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Chapter 1 – What are statistics? 

As a behavioral scientist, it is important to understand statistics. Research is namely conducted
using empirical techniques, of which statistics is an essential part. When you understand which
technique should be applied in which situation, you can use statistics correctly. Statistics 
comprises the arithmetic procedures to organize, sum up and interpret information. By means 
of statistics you can note information in a compact manner. The aim of statistics is twofold: 1) 
organizing and summing up of information, in order to publish research results and 2) 
answering research questions, which are formed by the researcher beforehand. Many students 
struggle with statistics. Hence, this summary explains the most important and frequently 
occurring topics. Statistics is not something to panic about, but without studying it may be 
quite hard. Hopefully, this summary will enlighten statistics for you.   

Basic terminology 
Often, research is conducted to examine the association between variables. A variable is a 
characteristic or condition that is changeable, or has different values for different individuals, 
for example age. These are person variables. But, variables can also apply to characteristics of 
the surroundings, for example temperature. Here, they are called environmental variables. 
Variables are noted by means of letters, for example variable X and variable Y. There are 
different kinds of variables. An independent variable is a variable that is being manipulated by 
the researcher. It often comprises two or more conditions, to which participants are being 
exposed. The dependent variable is the variable that is being observed after manipulating the 
observed variable. It shows what the effect is of the different conditions of the independent 
variable. Often, a control group is used in an experiment. This group receives no treatment, or 
a placebo to see is there is a difference between the experimental condition and the control 
group. Variables can also be subdivided into discrete and continuous variables. A discrete 
variable comprises different categories. For example, a class can consist of 18 or 19 children, 
but can not consist of 18.5 children. For a continuous variable, there are infinite numbers or 
values possible between two observed values. Think for example of length and weight.
 Many variables that are being examined, are hypothetical constructs. Think for example
of self-confidence. These constructs can not be measured directly. To measure these 
constructs, definitions of these constructs have to be formed that can be examined. For 
example, intelligence can be examined by using an IQ test. An operational definition describes 
how this construct should be examined. For example, hunger can be described as ‘the state in 
which someone is after not eating for at least 12 hours’. This is an example of an operational 
definition. 

Research designs 
Researchers can use four different research designs to test hypotheses:

1. Descriptive research: with descriptive research, the behavior, thoughts and feelings of a
group of individuals are described. Developmental psychologists for example try to 
describe the behavior of children of different ages. 

2. Correlational research: with correlational research, the association between variables is 
studied. With correlational studies, no statements can be made about cause-and-effect 
relationships.

3. Experimental research: in experimental studies, a variable (the independent variable) is
manipulated to examine its possible effects on behavior (the dependent variable). If this
is true (and all other assumptions are met), we can conclude that the independent 
variable causes these changes. The main feature of an experiment is the manipulation 
of the independent variable.

4. Quasi-experimental research: this type of design is used when researchers are, for 
whatever reason, not able to manipulate the variable. Think for example of gender and 
age. The researcher studies the effects of a variable of an event that happens naturally 
and can not be manipulated. Quasi-experiments do provide less certainty than real 
experiments. 
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The research process 
The research process comprises seven steps: 

1. Select a topic.
2. Demarcate and specify the topic. Study prior research with regard to your topic and 

specify the research question(s).
3. Set up a plan to answer the research question, and examine which research design is 

most appropriate for this.
4. Collect data to find an answer to your question.
5. Analyse the data. Look for patterns in your data.
6. Interpret the data; give meaning to your data.
7. Publish the results of your research, and inform others about the results.

The above steps are rarely clearly separated from each other: conducting research is an 
interactive process in which many steps are intermingled with each other. In addition, 
sometimes you have to go back to a prior step of the process. 

Basic symbols 
Below, you see a table with some useful and frequently used symbols:

Sample Term Population
X́  mean μ  
S2  variance σ2  

   S standard deviation σ  
ps  proportion pO  
r xy  correlation ρ xy  
Ŷ  dependent variable     Y
β̂x  beta  βx

Types of statistics 
There are different types of statistics. Descriptive statistics is used to describe the data. We can
calculate the mean, display the data in a graph or look for extreme scores. Inferential statistics 
refers to making inferences about the population, based on a certain sample. By means of 
inferential statistics, we try to answer answer this. When a measurement refers to the whole 
population, it is called a parameter. When a measure refers to the sample, it is called a 
statistic. Statistics are thus estimates of the parameter. 

Measurement levels 
Variables can be subdivided into four different measurement levels, which are summarized 
below from lowest to highest level of measurement:

1. Nominal: the simplest (lowest) measurement level is the nominal scale. For nominal 
variables, numbers only refer to categories. Measurement on the nominal scale 
categorize and label observations. The number 1 for example can be used for ‘men’ 
and the number 2 can be used for ‘women’. One can not calculate something with 
these numbers, because they are only labels.

2. Ordinal: an ordinal variable comprises a set of categories with an ordering. For 
example, you can order the participants of a singing competition of worst to best on the
basis of the applause they received. However, we can not determine perfectly how 
much more applause one or the other singer received.

3. Interval: here, we do speak of ‘real’ number. Equal differences between number on this 
scale reflect equal differences in strength. However, with interval variables, there is no 
defined zero point. For example, you can not say a person has zero height. Because 
there is no zero level, we can not multiply or divide the numbers of an interval scaled 
variable.
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4. Ratio: here, we do speak of a zero-level. Because of this, we are able to add, subtract, 
multiply and divide observations. Examples of ratio scaled variables are weight and 
reaction time. 
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Chapter 2 – How can data be collected?

Collecting data
Data collection can be subdivided into three groups:

1. Observational measurements: in this case, behavior is observed directly. This can be 
done in every study in which the behavior that is to be examined, can be seen directly. 
Researchers can observe the behavior directly, or they can make audio- or video-
recordings, from which information about the participants can be deduced. In 
observational studies the dependent and independent variable(s) of interest are not 
manipulated. No claims can be made about cause-and-effect relationships between 
variables. 

2. Physical measurements: these are used when the researcher is interested in the relation
between behavior and not-directly observable physical processes. It refers here to 
processes of the human body, that often can not be observed by eye. For example, hart 
rate, sweating, brain activity and hormonal changes.

3. Self reportage measurements: participants answer questions on questionnaires or 
interviews themselves. There are three kinds of self reportages: 1) cognitive: these 
measure what people think 2) affective: these measure what people feel and 3) 
behavioral: these measure what people do. 

