binnen een uur na de geboorte. Is dit niet het geval wordt deze verwijderd, anders treedt er necrose van het weefsel op. Het vierde tijdperk is de periode tot twee uur na de bevalling. De gemiddelde duur van de zwangerschap bij de mens is 280 dagen. Dit wordt gerekend vanaf de eerste dag van de laatste menstruatie (twee weken later vindt vaak de bevruchting plaats). Vroeger was er de regel van Naegele: neem de laatste menstruatie, tel hier 9 maanden bij op en tel hier één week bij op, dit is de verwachte datum van de bevalling. Nu wordt het gedaan met behulp van een computer, waarin meerdere gegevens worden ingevoerd. De gegevens van de tien weken echo worden hierbij gebruikt, dit is een meer nauwkeurige bepaling van de lengte van de zwangerschap. Het bepalen van de datum is belangrijk om te bepalen of de geboorte te vroeg of te laat op gang komt.

 

Eén op de twintig vrouwen (5%) bevalt op de uitgerekende datum. De à terme periode is 37-42 weken (259-294 dagen). De pre terme periode is onder de 37 weken en de post terme periode is na 42 weken. De post terme periode komt nu bijna niet meer voor, omdat men probeert elke vrouw voor dat moment te laten bevallen. Anders dreigt er namelijk gevaar voor moeder en kind. Er is steeds meer discussie of de grens opschuiven naar 41 weken beter is. De ernstige pre terme periode is onder de 32 weken.

 

Welke hormonen doen er allemaal mee?

  • Cortisol

  • Oestrogeen – stijgt tijdens de zwangerschap.

  • Progesteron – stijgt heel hard tijdens de zwangerschap. Progesteron zorgt ervoor dat het gladde spierweefsel in de baarmoeder gerelaxeerd blijft. Het heeft ook effect op het gladde spierweefsel in bijvoorbeeld het maag en darmstelsel, waardoor er veel ‘zwangerschapskwaaltjes’ (obstipatie, maagklachten) ontstaan. Ook zorgt het voor verweking van het kraakbeen waardoor de bekken wijkt.

  • Relaxine

  • Oxytocine – wordt gemaakt bij en na de bevalling.

  • CRH

  • Prostaglandine is ook belangrijk bij de bevalling.

  • Catecholamine

 

Bij schapen bepaalt het lam wanneer de baring op gang komt. Dit heeft te maken met een signaal van hypothalamus, naar hypofyse, naar bijnier. De bijnier gaat cortisol afgeven, waardoor er een afname is van het progesteron en een toename van het oestrogeen in de moeder. De verandering van de ratio progesteron en oestrogeen zorgt voor een toename aan prostaglandine. Dit zorgt voor weeën en daarmee de bevalling. Bij de mens moet er ook een dergelijk proces zijn, maar de werking van dit proces is nog niet precies bekend. Bij de mens bepaald ook de moeder wanneer de bevalling begint. De verweking van de cervix en de uterus contracties worden door haar bepaald. De uterus contraheert gedurende het hele leven en dus ook buiten de zwangerschap. Vrouwen hebben hier vaak geen last van. Er is tijdens de zwangerschap geen gecoördineerde contractie. De contracties zijn niet door de hele uterus en niet gelijktijdig. Aan het eind van de zwangerschap is er meer coördinatie, waardoor er Braxton Hicks contracties ontstaan. Hierdoor krijgt een vrouw onder andere een harde buik.

 

In de cervix zit veel bindweefsel en weinig spierweefsel. De collageenbundels vallen uiteen onder invloed van prostaglandines, waardoor de cervix verweekt. Als iemand voor de eerste keer gaat bevallen, zal de baarmoedermond eerst korter worden (verstrijken) en vervolgens open gaan. Als iemand al een keer is bevallen, zal het verstrijken en openen tegelijkertijd gebeuren. Onder invloed van prostaglandines is er een toename van het aantal gap junctions in het spierweefsel van de uterus. Hierdoor contraheert zal de baarmoederwand steeds gelijker als er ergens in de wand een contractie begint. Er is een ook verhoogde gevoeligheid voor oxytocine, doordat er meer oxytocine receptoren komen (door prostaglandine en oestradiol).

 

Ferguson reflex: als gevolg van cervixveranderingen, gaat er via regelkringen een signaal naar hypothalamus en hypofyse zodat er meer oxytocine wordt geproduceerd. Uiteindelijk zijn er dan meer contracties en meer oxytocine pulsen. Cortisol zorgt er bij de foetus ook voor dat de foetus klaar is om geboren te worden. Het baringsproces is een voorbeeld van positieve feedback.

 

Een baring kan kunstmatig op gang gebracht worden door het toedienen van oxytocine en/of prostaglandine. De keuze tussen oxytocine en prostaglandine is afhankelijk van de zwangerschapsduur. Als er sprake is van een rijpe baarmoedermond, kiest men voor oxytocine (om de vliezen te breken). Wanneer de baarmoedermond nog niet rijp en verweekt is, dan wordt er prostaglandine gegeven. Dit proces is veel meer een inbreuk op het lichaam dan oxytocine. Een baring kan ook kunstmatig geremd worden door een oxytocine antagonist of door een prostaglandine synthetase remmer. Dit kan niet meer als de baring echt al bezig is.

 

HC-06: Sturing van de seksualiteit (01-04-2014)

De sturing van seksualiteit is biopsychosociaal en dus niet puur fysiologisch. Seksualiteit is gebonden aan cultuur en tijd, daarnaast spelen waarden en normen een grote rol in hoe men aankijkt tegen seksueel gedrag, verlangens en ook problemen. Seksualiteit is het gedrag, dat gericht is op het (laten) ervaren van opwinding en intimiteitgevoelens. De seksuele responscyclus geeft wat er gebeurt tijdens de verschillende fasen van seksuele activiteit met de seksuele opwinding. Daarnaast laat het zien welke fasen gebeuren in interactie en welke solo. De seksuele opwinding zorgt dat men verlangen ontwikkeld, het verlangen ontstaat niet spontaan. Bij de opwinding (interactie) stijgt deze nog meer. Bij het orgasme (solo) wordt er een piek bereikt, waarna het herstel (interactie) plaatsvindt. Tijdens dit herstel daalt de seksuele opwinding. Vrouwen hebben deze herstelperiode niet of minder.

 

Een chemische reactie is bijvoorbeeld dat er meer bloed naar de geslachtsorganen wordt gepompt, dit veroorzaakt een erectie of lubricatie. Ook is er door het hele lichaam een betere doorbloeding wat blosjes veroorzaakt. Ook zijn er veranderingen in de tepels. Daarnaast zijn er lichamelijke reacties, zoals een hogere lichaamstemperatuur. Wanneer iemand een orgasme gaat krijgen, worden de pupillen veel groter. Voor het krijgen van een orgasme moet iemand in staat zijn zich helemaal op zichzelf te richten. Voor vrouwen is dit moeilijker dan voor mannen. De psychosomatische cirkel is een weergave van de complexe interactie tussen de fysiologische en psychologische aspecten. Er zijn twee manieren waarop deze cirkel ‘aangeslingerd’ kan worden: door cognities en tactiele stimuli. Hierna kunnen aspecten geremd worden of juist versterkt worden. De cognities worden voornamelijk verwerkt via het limbisch systeem. Angst zorgt dat men meer omgevingsgericht is en dit zorgt dat men zich slechter op zichzelf kan richten. Andere interne prikkels als herinneringen en fantasieën kunnen een positief of een negatief effect hebben.

 

Voornamelijk het parasympatisch systeem heeft veel effect op het opgewonden raken, wat leidt tot een erectie of lubricatie. Het sympathische systeem heeft effect op de contractie van glad spierweefsel van o.a. de prostaat, wat leidt tot emissie. Het somatomotorische systeem zorgt voor de contractie van o.a. de bekkenbodemspieren, wat leidt tot een expulsie of orgasme. De bekkenbodemspieren zitten rond de anus, vagina en plasbuis. Deze spieren gaan ritmisch samentrekken.

 

In het lab kunnen metingen gedaan worden hoe het lichaam reageert op seksualiteit. De stimuli kan gaan via verhalen, fantasie, plaatjes, tactiel (vibratie) en film. Een plethysmograaf kan de seksuele opwinding meten in de vagina van een vrouw. Hiermee wordt de vaginale puls amplitude (VPA) gemeten. Met een Barlow rekstrookje kan de seksuele opwinding gemeten worden bij een man. Het rekstrookje wordt om de penis aangebracht en dit geeft een zelfde soort uitslag als een plethysmograaf. Er blijkt geen verschil te zijn in objectieve opwinding (lubricatie en zwelling van het genitaal gebied) tussen vrouwen met en zonder opwindingsproblemen. De subjectieve opwinding is bij vrouwen met een opwindingsprobleem wel minder. Deze kan worden aangegeven op een kastje met een geleide schaal.

 

Het feit dat een respons van het autonome zenuwstelsel leidt tot genitale doorbloeding en zwelling, lijkt een geautomatiseerd proces. Dit proces gaat ook heel snel en loopt van de sensorische thalamus naar de amygdala. Daarentegen is het zo dat de subjectieve respons van opwinding veel langzamer is en betreft het meer delen van de hersenen. Van de sensorische thalamus via de sensorische cortex naar de amygdala. Dit pad werkt bij vrouwen met een opwindingsstoornis niet (goed). Situatie en context spelen ook een belangrijke rol bij seksuele opwinding. Mannen voelen meer via het onbewuste, hele snelle pad. Bij vrouwen gaat het meer om de subjectieve gegevens zoals context en situatie. Wanneer vrouwen aangeven dat ze seksueel opgewonden zijn, geven ze aan dat ze de situatie waarin ze zich bevinden waarderen. Het signaal gaat via de langzame weg door de hersenen. Mannen beschrijven dat ze een erectie hebben, bij hen vormt de genitale respons een belangrijke factor in het opgewonden voelen.

 

Er zijn meerdere voorwaarden voor optimaal seksueel functioneren, hieronder vallen onder andere intacte lichaamsfuncties (wat betref zenuwstelsel, vaten en neuro-endocrien stelsel), adequaat psychologisch functioneren en een seksueel stimulerende situatie. Bij een verwijdering van de baarmoeder (simpele of radicale hysterectomie), zal er zenuwschade optreden. Hierdoor zal de VPA significant gaan verschillen. Een zenuwsparende operatie zal minder schade veroorzaken aan de VPA. . Dit heeft geen effect op de subjectieve respons, maar bij een verslechterde genitale respons is er ook minder secreet. Dit kan pijn veroorzaken bij de vrouw tijdens het vrijen en zo haar ervaring verslechteren. Glijmiddel kan dit probleem deels verhelpen.