Quantitative versus qualitative data
In statistics, a subdivision is made into quantitative and qualitative data. Quantitative data 
results from a certain measurement, for example the grade on a test, weight or the scores on a
scale. A measurement instrument is used to determine how much a certain characteristic is 
present in an object.
 Qualitative data is also called frequency or categorical data. Qualitative data refers to 
categorizing objects. For example, 15 people are categorized as ‘very anxious’, 33 people are 
categorized as ‘neutral’ and 12 people are categorized as ‘little anxious’. The data consists of 
frequencies for each category. 
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Associations
Most research is conducted to discover or examine associations between variables, for example
to examine the relation between sleeping habits and school achievement. The first research 
technique to examine relations is the correlational method. With the correlation method the 
researcher observes two variables to discover if there is a relation between them. The 
experimental method is used when the researcher is interested in the cause-and-effect relation
between variables. A change in one variable will cause a change in another variable. This 
method has two essential characteristics. First, there is a manipulation. This implies that the 
researcher changes the values of a variable (X). Next, values of a second variable (Y) are 
measured to see if changes of X influence the values of Y. Second, there is control. This means 
that the researcher has to keep the research situation constant. When all other 
variables/conditions are kept constant, the researcher can claim that changes in Y are caused 
by X and not by another variable. It is important to be aware of the distinction between 
correlation and causation. A correlation implies that there is a relation between variables, but 
this does not tell us anything about the direction of the effect. Hence, you can not say that 
changes in one variable are caused by the other variable. Three conditions have to be met in 
order to make statements about causality:

1. Covariance: variables should covary together. A high score on the x-variable should be 
in accordance with a high score on the y-variable.

2. Direction: the cause should precede the consequence.
3. Exclusion of the influence of other variables: it may be the case that a third variable (z) 

influences both x and y. 

Interpreting and displaying raw data
Frequency distributions, proportions and intervals
When participants are being measured, the obtained data are called raw data. These data are 
difficult to interpret. Therefore, steps have to be taken in order to process these data. Raw data
is only a collection of numbers. Structure can be added by, for example, displaying the data in 
a graph. When reaction times are measured, one can for example make a frequency 
distribution. In a frequency distribution, you note how often a certain value (here: reaction 
time) occurred. This helps you to visualize which value (here: reaction time) occurred most 
frequently. Describing proportions and percentages is also useful in a frequency distribution. A 
proportion is calculated by dividing the frequency that belongs to a certain X-value by the total 
amount of participants. For example, if two people, that belong to a class of 20 persons, scored
a six (X=6), the proportion for the score six is 2/20 = 0.10. The formula is: proportion = p = f/N 
(f refers to frequency and N refers to the total amount of participants or observations). Because
proportions are always calculated in relation with the total amount of participants or 
observations (N), we call them relative frequencies. Percentages can be obtained by 
multiplying proportions by hundred. Thus: percentage = p(100) = f/N(100). Sometimes, many 
different scores are possible. In that case, it is better to make grouped frequency distributions. 
Here, we make groups of scores instead of only looking at individual values. The groups (or 
intervals) are called class-intervals. Instead of noting for example each possible length, you 
make groups of different length-intervals. For example, a group with the interval of 100 to 120 
cm and a group with the interval of 121 to 140 cm. You can note the group behind each 
frequency. 
Graphs
A frequency distribution can be displayed well in a figure. This is called a graph. An example is 
a histogram. The horizontal axis is called the x-axis, and the vertical axis is called the y-axis. 
The categories are displayed on the horizontal axis, and the frequencies are displayed on the 
vertical axis. To make a histogram, bars have to be drawn. The height of each bar is in 
accordance with the frequency of the category. A bar chart is in principle similar to a 
histogram, except that the bars are not put directly next to each other. Also the values that 
differentiate strongly from the other values are displayed. These values are called outliers are 
often (but not always) not useful. Besides graphs, lines can also be applied to the obtained 
data. The most frequently used line is the normal curve. This line is highest in the middle of the
distribution, and decreases symmetrically at both sides of the middle. The normal distribution 
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is symmetric, but not every distribution looks like this. A bimodal distribution for example, has 
two peeks. If a distribution has only one peek, it is called a unimodal distribution. A distribution 
can also be asymmetric, because the distribution is longer on on of the sides. A distribution 
with a ‘tail’ to the left has a negative skewness, and a distribution with a tail to the right has a 
positive skewness. 
 Besides histograms and bar charts, one can also use stem-and-leaf-plots. In such plots, 
each score is subdivided into two parts. The first number (for example the 1 of 12) is called the 
stem, and the second number (for example the 2 in 12) is called the stem. When you draw a 
plot, first note all stems (the first number). Next, note each leaf of each score. A stem-and-leaf-
plot offers you the opportunity to quickly find individual scores, which may be useful for 
calculations. This is not possible with a frequency distribution. 

Percentiles
Individual scores are called raw scores. However, these scores do not provide much 
information. For example, if you tell someone you scored 43 points on your exam, it is not clear
to the other person whether this is good or bad. To be able to interpret such a score, it should 
be clear what the mean is. The rank or percentile rank is a number that implies what 
percentage of all individuals in the distributions scored below a certain value. Such a score is 
also called a percentile. The percentile rank refers to the percentage, whilst the percentile 
refers to a score. To determine percentiles and percentile ranks, it first has to be examined how
many individuals score below any value. The result is called cumulative percentages. These 
percentages show what percentage of individuals score below a certain X-value and add up to 
100 for the highest possible value of X. An easy way to use percentile is by means of quartiles. 
The first quartile (Q1) is 25%, the second quartile (Q2) is 50% (thus, the mean) and the third 
quartile is 75%. The distance between the first and third quartile is called the interquartile 
range (IQR). 1.5 times the IQR above Q3 or below Q1 is a criterion to identify possible outliers. 
All these data can be displayed in a boxplot. The so-called ‘box’ is from the first to the third 
quartile. In addition, the median is displayed in the box by a horizontal line. In addition, there is
a vertical line from the lowest to the highest observations, that also goes through the box. 
Outliers are displayed with an asterisk above or below the line. 

Central tendency
Measurements of the central tendency are measurements that display where on the scale the 
distribution is centered. There are three ways to do so: the mode, the median and the mean. 
These manners differ in the amount of data they use.

1. Mode: is used least frequently and is often least useful. The mode is simply the most 
frequently occurring score. In case of two adjacent scores, the mean of these two 
numbers is taken.

2. Median: the score that corresponds to the point of which 50% of all scores falls below 
when the data are ordered numerically. Therefore, the median is also called the 50th 
percentile. Imagine that we have the scores 4, 6, 8, 9, and 16. Here, the median is 8. In 
case of an even number of scores, for example 4, 6, 8, 12, 15, and 16, the median falls 
between 8 and 12. In this case, we take the mean of the two middle scores as median. 
Thus, the median is 10 in this case. A useful formula to find the median, is that of the 
median location: (N+1)/2.

3. Mean: this measurement of the central tendency measurements is used most 
frequently, because all scores of the distributions are included. The mean is the sum of 
the scores divided by the total amount of scores. That is: (∑X)/N. A disadvantage of the 
mean is that it is influenced by extreme scores. Therefore, the ‘trimmed’ mean is 
sometimes used. For example, ten scores at both ends of the distribution are excluded. 
As a result, the more extreme results are excluded and the estimation of the mean 
becomes more stable. 

Measuring variability
The variability of a distribution refers to the extent to which scores are spread or clustered. 
Variability provides a quantitative value to the extent of difference between scores. A large 
value refers to high variability. The aim of measuring variability is twofold:
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1. Describing the distance than can be expected between scores;
2. Measuring the representativeness of a scores for the whole distribution.

The range of a measurement is the distance between the highest and lowest score. The lowest 
score should be subtracted from the highest score. However, the range can provide a wrong 
image when there are extreme values present. Thus, the disadvantage of the range is that it 
does not account for all values, but only for the extreme values. 