 

Het is noodzakelijk dat er een minimum hoeveelheid androgeen aanwezig is om verlangen op te wekken. Het is echter niet zo dat er correlatie is tussen het androgeen niveau en het verlangen en de seksuele opwinding. Hormoonsuppletie heeft dus nauwelijks zin. Wel heeft toediening van hormonen zin als vrouwen voortijdig de functie van hun ovaria verloren hebben, of als ze lange tijd alleen centraal oestrogeen toegediend hebben gekregen. Als mannen extreem weinig libido hebben, kan het zijn dat er een testosteron tekort is. Bij vrouwen kunnen angstremmers ook het seksueel functioneren verbeteren, het risico hiervan is dat een mogelijk ernstig probleem ondergesneeuwd wordt.

 

Psychologische ervaringen kunnen (vooral bij vrouwen) een grote rol spelen in het gemak waarmee iemand opgewonden raakt. Stimulerende factoren zijn: seksuele prikkels, de kwaliteit van de seks, positieve herinneringen, tijd, aandacht en intimiteit. Remmende factoren zijn ontevredenheid over de relatie, sombere stemming, negatieve ervaring of cognities, angst en een negatief lichaamsbeeld.

 

HC-07: Feedbacksystemen en modellen (01-04-2014)

Bij de temperatuurregeling is er negatieve feedback en bij de baring is er positieve feedback. Een fysiologisch feedbacksysteem is in feite een model. Een model kan gezien worden als een voorbeeld, een ideaalbeeld of een (kleinschalige) reproductie (van de werkelijkheid). Een definitie voor het woord model is: ‘representatie (van een ideaal beeld), vaak in de vorm van wiskundige modellen’. Deze wiskundige modellen kunnen uitkomst brengen bij bepaalde problemen. Galileo Galilei beschreef dat in de natuur een boek is geschreven in de wiskunde en dat het nodig eerst dit eerst te begrijpen. Een voorbeeld van een wiskundig model is de gulden snede. De gulden snede komen we op veel plekken in de natuur tegen. De gulden snede is gebaseerd op de reeks van Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, 34, 55 etc.).

 

Waarnemingen (sensate esperienze) kunnen leiden tot natuurwetten. Via inductie (het afleiden van een algemene regel op basis van meerdere specifieke waarnemingen) van allerlei observaties komt men bij een theoretische hypothese. Via deductie en syllogisme komt men tot necessario dimonstrazione. Hierna kan via een experiment de hypothese worden geverifieerd of gefalsificeerd. Bij een verificatie kan een nieuwe wet worden gevormd en na een falsificatie kan een nieuwe hypothese worden opgesteld.

 

Deductie: op basis van een algemene regel worden uitspraken gedaan over het bijzondere, waarbij de regels van de logica worden gevolgd. Dit kan gedaan worden met behulp van een syllogisme (‘alle vogels zijn dieren’, ‘alle zwanen zijn vogels’, dus: alle zwanen zijn dieren). Of in letters: als A volgt uit B en B volgt uit C dan volgt A uit C. De wetenschappelijke methode verloopt als volgt: er zijn waarnemingen, waarna er via inductie een theorie of hypothese wordt gevormd. Door deductief redeneren, komt men hierna tot een voorspelling, die in een experiment getoetst wordt. Met behulp van verificatie en falsificatie worden de resultaten geëvalueerd. Verificatie is het vooraf kunnen aangeven hoe een hypothese door middel van experimenten kan worden bewezen. Deze hypothese kan alleen bewezen worden door middel van de empirie. Bij falsificatie kan men vooraf aangeven bij welke uitkomst van het experiment er aanleiding is om de geldigheid van een theorie of hypothese te verwerpen. Bij de wetenschappelijke methode is er sprake van een ‘cirkel’: van de realiteit wordt door middel van metafysica een representatie gemaakt, die door middel van wetenschap wordt omgezet in realiteit. Dit proces blijft zich herhalen. Bij medisch onderzoek wordt er naar aanleiding van een klacht, gezocht naar een diagnose dit gebeurt via inductie, hier de anamnese. Hierna wordt er door onderzoek teruggegaan naar de klacht, de deductie, hier het lichamelijk onderzoek of het aanvullend onderzoek. Wanneer de diagnose is gesteld wordt er een behandelplan opgesteld. Deze therapie is weer te vergelijken met inductie naar een follow up toe. Bij het opstellen van modellen gaat men van een experiment naar een model door middel van inductie, waarna men door deductie weer naar een experiment gaat.

 

Een model zal de werkelijkheid nooit exact weergeven, maar een model is zo goed als de aannames zijn. Het is slechts een representatie van de werkelijkheid beschreven in wiskundige termen. Bij experimenten wordt een hypothese gevalideerd, maar het kost veel tijd en is soms moeilijk uitvoerbaar. Hier tegenover staan simulaties. Simulaties zijn op een model gebaseerde experimenten. Bij simulaties zijn de resultaten onzeker, maar het is vaak snel en onmogelijke experimenten wordt mogelijk gemaakt. Experimenten worden gebruikt bij onvoldoende begrip van basis mechanismen en ze worden gebruikt om aannames te onderzoeken. Simulaties worden gebruikt om relaties in het systeem te vinden door tijd en ruimte te comprimeren. Simulaties zorgen ook voor begrip van dynamische complexiteit. Experimenten en simulaties zijn een goede combinatie. Het is namelijk zo dat experimenten nodig zijn om simulaties te valideren. Daarnaast is het zo dat experimenten profiteren van simulaties, aangezien het onderzoek versneld kan worden.

 

RC-01: Voortplanting (04-04-2014)

Gestagenen zijn progestagenen, dit zijn stoffen die in het lichaam dezelfde functie hebben als progesteron, maar het lichaam wel kan opnemen. Een hoog BMI kan een onregelmatige cyclus veroorzaken. Het vet maakt testosteron aan wat wordt omgezet in oestradiol. Hierdoor bouwt het baarmoederslijmvlies op. Als het echter boven de tweede drempelwaarde komt, geeft het een negatieve feedback op FSH. Hierdoor rijpen er geen follikels en gaat het baarmoederslijmvlies pruttelen. Progestagenen kunnen de baarmoeder kunstmatig in de secretoire fase brengen. Wanneer vervolgens met de progestagenen wordt gestopt, komt de menstruatie op gang. Bij een te laag BMI is er een centraal probleem. De hypofyse geeft dan geen LH en FSH meer af.

 

Bij het geven van borstvoeding is er te veel prolactine in het lichaam. Dit remt de afgifte van GnRH in de hypothalamus. Dit is alleen wanneer er vaak en veel borstvoeding wordt gegeven. Dit kan maximaal tot het kind zes maanden oud is. Daarna heeft het kind namelijk ook andere soorten voeding nodig en verminderd daardoor de zuigkracht. Daardoor daalt het prolactine en hersteld de normale menstruatiecyclus. De eerste keer is nog anovulatoir, dit wil zeggen dat er geen eisprong is. Tot de eerste menstruatie kan je er (vrijwel) zeker van zijn niet zwanger te worden.

 

Bij een regelmatige cyclus tussen de 21 en 35 dagen is de kans op een ovulatie 95%. Buiten deze range is de kans veel lager. De progesteronpiek is zeven dagen voor de menstruatie. Bij een cyclus van 35 dagen is dit dag 28. Dit is halverwege de luteale fase (van het ovarium). Twee weken voor de menstruatie is de ovulatie bij een regelmatige cyclus. Bij een progesteron meting zijn ook de gegevens van de volgende menstruatie nodig om te bepalen of het gehalte abnormaal was.

 

De duur van een zwangerschap wordt gerekend vanaf de eerste dag van de laatste menstruatie. Het is dan 40 weken. Echter de eerste twee weken daarvan ben je nog niet echt zwanger bij een cyclus van 28 dagen. Eigenlijk is de echte zwangerschap dus maar 38 weken. Bij een cyclus van 28 dagen is de uitgerekende datum 9 maanden plus een week. Bij een langere cyclus komt daar een aantal dagen bij. Bij een kortere cyclus gaat daar een aantal dagen af. De echo die wordt gemaakt bij tien weken zwangerschap is veel nauwkeuriger om de leeftijd van het embryo te bepalen.

 

Het aborteren van een embryo kan worden gedaan door kunstmatig een menstruatie te maken. Hiervoor moet progesteron geblokkeerd worden. Een progesteron antagonist is echter erg duur. Ook moeten er prostaglandines worden toegediend om de cervix te verweken. Deze medicijnen zijn een stuk goedkoper. Bovendien hebben de prostaglandines ook al het effect dat het embryo wordt losgelaten. Er zijn dus twee medicijnen. Het dure medicijn met progesteronantagonisten en daarna prostaglandines, hierbij gaat eerst het embryo dood en wordt daarna uitgedreven in zo’n 1,5 dag. Het goedkopere medicijn heeft alleen prostaglandines en hierbij duurt het drie dagen voor het embryo uit de buik is. Dit laatste medicijn wordt ook gegeven om de bevalling op gang te helpen.

 

Progesteron zorgt voor allerlei zwangerschapskwaaltjes omdat het zorgt voor uterus relaxatie. Het relaxeert namelijk al het gladde spierweefsel en dus ook dat in de darmen, wat obstipatie veroorzaakt, en om de maag, wat oprispingen veroorzaakt. Wanneer iemand een chemokuur heeft gehad waardoor haar hypothalamus en/of hypofyse niet meer werken krijgt zij POF (prematuur ovarieel falen). Ze komt vervroegt in de overgang. Haar oestradiol is dan laag en haar LH en vooral FSH is heel hoog. Zij kan dan alleen nog zwanger worden door middel van een eiceltransplantatie.

 

Wanneer een patiënt geen hypofyse heeft, kan ze door middel van FSH en LH injecties (dit wordt gewonnen uit de urine van vrouwen in de menopauze) een normale cyclus genereren. De hoeveelheid stof die zij daarvoor nodig heeft is bij elke vrouw verschillend. Het risico bij een teveel aan FSH is dat er te veel follikels, Graafs follikels worden. Dit geeft meerdere eicellen en dus een vergroot risico op meerlingen.

 

Het syndroom van Sheehan is dat de hypofyse necrotisch wordt door een shock. Deze shock ontstaat door een groot bloedverlies bij de bevalling. Door de uitval van de hypofyse is er geen LH en FSH productie meer. Dit veroorzaakt haaruitval, geen moedermelkproductie, en geen menstruatie.

 

HC-08: Macroscopie van de buik (04-04-2014)

In de maag is er een plek waar zich vrije lucht bevindt, namelijk in de fundus, het bovenste deel van de maag. De plaats waar de slokdarm op de maag uit komt heet cardia. Het corpus is het grootste deel van de maag en de laatste delen zijn het antrum en het pylorus. De maag kan allerlei vormen aannemen. Vanaf de maag komen we bij de dunne darm, die bestaat uit het duodenum, het jejunum en het ileum. Het duodenum bestaat uit het pars superior, pars descendens, pars horizontalis/inferior en het pars ascendens. Halverwege het pars descendens komen de galwegen op het duodenum uit. Na de dunne darm komt de dikke darm. De dikke darm bestaat uit het coecum (blinde darm), colon ascendens, colon transversum, colon descendens, colon sigmoïdeum en het rectum. De bocht tussen het colon ascendens en colon transversum is de flexura hepatica (of flexura colica dextra) en de bocht tussen het colon transversum en het colon descendens is de flexura lienalis (of flexura colica sinistra). De organen in de buik kunnen zodanig verschuiven dat het colon transversum onderin de buik terecht komt.