Variance and standard deviation
The standard deviation (SD) is the most frequently used and most important measure for 
spread. This measurement uses the mean of the distribution as comparison point. Moreover, 
the standard deviation uses the distance between individual scores and the mean of the data 
set. By using the standard deviation, you can check whether individual scores in general are far
away or close to the mean. The standard deviation can be calculated by means of the next four
steps:

1. First, the deviation of each individual score to the mean has to be calculated. The 
deviance is the difference between each individual score and the mean of the variable. 
The formula is: deviation score = X – μ. The X refers to the individual score, and the μ 
refers to the mean of the variable. 

2. In the next step, the mean of the deviation scores has to be computed. This can be 
obtained by adding all deviations scores and dividing the sum by the number of 
deviation scores (N). The deviation scores are combined always zero. Before computing 
the mean, each deviation score should be placed between brackets and squared.

3. Next, the mean of the squared sum is computed. This is called the variance. The 

formula of the variance is: σ2=∑ (x−μ)2
.

4. Finally, draw the square root of the variance. The result is the standard deviation. The 

final formula for the standard deviation is thus: σ=√∑ (x−μ)2/ N .
Often, the variance is a large and unclear number, because it comprises a squared number. It is
therefore useful and easier to understand to compute and present the standard deviation.
In a sample with n scores, the first n-1 scores can vary, but the last score is definite. The 
sample consists of n-1 degrees of freedom (in short: df).

Systematic variance and error variance
The total variance can be subdivided into 1) systematic variance and 2) error variance.

 Systematic variance refers to that part of the total variance that can predictably be 
related to the variables that the researcher examines.

 Error variance emerges when the behavior of participants is influenced by variables that
the researcher does not examine (did not include in his or her study) or by means of 
measurement error (errors made during the measurement). For example, if someone 
scores high on aggression, this may also be explained by his or her bad mood instead of
the temperature. This form of variance can not be predicted in the study. The more error
variance is present in a data set, the harder it is to determine if the manipulated 
variables (independent variables) actually are related to the behavior one wants to 
examine (the dependent variable). Therefore, researchers try to minimize the error 
variance in their study. 
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Chapter 3 – What do reliability and validity mean?

Reliability and validity
Reliability and validity are two central themes within statistics. The reliability refers to the 
phenomenon that the measurement instrument provides consistent results. If you repeat the 
same measurement twice, a reliable instrument will provide the same result. Validity describes 
whether the construct that is aimed to be measured, is indeed being measured by the 
instrument. The validity is dependent upon the aim of the study: an instrument may be valid 
for one concept, but not for another. A valid measurement is always a reliable measurement 
too, but the reverse does not hold: if an instrument provides consistent result, it is reliable, but 
does not have to be valid.

Measurement error
The score of a participant on a measurement consists of two parts: 1) the true score of the 
participant and 2) measurement error. In short: observed score = true score + measurement 
error. The true score is the score that a participant would have had if the measurement 
technique was perfect and hence no measurement errors have been made. However, the 
measurement techniques that researchers use are (almost) never flawless. All measurement 
techniques consist of measurement error. Because of these measurement errors, scientist can 
never reveal the exact score of a participant. 

Measurement error and reliability 
Measurement errors reduce the reliability of a measurement. When a measurement has a low 
reliability, the measurement errors are large and the researcher knows little about the true 
scores of the participants. When a measurement has a high reliability, little measurement error 
occurred. The observed scores of a participant are then a good (but not perfect) reflection of 
the true score of the participant. 

Reliability as systematic variance
Scientist are never completely certain how much measurement error is persistent in a study 
and what the true scores of participants are. In addition, they do not know completely certain 
how reliable their measure is, but they can estimate how reliable it is. If they determine that 
their measure was not reliable enough, they can try to make their measure more reliable. If 
making their measurement more reliable is not possible, they can decide not to use the 
measure at all.

 The total variance in a data set of scores consists of two parts: 1) variance by true 
scores and 2) variance by measurement errors. In formula form, this is: total variance = 
variance by true scores + variance by measurement errors.

 We can also say that the proportion of total variances that is in accordance with the true
scores of the participants is the systematic variance, because the true scores are 
systematically related to the measurement.

 The variance that is caused by measurement errors is called error variance, because 
this variance is not related to what the scientist examines.

 We therefore can say that the reliability can be computed by dividing the systematic 
variance by the total variance. Thus, reliability = systematic variance / total variance. 
The reliability of a measurement is somewhere between 0 and 1. A reliability of 0 
implies that the scores solely exist of measurement errors and that there is no true 
score variance present in the data. The scores only refer to measurement errors. The 
reverse applies to a reliability of 1: now, only true score variance is present, and there is
no variance caused by measurement errors. The rule-of-thumb is that a measure is 
reliable when the reliability is at least .70. This implies that 70% of the variance in the 
data refers to true score variance (systematic variance).
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Types of reliability
Researchers use three types of reliability for analyzing their data: 1) test-retest reliability 2) 
inter-item reliability and 3) inter-rater reliability. A correlation coefficient is a statistic that 
indicates the strength of the relation between two measurements. This statistic lies between 0 
(no relation between the measurements) and 1 (perfect relation between the measurements). 
Correlation coefficients can be positive or negative. When this statistic is squared, we see what 
proportion of the total variance of both measures is systematic. The higher the correlation, the 
more related the two variables are. Below, the three types of reliability are discussed.

Test-retest reliability
A test-retest reliability refers to the consistency in the responses of participants throughout 
time. Often, participants are measured twice with some time (a few weeks) between the 
measurement occasions. If we assume that a characteristic is stabile, the person should get 
the same score twice when the test is similar. If someone scores 110 on an IQ-test the first 
time, this person should score around 110 on the second measurement occasion. This is 
because IQ is a relatively stabile concept. However, both measurement occasions will not be 
completely similar, because measurement errors always occur. If the correlation between both 
tests is high (at least .70), a test (here: IQ-test) has a high reliability. We expect a high test-
retest reliability for intelligence-, attitude- and personality tests. For less stable characteristics, 
such as hunger of fatigue, measuring test-retest reliability is useless.

Inter-item reliability
The inter-item reliability is important for measurements that consists of more than one item. 
Inter-item reliability refers to the extent of consistency between multiple items on a scale. 
Personality questionnaires for example often consist of multiple items that tell you something 
about the extraversion or confidence of participants. These items are summed up to a total 
score. When researchers sum up the answers of participants to receive a single score, they 
have to be certain that all items measure the same construct (for example extraversion). To 
check to what extent items are in accordance with each other, the item-total correlation can be
computed for each combination of items. This is the correlation between an item and the rest 
of all items combined. Each item on the scale should correlate with the remaining items. An 
item-total correlation of .30 or higher per item is considered to be sufficient. Next to calculating
whether each item is in accordance with the remaining items, it is also necessary to calculate 
the reliability of all items combined. In the past, the split-half reliability was calculated.

 For the split-half reliability all items are subdivided into two sets. Next, a total score is 
computed for each set. Then, the correlation between both sets is calculated. If the 
items in both sets measure the same construct, there should be a high correlation 
between the tests. The correlation (and hence split-half reliability) is considered high if it
is .70 or higher. The disadvantage of the split-half reliability is that the correlation that is
found depends on which items are placed in which set. If you subdivide the items a little
differently, it may result in a different split-half reliability.