 

Het peritoneum is de belangrijkste oriëntatie in het abdomen. Alle structuren zijn hieraan opgehangen. De dunne darm ligt intraperitoneaal. Structuren die retroperitoneaal liggen, zijn niet te zien wanneer het abdomen wordt opengemaakt. Vloeistoffen in het abdomen vloeien via de begrenzingen van het peritoneum: compartimentering. Zo houdt het peritoneum bij een aorta aneurysma het bloed tegen zodat het niet intra peritoneaal komt. De peritoneaal holte wordt in zijn geheel intraperitoneaal genoemd. Als iets wordt omhuld door peritoneum ligt het intraperitoneaal. Organen die intraperitoneaal liggen zijn bewegelijk en zichtbaar bij het openen van de buik. Secundair retroperitoneale organen zijn ook zichtbaar bij het openen van de buik maar zitten vast aan de achterwand. Retroperitoneale of subperitoneale organen zijn niet (direct) zichtbaar.

 

Mesenteria, ‘Meso’-samenvoegingen: een dubbele laag peritoneum, die is ontstaan door instulping van peritoneum door een orgaan. Het verbindt een orgaan met de lichaamswand en geeft doorgang aan bloedvaten, lymfevaten en zenuwen tussen orgaan en lichaamswand. Al deze meso’s vormen één geheel en zijn dus continu. Benaming bestaat uit meso gevolgd door het orgaan. Het mesenterium is de benaming voor het peritoneum rond de dunne darm. Ligament: een dubbele laag peritoneum, die een verbinding vormt tussen een orgaan met een ander orgaan of met de buikwand. Hier lopen geen bloedvaten etc. doorheen. Benaming bestaat uit ligamentum gevolgd door de namen van de twee organen waartussen het ligament ligt.

 

Omenta: een dubbele of meer-dubbele laag peritoneum, dat loopt van de maag of een proximaal deel van het duodenum naar naastgelegen organen in de buik. Benaming is omentum minus en omentum majus (kleine en grote vetschort). De benaming intraperitoneaal kan twee gebieden aanduiden, een orgaan wat intraperitoneaal ligt, is omringt door visceraal peritoneum. De peritoneaalholte, de holte tussen de viscerale en pariëtale peritoneum wordt ook intraperitoneaal genoemd. Het ligamentum teres hepatis is geen peritoneum, maar een verbindweefseld bloedvat. Het bursa omentalis is geen peritoneum, maar een holte. Het mesogastrium is een embryonale structuur.

 

Het ventrale mesenterium is te verdelen in twee delen: een deel voor de lever en een deel achter de lever. Het ligamentum falciforme is een vlies tussen navel en lever, waarlangs het ligamentum teres hepatis loopt. Het ligamentum teres hepatis heeft zijn oorsprong in de vena umbilicalis. Een embryonaal bloedvat van de navelstreng naar de lever. De maag en het duodenum maken een bocht, zodat er een S-vorm ontstaat. Daarna draaien ze om hun as heen, waardoor het duodenum en de pancreas tegen de achterwand komen te liggen en vervolgens gaan verkleven met de achterwand. Duodenum en pancreas komen dan secundair retroperitoneaal te liggen. Het omentum minus bestaat uit het ligamentum hepatoduodenale (hierin ligt onder andere de galweg, dit is dik) en het ligamentum hepatogastricum (tussen lever en maag, dit is dun en half doorzichtig). Achter het omentum minus bevindt zich de bursa omentalis. Hierachter licht de pancreas en ervoor de maag. Het foramen omentalis vormt de doorgang van de buikholte naar de bursa omentalis. De milt licht links van de bursa omentalis.

 

Vanaf de maag komt ook de dorsale mesogastrium naar beneden en verkleeft aan het colon transversum. Dit is dorsaal mesenterium. Dit groeit verder tot naar de navelstreng. De dunne darm komt van achteren, waarna de dikke darm zich hieromheen gaat draaien. Tijdens de draaiing wordt het meso meegenomen. Het draaipunt is de overgang van het duodenum retroperitoneaal naar het duodenum intraperitoneaal. Dit punt wordt helemaal omringt door mesenterium. Het mesocolon descendens verkleeft met de achterwand en hierdoor secundair retroperitoneaal. Het mesocolon transversum blijft los liggen en hierdoor blijft het intraperitoneaal. Het mesocolon ascendens verkleeft ook met de achterwand en hierdoor is het secundair retroperitoneaal. De dunne darm ligt los, want het mesenterium is niet verkleefd. Het zit vast aan het mesocolon bij de radix mesenterii, een lijn vanaf het duodenum naar beneden.

 

Het punt van Treitz is het punt van de duodenojejunale overgang. Hier komt de dunne darm van retroperitoneaal naar intraperitoneaal. Het dorsale mesogastrium groeit uit tot het omentum majus. Het omentum majus verkleeft aan het mesocolon transversum. Het gaat uithangen over de grote bocht van de maag (het hangt dus onder de maag en over het colon transversum heen). De bursa omentalis ontstaat door alle draaiingen. Het is een holte tussen maag en pancreas, die loopt tot de milt. Via het foramen omentalis komt men in de bursa omentalis. Als er een ontsteking zit, zal er in de bursa omentalis vloeistof komen. Intraperitoneale en secundair retroperitoneale organen en structuren zijn zichtbaar. Het retroperitoneaal neemt ongeveer de helft van de buikholte in. Secundair retroperitoneale organen zitten vast aan de achterwand.