Because of this reason, we recently calculate more often the ‘Chronbach’s alpha coefficient’. 
The Chronbach’s alpha is used to calculate (by means of a simple formula) the mean of all 
possible split-half reliabilities. Researchers assume that the inter-item reliability is sufficient 
when Chronbach’s alpha is .70 or higher. The Chronbach’s alpha can be computed as follows: 

α= K
K−1

1−
∑

k

V ( X k )

V (∑
k

X k )

That is: 

α=
items

items−1
1−

∑ of variancesof all items

total variance of complete scale
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Inter-rater reliability
Inter-rater reliability is also called ‘inter-judge’ or ‘inter-observer’ reliability. It refers to the 
extent to which two or more observers observe and code the behavior of participants equally. 
When the observers make similar judgements (thus, a high inter-rater reliability), the 
correlation between their judgements should be .70 or higher.

Validity
Measurement techniques should not only be reliable, but also valid. Validity refers to the extent
to which a measurement technique measures what it should measure. The question is thus 
whether we measure what we want to measure. It is important to note that reliability and 
validity are two different things. A measurement instrument can be reliable, whilst not being 
valid. A high reliability tells us that the instrument measures something, but does not tell us 
exactly what the instrument measures. To discover that, it is important to check the validity of 
the instrument. Validity is not a definite characteristic of a measurement technique or 
instrument. A measure can be valid for one aim, whilst not being valid for another aim. 

A subdivision is made into internal validity and external validity. Internal validity refers 
to drawing right conclusions about the effects of the independent variable. Internal validity is 
warranted by experimental control. This causes namely that only the independent variable 
differs between the conditions. If participants in different conditions differ systematically on 
more than only the independent variable, we are facing confounding. External validity refers to 
the extent to which the research results can be generalized to other samples. Researchers 
distinguish three kinds of validity: 1) face validity 2) construct validity and 3) criterion-validity. 

Face-validity
Face-validity refers to the extent to which a measure seems to measure what it should 
measure. A measure has face-validity when people think that is the case. This form of validity 
can thus not be computed statistically, but is more an assessment of people who assess the 
measure based on their feelings. The face-validity is determined by the researcher, the 
participants and/or field experts. If a measurement does not have face-validity, the participants
think it is not important to really participate. If a personality test has nog face-validity, but 
participants have to fill in the questionnaire, then they do not see the added value of the test. 
This decreases their motivation to participate in the study. It is important to remember three 
things: 1) If a measurement has face-validity, it does not mean per se that the measure is valid
too 2) If a measurement does not have face-validity, it does not mean per se that the 
measurement is not valid 3) Some researchers try to hide their aims. For example, they are 
afraid that participants will not answer sensitive questions correctly. Therefore, the researcher 
may decide to design a measurement instrument that has no face-validity, because the 
measure does not seem to measure what it should measure. 

Construct validity
Often, researchers are interested in hypothetical constructs. These are constructs that can not 
be observed directly by empirical evidence. The question arises how to determine whether the 
measurement of a hypothetical construct (that can not be observed directly) is valid. 
Chronbach and Meehl say that the validity of the measurement of a hypothetical construct can 
be determined by comparing the measure with other measures. Scores on an instrument for 
self-confidence for example should correlate positively with measures for optimism, but 
negatively with measures for insecurity and fear. A measurement instrument has construct 
validity when 1) it correlates strongly with instruments with which it should correlate 
(convergent validity) and 2) it does not correlate (or correlates to a small extent) with 
instruments to which it should not correlate (discriminant validity).

Criterion validity
Criterion validity refers to the extent to which a measurement instrument makes sure that we 
are able to distinguish between participant on a certain behavioral criterion. For example, the 
question is whether different scores on a motivational test in secondary school tell us 
something about the school achievements at university. The behavioral criterion is here 
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achievement in university. Criterion validity is used often in applied research settings. For 
example, educational settings or job applications. Researchers distinguish between two 
primary types of criterion validity: 1) concurrent and 2) predictive validity. The main difference 
between these two types is the amount of time between the measure and the determination of
the behavioral criterion.

 Criterion validity occurs when two measures are used at almost the same time. The 
question is whether the measurement instrument distinguishes well between people 
who score high and people who score low on the behavioral criterion on that moment. If 
scores on an instrument are relate to behavior to which it should be related on that 
specific moment, the measurement instrument has concurrent validity.

 Predictive validity occurs when a measurement instrument is able to distinguish 
between people on a behavioral criterion in the future. Thus, it refers to whether the 
instrument can give a reliable prediction of some future behavior. This is mainly 
important in the educational setting. 
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Chapter 4 – Which distributions emerge in statistics?

Normal distribution
The normal distribution is a symmetric, bell-shaped distribution. The normal distribution is the 
most important distribution because of four reasons:

1. We expect that many of the dependent variables, with which we work, are normally 
distributed in the population.

2. If a variable is (approximately) normally distributed, we are able to make claims about 
the values of that variable (it is often a prerequisite to do analyses).

3. When an infinite number of samples is drawn from a population, the distribution of 
these samples tends towards a normal distribution.

4. Most statistical programs assume that the observations are normally distributed.

The normal distribution uses so-called z-scores. To discuss the normal distribution, we therefore
first have to explain what z-scores are and how they can be used.

Standard scores
Often, individual scores are transferred to standard scores, also called z-scores. This is done to 
determine exactly the position of each score on a distribution. Z-scores are used to standardize
the whole distribution. By using z-scores, we are able to compare different distributions.

The z-score describes the exact position of a X-value in two ways: 1) via the sign and 2) via the 
value. The plus- or minus-sign of the z-score describes whether the X-value is above of below 
the mean (the mean of a standard deviation is always zero). The value of the z-score describes 
the distance between the X-value and the mean in terms of number of standard deviations (a z-
score of 1.00 means that the X-value is 1 standard deviation away from the mean). In a 
distribution with μ = 100 and σ = 15, a score of X = 130 receives a z-score of +2. This is 
obtained by 130-100 = 30, and 30 divided by 15 is 2. The mean μ lies always in the middle of 
the curve. To the right side of the mean, the z-scores have a positive sign. Z-scores at the left 
side of the mean obtain a minus sign.

The formula for the calculation of the standard scores is: z = (X-μ )/σ. The deviation score is 
deviated by the standard deviation. This way, the z-score describes how many standard 
deviations an individual score is away from the mean. An IQ-score of 70 is exactly two standard
deviations below the mean: (70-100)/15 = -2. In this formula, (X-μ ) refers to the deviation 
score. By subtracting the mean of a score, we see directly whether the score is higher than or 
lower than the mean. This formula is useful for transferring raw scores to z-scores, but the 
reverse does not hold. Therefore, one can rewrite the formula. 