 

De lever kan veel verschillende vormen hebben. Midden in de lever ligt het ligamentum falciforme, met daarin het ligamentum teres (onder de lever). Het area nuda is een gebied van de lever waar geen peritoneum omheen ligt en het is voornamelijk aan de posteriore kant van de lever. Om de rest van de lever ligt wel peritoneum. De vena cava inferior loopt dorsaal van de lever en hierin komen de venae hepaticae uit aan de bovenzijde van de lever. De vena portae is de toegang naar de lever (aan de onderzijde van de lever). Voor de geboorte sluit de vena umbilicalis aan op de vena portae. Het bloed kon toen door de ductus venosus van de vena portae direct naar de vena cava. Als deze er niet was geweest, zou het zuurstofrijke bloed dat door de vena umbilicalis komt door alle lever capillairen moeten gaan. Bij volwassenen is de ductus venosus dicht en het ligamentum venosum geworden.

 

De chirurgische scheiding tussen het linker en rechter deel van de lever ligt aan de rechterkant van het ligamentum falciforme. Anatomisch ligt de scheiding op het ligamentum falciforme. De lobus caudatus heeft bloedvaten vanuit links en vanuit rechts dit is een klein deel van de lever aan de achterzijde van de lobus quadratus. De lobus quadratus hoort anatomisch bij rechts en chirurgisch bij links. De porta hepatis is de poort van de lever, waar de a. hepatica, v. portae en de galweg doorheen lopen. Deze drie structuren zitten in het ligamentum hepatoduodenale. Aan de achterzijde is de chirurgische scheiding te zien als de lijn van de vena cava naar de galblaas. De porta hepatis bevindt zich tussen de anatomische en chirurgische scheiding aan de achterzijde/onderzijde van de lever. Van de lever af loopt de ductus hepaticus (ook wel proximale ductus choledochus). Een zijweg van de galblaas is de ductus cysticus. Deze twee ducti komen samen tot de ductus choledochus (of distale ductus choledochus). De ductus choledochus komt samen met de ductus pancreaticus in het duodenum. De plek waar ze uitkomen in het duodenum heet de papil van Fater. De ductus pancreaticus kan uit één of twee strengen bestaan, de grootste heet de ductus pancreaticus major en komt uit op de papil van Fater. De ductus pancreaticus accessorius komt iets hoger in het duodenum, maar is niet altijd aanwezig.

 

De voordarm gaat de maag, lever en milt vormen. Deze drie organen worden door bloed voorzien vanuit de truncus coeliacus. Uit de truncus coeliacus komen de a. gastrica sinistra (kleinste vat, naar de binnenbocht van de maag), de a. lienalis (naar de milt) en de a. hepatica communis (naar de lever). De a. hepatica communis splitst in de a. hepatica propria (naar de lever) en de a. gastroduodenalis (naar beneden naar de pancreas, maag en duodenum).

 

De arteria mesenterica superior gaat over het duodenum heen en gaat van de aorta af rond er de pancreas. Deze voorziet het gebied van de dunne darm. De voordarm gaat over in de middendarm op ongeveer de helft van het duodenum, bij de papil van Fater. De middendarm loopt tot ongeveer 2/3 van het colon transversum. Tot daar wordt het colon voorzien door de arteria mesenterica superior. Een deel van de arteria mesenterica superior ligt secundair retroperitoneaal. De arteria mesenterica superior treedt uit de aorta net onder de vena renalis.

 

De arteria mesenterica inferior zorgt voor de bloedvoorziening van het colon, vanaf ongeveer 2/3 van het colon transversum tot aan het rectum. De arteria mesenterica inferior ligt voor het grootste deel (secundair) retroperitoneaal. De pancreas en het duodenum krijgen zowel bloed uit de truncus coeliacus als de a. mesenterica superior. De arteriën lopen in elkaar over. De v. lienalis, v. mesenterica superior en de v. mesenterica inferior komen samen in de vena portae. De vena portae gaat naar de lever en niet direct naar de vena cava. Als er een metastase is in bijvoorbeeld het sigmoïd, dan zal deze als eerst in de lever kunnen blijven hangen.

 

Bij een zetpil zijn er een aantal venen van belang: de v. rectalis inferior, de v. rectalis media en de v. iliaca interna. Deze drie venen komen allemaal uit in de vena cava inferior en ze gaan dus niet via de v. portae. Doordat de werkzame stoffen niet via de lever gaan en dus niet worden afgebroken, zal de concentratie werkzame stoffen in het bloed hoger zijn dan wanneer een pil wordt ingeslikt. De vena rectalis superior komt uit op de vena mesenterica inferior en zo dus op de vena portae.

 

Portocavale anastomosen zijn verbindingen tussen de portale circulatie en de systemische circulatie. Caput medusae: hier is sprake van opgezette spataderen op de buik. Dit wordt vaak gezien bij leveraandoeningen. Oesophagus varices zijn spataderen bij de oesophagus. Deze ontstaan als er hypertensie in de v. portae is. Wanneer er hypertensie is, zal het bloed op andere manieren het hart gaan proberen te bereiken dan via de v. portae. Eén van deze manieren is via de oesofagiale aders. Deze aders zijn heel dun en kunnen een grote hoeveelheid bloed niet aan. Hierdoor gaan ze uitrekken en er ontstaan dan spataderen.

 

Vanuit het gehele lichaam is er meer vocht dat er uit de bloedvaten treedt dan wat er weer door de bloedvaten wordt in geresorbeerd. Voor het verwerken van dit vocht is er het lymfesysteem. De ductus thoracicus bevindt zich bovenin de borst en is het grootste lymfevat. Het mondt uit op de vena subclavia sinistra. Een ander groot lymfevat is de ductus lymphaticus dextra. Dit vat voert alleen het lymfevocht van de rechterarm, de rechterkant van het hoofd en een kwart van de borst af naar de vena subclavia dextra.

 

HC-09: Microscopie van de buik (04-04-2014)

De darm bestaat uit vier lagen, namelijk de mucosa, submucosa, muscularis externa en serosa/adventitia. De mucosa bestaat uit drie lagen: epitheel (staat op een basaal membraan), lamina propria (bindweefsel) en muscularis mucosae (spierweefsel). De mucosa heeft een barrière functie en zorgt voor absorptie en secretie. De enterocyten (darmcellen) produceren hormonen (secretie). De mucosa bestaat uit villi, waartussen de crypten liggen. Epitheel cellen zitten vast op een basaal membraan en ze zitten aan elkaar door middel van tight junctions, gap junctions en desmosomen. Vaak is het darmepitheel cilindrisch. Op deze cellen zijn de microvilli te vinden, die zorgen voor oppervlakte vergroting. De lamina propria bestaat voornamelijk uit bindweefsel en de functie is transport van en naar het epitheel. Daarnaast vormt het een immunologische barrière (Gut Associated Lymphatic Tissue) en zorgt het voor de ondersteuning van het epitheel. Bindweefsel bestaat uit cellen die zijn ingebed in de extracellulaire matrix. Bestanddelen zijn onder andere fibroblasten, immuun cellen en vezels. De muscularis mucosae zorgen voor de motoriek van het slijmvlies. Hiermee kunnen de villi worden ingetrokken en uitgezet. Dit kan de hoeveelheid oppervlak beïnvloeden.

 

De submucosa bestaat voor een groot deel uit bindweefsel, net als de adventitia. De submucosa zorgt voor transport van en naar de mucosa en het ondersteunt de mucosa. Coördinatie (zenuwaansturing) vindt plaats in de submucoseale plexus (Meissner): deze plexus coördineert de retractie van de villi. De muscularis externa bestaat uit een circulaire en longitudinale laag, waardoor er peristaltiek mogelijk is. De circularis is voor kleine spoed en de longitudinalis voor grote spoed. Als de spieren exact haaks zouden staan, zou de peristaltiek niet plaatsvinden. De peristaltiek wordt aangestuurd via de plexus van Auerbach. Deze plexus ligt tussen de circulaire en longitudinale spierlaag in. Het verschil tussen de serosa en adventitia is het wel of niet hebben van mesenterium. Als er een gladde buitenkant is, met een mesenterium, dan is het een serosa (bindweefsel en mesotheel). Als de buis vastgeplakt zit aan het weefsel, dan is er een adventitia (alleen bindweefsel). De functie van deze laag is hechting aan weefsel. De plexus van Meissner en Auerbach worden voornamelijk geïnnerveerd via de nervus vagus.

 

De oesophagus zorgt voor het transport van vrije grote brokken voedsel naar de maag. Het bestaat uit een meerlagig plaveisel epitheel, dat dient als barrière en voor bescherming. Daarnaast zijn er ook veel klieren te vinden. De klieren in de submucosa zijn er voor smering en ze produceren licht zure mucus. De klieren in de mucosa zorgen voor neutralisatie door het produceren van licht basische mucus. In de submucosa liggen longitudinale plooien die zorgen voor adaptatie. De muscularis externa bestaat voor een deel uit dwarsgestreept spierweefsel.

 

De maag (gaster) heeft als functie opslag en digestie. Het oppervlak heeft in plaats van villi diepe gaatjes, gastric pits. Het epitheel is eenlagig cilindrisch en is gespecialiseerd met meerdere soorten cellen: slijmnapcellen zorgen voor protectie en neutralisatie, cardia klieren zorgen voor neutralisatie, gastrische/fundische klieren zorgen voor digestie en antrum/ pylorische cellen zorgen voor neutralisatie en regulatie van gastrine. De gastrische klieren kunnen verdeeld worden in verschillende soorten cellen: de hoofdcellen produceren pepsinogeen. Het pepsinogeen wordt afgebroken door zoutzuur dat wordt gevormd door de pariëtale cellen. Hierna wordt er pepsine gevormd, wat de peptiden afbreekt. Daarnaast zijn er nekcellen die mucus produceren, entero-endocriene cellen en vervangcellen. De maag heeft een muscularis externa. Deze spierlaag is een extra spierlaag en deze zorgt voor peristaltiek.

 

Het duodenum regelt de lediging van de maag, via een hormonale weg, zorgt voor neutralisatie, zorgt voor digestie en absorptie en regelt de peristaltiek van de darm plus de secretie van lever en pancreas. Doordat het duodenum de lediging van de maag regelt, komt er een heel zure inhoud in het duodenum. Het epitheel is eenlagig cilindrisch, met slijmbekercellen (zorgen voor smering), enterocyten (darmcellen, zorgen voor digestie en absorptie, door o.a. microvilli), Lieberkühn klieren (in de mucosa) en Brunner klieren (in de submucosa). De klieren van Brunner produceren basische stoffen voor neutralisatie van de zure brij. Dit zorgt ervoor dat de zure maaginhoud voor een groot deel wordt geneutraliseerd. Kerckringen in de submucosa zorgen voor oppervlakte vergroting. Lieberkühn klieren zorgen voor regulatie van onder andere secretine en ze werken antibacterieel. De lamina propria bestaat uit vilii, die zorgen voor oppervlakte vergroting. Tussen deze villi bevinden zich crypten waarin zich stamcellen bevinden die het epitheel vernieuwen.