The z-score and a normal distribution
The standard normal distribution has a mean of 0 and a standard deviation of 1. The 
distribution is thus N(0,1). The normal distribution is symmetric; the highest frequency is in the 
middle, and the frequencies decrease to the left and the right of the distribution. Z-scores for 
normal distributions are given in terms of standard deviations. A z-score of +2 means that the 
scores is two standard deviations above the mean. For a normal distribution, the following rules
apply: 

 ± 68% of the observations falls between 1 standard deviation of the mean
 ± 95% of the observations falls between 2 standard deviations of the mean
 ± 99.7% of the observations falls between 3 standard deviations of the mean

Central limit theorem
How to determine whether a sample has a normal distribution? Think for example of the 
number of hours per day watching television. The main part of the people watches television 
between one and two hours per day. However, exceptions are present of people who watch 
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eight hours per day. The distribution will then be skewed to the right. Although this chance 
distribution is not normally distributed, the sampling distribution of the sample mean will be 
normally distributed. This is called the central limit theorem. This happens only if the sample 
size n is large enough, that is at least n = 30.

Chances, proportions and scores
Imagine: a distribution of intelligence has a μ of 100 and a σ of 15. What is the chance that, by 
means of random sampling, an individual is selected with an IQ below 130? To answer this 
question, the IQ-scores (X-values) first have to be transferred to z-scores. Next, the 
corresponding proportion has to be determined. This is in accordance with the chance that has 
to be determined. Here, the z-score is +2. This score is computed as follows: (130-100)/15 = 2. 
According to table A, the corresponding proportion is 0.9772. Thus: P(X<130) = 0.9772. Thus, 
there is a 97.72% chance to randomly select someone with an IQ below 130. What to do when 
you want to examine the proportion between two values? For example, the mean driving speed
is 58. The standard deviation is 10. How many of the cars that pass by will drive between 55 
and 65 kilometers per hour? You are actually looking for p(55<X<65) here. First, calculate the 
z-score for both values. For X=55, the z-score is -0.30, because (55-58)/10 = -0.30. For X=65, 
the z-score is 0.70. Find the corresponding proportion for both values in the table for normal 
distributions (table A). The proportion of scores below 65 (z = 0.70) = .7580. The proportion of 
scores below 55 (z = -0.30) =  .3821. Because the question refers to the proportion between 
these two values, the final answer is: 0.7580 – 0.3821 = 0.3759 = 37.59%. 

The binomial distribution
When a variable is measured on a scale with exactly two categories, the resulting data is called
binomial. Binomial data can also result from a variable that only has two categories. For 
example, people are either male or female. Only heads or tails can result from tossing a coin. In
addition, it may happen that a researcher wants to simplify the data by subdividing it into two 
categories. For example, a psychologist may use scores on a personality test to classify 
aggression as high or low. Often, the researcher knows the chances on both categories. For 
tossing a coin for example, the chance on both head and tails is 50%. For a researcher, it is 
important to know how often an event occurs when there are multiple runs. For example, what 
is the chance that someone tosses head 15 times, when tossing the coin 20 times in total?

To answer questions about chance on the binomial distribution, you first have to exam the 
binomial distribution. The formula for the binomial distribution is: p(X) = CNX p*q(N-X) =

N
X (N−X)

p∗q (N−X)  

p(X) = the chance on X successes
N = the number of trials
P = the chance of success on 1 trial
Q = (1-p); the chance of failure
CNX = the number of combinations of N things that happen X times.  

Mean and variance
When p = q = 0.50, for example when tossing a coin, the binomial distribution will be 
symmetric. The formulas for mean, variance and standard deviation are:

 Mean = N*p
 Variance = N*p*q
 Standard deviation = √N∗p∗q

For the binomial distribution, it applies that the distribution becomes more normal when p and 
q are close to 0.50. In addition, the distribution becomes more symmetric and more normal, 
when the number of trials increases. The rule-of-thumb is that, when N*p and N*q do not 
exceed 5, the distribution is close to normal. Then, estimations are reasonably well when we 
treat the distribution as normal. 
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Categorical data and Chi-square
When we are facing categorical data, the data exists of frequencies of observations that are 
subdivided into two or more categories. For these data, we can use the Chi-square test. 

The Chi-square distribution
The formula of the Chi-square distribution differs from other functions, because it only has one 
parameter. The others are constants. The normal distribution has two parameters (μ and σ), 
the Chi-square only has k as parameter, which refers to the X² degrees of freedom (df). For 
example, three degrees of freedom are presented as χ23  or  χ2(3) . The larger k 
becomes, the more symmetric the distribution will be. The mean and the variance increase, 
when k increases. Moreover:

 Mean = k
 Variance = 2k

The Chi-square distribution uses the observed frequencies and the expected frequencies. The 
observed frequencies are the actual frequencies in the data. The expected frequencies are the 
frequencies that you would expect, if the null hypothesis is true. The formula for the Chi-square

is: χ2=∑ (O−E)2

E
. Thus, you compute for each category the (O-E)2/E and sum these up. The O 

refers to observed frequencies. The E refers to expected frequencies. 

Table of the Chi-square distribution
Now that we have a value for X², we have to compare this value with the X² distribution to 
determine the chance that a value of X² is at least as extreme, given the null hypothesis. To do 
so, you can use the standard table distribution of X² (table F). The table uses the degrees of 
freedom. For a uni-dimensional table, it applies that: df = (k-1): thus the number of categories 
minus one. If the obtained X² value is larger than the value in the table, the null hypothesis can
be rejected. The problem is however, that the Chi-square distribution is continuous, while the 
possible values of Chi-square are discrete (especially for small sample sizes). Fitting a discrete 
distribution into a continuous distribution results in a bad fit. 

Two classification examples
In the previous examples, we discussed one dimension (or classification variable). However, 
often multiple classification variables are present and one wants to examine whether these are 
independent. When the variables are not independent, they are to a certain extent contingent 
or dependent upon each other. In a contingency table, we can place the distribution of each 
variable against each other.

In a contingency table, you note the frequencies you would expected if the variables are 
independent (between brackets). The expected frequencies are obtained by multiplying the 
row totals by the column totals (the marginal totals) and dividing this by the total sample size. 
The formula is: Eij = RiCj / N. Eij is the expected frequency for the cell with row i and column j. Ri 
and Cj are the row and column totals.

The chance that an observation belongs to row 1 is the total of that row divided by the number 
of cells within that row. This also applies to the columns. The expected frequency, if all 
observations are independent, can be obtained by multiplying these two chances, and 
multiplying this result by N. The value of X² can again be calculated with the same formula. The
degrees of freedom can be deduced from the contingency table by: df = (R – 1)*(C – 1) with R 
and C number of rows and columns in the table.

Prerequisite of the Pearson Chi-square
One of the main prerequisites to use the Chi-square, is a reasonable size of expected 
frequencies. Small expected frequencies may cause problems, because they cause a limited 
number of contingency tables and hence a limited number of values for the Chi-square 
distribution. The continuous X² can not describe this discrete distribution well. 
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In general, the rule is that all expected frequencies should be at least five. For smaller 
frequencies, it is advised to use Fisher’s Exact Test, because this test is not based on the X²  
distribution. For 2x2 tables with expected frequencies of 1, the X² can be found with the 
following formula:

χ2 adj=( χ2∗N )/(N−1)
The Fisher’s Exact Test is used when expected frequencies are larger than one. 

Measuring agreement
With categorical data, it is important to measure to what extent observes agree in their 
judgements. Imagine that we want to measure the problems of 30 adolescents, with a 
subdivision into (1) no problems (2) problems at school (3) problems at home. We ask the two 
observers to examine this, so that we can compare their judgements. By means of a 
contingency table, we examine how often each observed assessed each score. Imagine that 
they agree 20 out of the 30 times (the diagonal cells), then there is an agreement of 66%. This 
is the percentage of agreement. 