 

Het jejunum heeft als functie digestie en absorptie. Het epitheel is eenlagig cilindrisch en het bevat de langste villi. Het is in feite een voortzetting van het duodenum, maar er zijn geen klieren van Brunner. Er zijn veel uitwisselingsmogelijkheden. Het epitheel bevat enterocyten, slijmbekercellen (meer dan in het duodenum) en Lieberkühn klieren (in de mucosa). De lamina propria bevat naast vilii ook lactealen. De submucosa bestaat uit plicae circulares. Het heeft een serosa omdat het inmiddels een intraperitoneaal orgaan is.

 

Het ileum heeft als functies: absorptie, opslag en het vormen van een barrière. Het epitheel is eenlagig cilindrisch en het bevat enterocyten, slijmbekercellen, Lieberkühn klieren en M-cellen. De lamina propria bevat vilii en daarnaast plakken van Peyer. Deze plakken van Peyer vormen een immunologische barrière (GALT). De submucosa bestaat uit plicae circulares.

 

Het colon heeft als functies: absorptie, smering, opslag en het vormen van een barrière. Het epitheel is eenlagig cilindrisch epitheel en het bevat slijmbekercellen, enterocyten en Lieberkühn klieren. De lamina propria bestaat uit collageen (vormt een barrière) en GALT (een immunologische barrière). De muscularis mucosae is een robuuste spierlaag. Hoe verder men komt in het colon, hoe droger de massa in het colon wordt. Hierdoor komen er steeds meer slijmbekercellen, om ervoor te zorgen dat de massa nog soepel verplaatst. Villi is niet meer aanwezig, dit zou er alleen maar afgeschraapt worden door de droger wordende massa. Er is ook steeds meer spier. De muscularis externa bestaat uit de taenia coli en de haustrae, die zorgen voor oppervlakte vergroting, resorptie, opslag en afvoer.

 

Een leverlobje bestaat centraal uit een lever vene: de vena hepatica. Het bloed stroomt vanaf de buitenkant naar de binnenkant. Op de hoekpunten van een leverlobje zijn altijd drie structuren te vinden, dit noemt men het driehoekje van Kiernan. Dit driehoekje bestaat uit de vena portae (zuurstof arm, nutriënt rijk), de arteria hepaticae (zuurstof rijk, nutriënt arm) en de galgang. Gal wordt centraal geproduceerd en gaat juist van de binnenkant naar de buitenkant van het leverlobje. Via de canaliculli wordt het gal getransporteerd langs de hepatocyten (levercellen). In de lever vene komen allerlei sinusoïden uit. Deze sinusoïden zijn iets wijder dan capillairen en ze liggen tussen twee lagen lever cellen in. De levercel heeft aan twee kanten bloedvoorziening. De endotheel cellen liggen niet direct tegen de levercellen aan. De ruimte hiertussen is de ruimte van Disse, waarin zich bloedserum verzamelt zonder de rode bloedcellen. In deze ruimte bevinden zich uitlopers van de levercellen die het oppervlak vergroten. Tussen de levercellen zit een soort ‘gaatje’: hier stroomt gal in. De canaliculli komen samen tot een kanaaltje van Hering. Leverparenchym is het weefsel van de lever. De galblaas zorgt voor opslag van gal en resorptie van water uit het gal. De benaming van de functionele eenheid in de lever hangt af van naar welke functie van de lever wordt gekeken.

 

De pancreas bestaat uit twee stukken: uit het ventraal en het dorsaal mesenterium. Het bestaat ook uit een exocrien deel (de eilandjes van Langerhans) en een endocrien deel (hierin worden enzymen gemaakt die de darmfunctie ondersteunen). Het exocriene deel wordt afgevoerd door de buis van Wirsung/ductus pancreaticus naar het bloed. Deze buis heeft een heel dikke wand. Er zijn interlobulaire buisjes en intralobulaire buisjes. De intralobulaire buisjes zijn ook wel de geïntercaleerde ducts/schakelcellen. De buiscellen van de geïntercaleerde ducts zorgen voor het toevoegen van een heleboel water en bicarbonaat. De pancreas is verdeeld in lobjes. Een acinus is een klontje kliercellen, dat centraal een afvoer hebben. Een acinus sluit aan op een geïntercaleerde duct. De entero-acinaire cellen zorgen voor de samenstelling van wat er uiteindelijk in de buis terecht komt.

Access: 
Public

Image

Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Comments, Compliments & Kudos:

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Check how to use summaries on WorldSupporter.org

Online access to all summaries, study notes en practice exams

How and why would you use WorldSupporter.org for your summaries and study assistance?

  • For free use of many of the summaries and study aids provided or collected by your fellow students.
  • For free use of many of the lecture and study group notes, exam questions and practice questions.
  • For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
  • For compiling your own materials and contributions with relevant study help
  • For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.

Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Use the menu above every page to go to one of the main starting pages
    • Starting pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
  2. Use the topics and taxonomy terms
    • The topics and taxonomy of the study and working fields gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
  3. Check or follow your (study) organizations:
    • by checking or using your study organizations you are likely to discover all relevant study materials.
    • this option is only available trough partner organizations
  4. Check or follow authors or other WorldSupporters
    • by following individual users, authors  you are likely to discover more relevant study materials.
  5. Use the Search tools
    • 'Quick & Easy'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject.
    • The search tool is also available at the bottom of most pages

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study for summaries and study assistance

Field of study

Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
2294