The problem with calculating a percentage, is that we have to take into account the possibility 
that the observes agree by chance. To correct for this, Cohen developed the statistic kappa (K).
The formula for the kappa is:

 
∑ f 0−∑ f e

N−∑ f e

 

in which f0 is the observed frequency on the diagonal and fe is the expected frequency on the 
diagonal. Assume the kappa is K = 0.33. This implies that –after correction for chance- the 
agreement between the two observers is 33%. This is much lower that the prior computed 
value of 66%.

15



Statistical Methods – JoHo

Published on WorldSupporter (www.worldsupporter.org)

Chapter 5 – How to construct a sample?

A population is the unity of events or participants in which a researcher is interested, for 
example all children of twelve years in a country. Populations can vary to a great extent in size.
Because it is (often) not possible to measure the whole population, samples are used in a study.
A sample is a number of participants or observations from the full population, which are being 
measured. A random sample is preferred. This means that all participants from the population 
have an equal chance of being selected for the sample. This results in a representative sample.
A sample is representative if a certain characteristic occurs as frequently in the sample as in 
the population. Often however, the sample is not a perfect representation of the population. 
The difference between a sample and the corresponding population is caused by sampling 
error. A parameter refers to a value that describes the population. For example, the mean 
school achievement in a population of Dutch children. A statistic refers to a value that 
describes the sample. Often, a chance sample is used. Such a sample can be achieved in 
several ways.

1. Simple random sampling
With simple random sampling, a sample is chosen in such a way that each possible sample has
an equal chance of being selected from the population. When a researcher for example wants 
to select a sample of 100 participants from a population of 5000 participants en each 
combination of 100 participants has an equal chance of being selected as sample, it is a simple
random sample. To select such a sample, the researcher should use a sampling frame. That is a
list for the whole population from which the sample will be drawn. Participants are selected 
randomly from this list. A disadvantage of the simple random sampling is that it requires to 
know beforehand how many participants there are in the population, and how many are 
required for the sampling frame.  In some situations, forming a sampling frame is impossible. In
such situations, a systematic sampling is chosen. Every ..th person is chosen to participate in 
the sample. For example, every 10th person that enters a building is selected to participate.

2. Stratified random sampling
Stratified random sapling is a variant of simple random sampling. Here, participants are not 
selected directly from the population, but are first subdivided into multiple strata. A stratum is 
a part of the population that is in accordance with a certain characteristic. For example, we can
subdivide the population into men and women or into three age categories (20-29, 30-39 and 
40-49). Next, participants are chosen randomly from each stratum. By means of this procedure,
researchers can control that an equal number of participants is drawn from each stratum. 
Therefore, researchers often use a proportional sampling method in which individuals are 
selected from each stratum proportionally. That means that the percentage of participants 
(from a certain stratum) is in accordance with the proportion in which this stratum occurs in the
population.

3. Cluster sampling
When it is difficult to receive information beforehand about how many and which participants 
are present in the population, the cluster sampling method is used frequently. Here, the 
researcher does not draw individuals from the population, but clusters of possible participants. 
These clusters are often based on naturally occurring clusters, such as regions within a country.
Often, multistage sampling is used with cluster sampling. With multistage sampling, large 
clusters are determined first. Next, smaller clusters within these large clusters are determined. 
This continues until a sample emerges with randomly chosen participants from each cluster.

Sampling errors (bias)
It is difficult to make a fully representative sample. There are different ways in which a sample 
can not be representative. These are called sampling errors or bias, and may result in 
misleading research outcomes. Two types of bias exist: systematic and non-systematic. Non-
systematic bias occurs always. These are the result of sampling variance. For example, 

16



Statistical Methods – JoHo

Published on WorldSupporter (www.worldsupporter.org)

psychology students from one year are not the same as psychology students from another 
year, which may result in a different mean of the measured variable. However, you assume 
that the higher the number of participants in your sample, the smaller the influence of non-
systematic bias will be. The researcher can control the systematic sampling error or systematic
bias. Systematic bias can arise by means of the following different causes:

 Selection bias: The way in which the participants are selected, causes a biased view. For
example, EUR psychology students may have a higher IQ than the total population of 
students. Another example can be found in inter-questionnaires. People without internet
are automatically excluded from such a study.

 Non-response bias: A biased view arises, because the people that are willing to 
participate in your study, are different from the people that do not participate. For 
example, an IQ test for psychology students is voluntarily. People who consider 
themselves to be clever, may me more tempted to participate in the IQ test than people
who consider themselves to be not so clever. 

 Response bias: A biased view arises, because the answers that are given are not in 
accordance with the truth. For example, students do not feel like participating in an IQ 
test, but the test is mandatory. As a result, these students randomly fill in some 
answers. This might also happen when people participate only to receive a reward for 
their participation. 

Other samples
In some situations, it is not useful or not possible to select a chance sample. In those 
situations, a nonprobability sample is drawn. In that case, the researchers do not know to what 
extent their sample is representative for the population. Many psychological studies are 
conducted with samples that are not representative for the population. Nevertheless, these 
samples are very useful for certain studies. Nonprobability samples are appropriate for studies 
in which testing hypotheses is important, and in which the population is not described. The 
faith in validity increases when different samples (about the same topic) result in similar 
results. There exist three types of nonprobability samples:

 Convenience sampling: A convenience sample is a sample in which researcher use 
participants that are directly available. A main advantage of a convenience sample is 
that by using this method it is much easier to recruit participants than it would be with 
representative samples.

 Quota sampling: With a quota sample, the researcher determines beforehand what 
percentages should be met. The sample is drawn based on these percentages. For 
example, a researcher might say that he wants to select exactly 20 men and 20 women 
for his study instead of randomly drawing 40 participants from the population without 
paying attention to gender.

 Purposive sampling: With a purposive sample, the researchers have strong ideas about 
which participants are typical for the population. Based on these ideas, they select 
which participants may participate in their study. The problem with purposive sampling 
is that it is highly subjective. 

Drawing conclusions about the population
After collecting the results about the sample, the aim of the study is not achieved yet. The idea
is that you make statements about the population based on these results. A couple of 
prerequisites have to be met before being able to draw conclusions about the population. 
These prerequisites are discussed below.

Reducing sampling errors (bias)
Sampling errors (bias) refers to deviations of your result from the true parameter. Imagine that 
the true parameter is 70, but you found a value of 69 in your study, then the sampling error is 
1.

Sample size
A large sample is not a guarantee for a representative sample. The way in which the sample is 
drawn is at least as important as the sample size. However, there are guidelines that tell you 
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how large your sample at least should be. In general, it is the case that the smaller the 
population, the larger the part has to be that is included in your sample. For example, if the 
population consists of 50 people, you need approximately 49 to obtain representative results. A
rule-of-thumb is that, for small populations (<500), you select at least 50% for the sample. For 
large populations (>5000), you select 17-27%. If the population exceeds 250.000, the required 
sample size hardly increases (between 1060-1840 observations). In sum: the smaller the 
population, the larger the required sample ratio. 

Confidence interval (CI)
As mentioned before, you can never be sure that your results are exactly in accordance with 
the true population parameter. To indicate this, you can calculate a confidence interval. That is 
a range of numbers below and above the estimate parameter, in which the true parameter will 
likely be. For example, if a 95% confidence interval runs from 30 to 33, you can say that you 
know with 95% confidence that the true population parameter is somewhere between 30 and 
33. The sample size influences the confidence interval. The larger the sample size, the smaller 
the confidence interval. That implies that you are able to do a more precise estimation of the 
parameter based on a larger sample. 
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Chapter 6 – What is statistical inference?

Inferential statistics
There is a way to discover whether the difference in group means is caused by error variance 
or by systematic variance. Inferential statistics are used for this purpose. Inferential statistics 
refers to drawing conclusions. This method assumes that the independent variable has had an 
effect, when the difference between the means of the conditions is larger than is expected 
based on chance alone. Therefore, we compare the group means that we found with the group 
means that we expect to find if there is only error variance. Unfortunately, this method does 
not provide certainty. We are only able to determine the chance that the differences in group 
means are caused by error variance. 

Testing hypotheses
Scientists try to test their hypotheses by analyzing different group means. First, they formulate 
a null hypothesis. This hypothesis states that the independent variable did not have an effect 
on the dependent variable. On the contrary, there is an experimental hypothesis which states 
that the independent variable did have an effect on the dependent variable. The experimental 
hypothesis may (directional) or may not (non-directional) indicate a direction of the effect. A 
directional experimental hypothesis is called one-sided. With a one-sided hypothesis, the 
researcher indicates whether he expects the independent variable to cause a decrease or 
increase of the dependent variable. When the researcher does not have an indication of the 
direction of the expected effect, a two-sided hypothesis can be used. With a two-sided 
hypothesis, the direction of the effect is not indicated. Based on statistical analyses, the null 
hypothesis can be rejected or preserved (failing to reject the null hypothesis).

Rejecting the null hypothesis implies that the independent variable did have an effect on the 
dependent variable. By rejecting the null hypothesis, you indicate that there is a difference 
between the means. The independent variable thus had an effect, and there is some 
systematic variance. Rejecting the null hypothesis implies that the difference in group means is
larger than expected on error variance only. When the null hypothesis is preserved, it does not 
mean per se that the independent variable did not have an effect on the dependent variable. 
Instead, it means that the effect that is found is not large enough to reject the null hypothesis. 
Whether a null hypothesis is rejected, is dependent upon the confidence interval, which is 
controlled by the researcher (the researcher determines the significance level). It is important 
to understand that not rejecting the null hypothesis does not mean that there is no effect. 

Type-I and Type-II errors  
When drawing conclusions, four scenarios are possible:

 Correct decision: the null hypothesis is incorrect, and the researcher rejects the null 
hypothesis.

 Correct decision: the null hypothesis is correct, and the researcher does not reject the 
null hypothesis.

 Type-I error: the null hypothesis is correct, but the researcher rejects the null 
hypothesis. The researcher falsely assumes that the independent variable had an effect.
The chance if making a type-I error is called alfa level. It is common practice to use an 
alfa level of 5%. This implies that the null hypothesis is rejected when there is a 5% 
chance that the found differences between the group means are caused by error 
variance. Thus, there is a 5% chance that the researcher wrongly rejects the null 
hypothesis. Sometimes, researchers use a stricter alfa level, for example an alfa of 1%. 
Then, they only have a 1% chance of wrongly rejecting the null hypothesis.

 Type-II error: the null hypothesis is wrong, but the researcher does not reject the null 
hypothesis. Thus, the researcher assumes that the independent variable did not cause 
an effect, while in fact it did cause an effect. The chance on a type-II error is called beta.
Unreliably measuring the dependent variable raises the beta. Effects that do exists, are 
namely noticed less often with a larger beta. In addition, mistakes in collecting and 
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coding the responses, highly heterogeneous samples and bad experimental control may
cause an increased beta. To reduce the chance on a type-II error, researcher try to 
design studies with a high power. 

The z-test
Generally, we do not know the value of σ , and we have to estimate it with the sample standard
deviation (s). However, if we do know the standard deviation of the population we can use the 
z-test.

Step 1: formulating a hypothesis
First, a hypothesis is formulated. There are two hypotheses: the null hypothesis and the 
alternative hypothesis. The null hypothesis means that the independent variable did not have 
an effect. The hypothesis implies that there is no change or difference. For the null hypothesis 
the symbol H0 is used. The H refers to hypothesis, and the 0 refers to zero effect. Second, there
is the alternative hypothesis (H1) which indicates that there is a change or difference. In the 
context of an experiment, it indicates that the independent variable (for example a treatment 
method for depression) did have an effect on the dependent variable (extent of depression). 
The H1 can be one- or two-sided. When the null hypothesis for example is that the mean 
depression score is 30 in the population of depressed people, the alternative hypothesis can be
that the mean does not equal 30 (µ ≠ 30). In some cases, the direction of the difference is also 
specified. For example, if it is expected that the group that received treatment has a higher 
mean, it applies: H1: µ1 < µ2. It is for example possible to indicate with H1 that the mean is 
lower than 30 (µ < 30) or higher than 30 (µ > 30). The latter possibility is in this example 
superfluous, because it is almost impossible that a treatment will cause an increase in the 
degree of depression. Hypotheses always refer to the population, although samples are used to
test hypotheses. 

Step 2: criteria to make a decision
To make a founded decision about the (in)correctness of the null hypothesis, certain criteria 
have to be used. We use the level of significance or the alfa level (α) as criterion. The alfa level 
is a limit in the normal distribution that distinguishes between scores with a high chance and 
scores with a low chance of occurring in the sample, if the hypothesis is true. An alfa of 5% (α 
= 0.05) implies that there is a 5% chance that the result is found by chance. The alfa level is a 
chance value that is being used to determine highly unlikely sample results, if the null 
hypothesis is true. The are that is demarcated by the significance level in the tale(s) of the 
distribution is the critical area. The critical area consists of extreme sample values that are 
highly unlikely is the null hypothesis is true. When a found value falls within this critical area, it 
differs significantly from the mean and the null hypothesis is rejected. For an alfa of 5%, it 
implies that 5% of the scores in the tails fall within this critical area; between z = -1.96 and z = 
1.96. These values are the limits of the critical area for α  = 0.05.

Step 3: collecting data and calculations
Data are collected after the hypotheses are formulated. This way, the data can be tested by 
means of the hypothesis; the researcher can evaluate the data in an objective manner. After 
collecting the raw data, the statistics are calculated. The researcher calculates for example the 
sample mean. The, the mean can be compared to the null hypothesis. To do so, the researcher 
has to compute a z-score that describes the position of the sample mean compared to the 
mean of the null hypothesis. The z-score for the sample mean is: z = (x - µ) / σ. The formula 
implies that the z-score can be calculated by subtracting the population mean from the sample 
value, and dividing this by the population standard deviation (or the squared root of the sample
standard deviation divided by the sample size). The z-score for testing hypotheses is an 
example of a test statistic. 

Step 4: making a decision
A researcher uses the z-score from the previous step to make a decision about the null 
hypothesis. The first possibility is that the researcher rejects the null hypothesis. This is the 
case when the statistics falls within the critical region. This means that there is a significant 
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difference between the sample and the null hypothesis. The statistic is found in the tail of the 
distribution. Referring to the example of treating depression, it means that the researcher has 
found that the treatment had a significant effect. However, it is also possible that the null 
hypothesis can not be rejected. This is the case when the statistic does not fall within the 
critical area.

Effect size 
Some researchers critize the process of testing hypothesis. The main critique refers to the 
interpretation of a significant result. When testing hypotheses, most attention is paid to the 
data instead of to the hypotheses. When the null hypotheses is rejected, we make statements 
about the sample data and not about the null hypothesis. Bases on the sample data, the null 
hypothesis is rejected or not. We do not know whether the null hypothesis is truly false or true. 
Another point of critique is that a significant effect does not imply anything about the effect 
size. Something is significant or not, but it does not imply anything about the size of the effect. 
Thus, a significant effect is not equal to a large effect. To provide more insight into the size of 
an effect, Cohen (1988) proposed the so-called effect size. His measure for effect size is called 
Cohen’s d. This measure can be computed by first calculating the difference between the 
sample mean and the original population mean (M - µ). Next, this outcome is divided by the 
standard deviation of the population. The outcome of Cohen’s d is classified as a small effect 
for d = 0.2, a medium effect for d = 0.5 and a large effect for d = 0.8.

The t-test 
As mentioned before: In general, we do not know the value of σ and we have to estimate it with
the sample standard deviation (s). However, if we replace σ by s, we can not use the z-formula,
but we have to use the t-test. The t-test uses s2 as approximation of σ 2. The t-distribution uses 
n-1 degrees of freedom. The larger the value of df for the sample, the better s (standard 
deviation of the sample) represents σ (standard deviation of the population). The t-statistic can 
be calculated with the following formula: t = (M - µ) / sM. sM refers to the standard error, which 
can be calculated as: sM = s/√n. This is used as estimation of the real standard error. Below 
you find a useful scheme to use when you test a hypothesis with the t-test:
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Right-sided Left-sided Two-sided
1. Formulate the 
null and 
alternative 
hypothesis

H0: µ ≤ 123
H1: µ > 123

H0: µ ≥ 126
H1: µ < 126

H0: µ = 122
H1: µ ≠ 122

2. Decision of the 
test statistic T=

´X−µ0

s /√ n
T=

´X−µ0

s /√ n
T=

´X−µ0

s /√ n
3. Determine 
distribution of the
test statistic

T t(n-1) T t(n-1) T t(n-1)

4. Intuitive area of
rejecting H0

X t ≫ 0
≫ 123  X t ≪ 0

≪ 123  X t ≪ 0
≪ 122  

X t ≫ 0
≫ 122  

5. Determine level 
of significance 

∝  = 0.05 ∝  = 0.05 ∝  = 0.05

6. Looking up the 
critical values

t99, 0.05 = 1.660 -t99, 0.05 = -1.660 t99, 0.05 = 1.660
-t99, 0.05 = -1.660

7. Compare the 
observed value 
test statistic with 
the critical value

t=125−123
10/√ 100

=2

2 > 1.660, so reject 
H0: the mean IQ on 
the EUR is not 
smaller than or equal 
to 123, for ∝  = 
0.05

t=126−123
10/√ 100

=3

3 > -1.660, so do not 
reject H0 for ∝  = 
0.05

t=122−123
10/√ 100

=−1

so do not reject H0 for
∝  = 0.05. 

Assumptions for the one-sample t-test
There are two assumptions that have to be met in order to conduct a t-test.

1. First, the scores in the sample have to be independent observations. That means that 
one score can not influence another score. The chance on a certain outcome for a score 
can thus not be influenced by another score.

2. Second, the population, from which the sample is drawn, has to be normally distributed.
In practice, violation of this assumption has little influence on the t-statistic, especially 
when the sample size is high. With quite small samples, it is nevertheless important that
the population is normally distributed. When you are insecure whether the distribution 
of the population is normal, it is best to use a high sample size.

Effect size of the t-test
The effect size can be computed with Cohen’s d. In that case, first the difference between the 
sample and population mean has to be determined. This has to be divided by the standard 
deviation of the population. Often, the standard deviation of the population is unknown. Hence,
an estimated d is constructed by dividing the difference between sample and population mean 
by the standard deviation of the sample.

Proportion of explained variance (r2)
A different way to determine the effect size, is by looking at how much variance between the 
scores is explained by the effect. An effect can namely cause an increase or decrease of the 
scores. The proportion of explained variance can be found by squaring the t-statistic and 
dividing it by the same number plus the degrees of freedom. In formula, this is: r2 = t2 / (t2 + 
df). The degrees of freedom are the number of scores minus one. A proportion explained 
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variance of 0.01 refers to a small effect. A value of 0.09 refers to a medium effect. A proportion
of 0.25 refers to a large effect. The r2 is used presented in percentages in the literature. 

The t-test for independent samples 
The t-test is used often to test differences between two independent samples. For example, 
when we compare the achievements between a control group and an experimental group 
(which received a treatment). We want to examine whether the difference is large enough to 
assume that the two samples originate from different populations.

When we compare means of two different populations, we test the null hypothesis H0: µ1 - µ2 
= 0. This comprises a sampling distribution of all possible difference scores between the 
population means. In case of two normally distributed populations, the distribution of the 
difference scores is also normally distributed. The variance of this distribution can be found 
with the variance sum law: the variance of the sum of the difference of two independent 
variables equals the sum of there differences: 

σ²X1-x2 = σ²X1 + σ²X2 = σ²1/n1 + σ²2/n2.

The formula for the t-statistic is:

T s=
Ý 1−Ý 2−(µ1−µ2)

√ s1
2

n1

+
s2

2

n2

in which (µ1−µ2)  equals zero and thus can be omitted.

Assumptions for the t-test with two independent samples
1. The observations in each sample are independent.
2. The populations from which the samples are drawn, are normally distributed. When the 

researcher assumes that the populations are not normally distributed, it is advised to 
use large samples.

3. The two populations have equal variances. We call this homogeneity of variances. 
Pooling sampling variance is only useful when both populations have the same variance.
This assumption is very important, because a correct interpretation depends upon the 
research findings. You can check if this assumption is met with Levene’s test in SPSS.

Pooled variance
The above formula can only be used when both samples have the same sample size (n1 = n2). 
In this case, the variance of both samples is precisely the middle of the two variances 
separately. When the samples do not have an equal sample size, this formula is not appropriate
because the two samples receive the same weight in this formula, while a smaller sample 
should receive a smaller weight than a large sample. Consequently, the outcome is biased 
towards the small sample. To correct for this, a formula is used that combines the variances: 
the pooled variance. The pooled variance is found by taking the weighted mean of both 
variances. The sum of squares of both samples is divided by the degrees of freedom. The 
degrees of freedom are lower for a smaller sample, so that this smaller sample will receive a 
lower weight. As mentioned before, the variance of a sample (s2) can be obtained by dividing SS
by df. To calculate the pooled variance (s2

p), a different formula is used: (SS1 + SS2) / (df1 + 
df2). The estimated standard error of M1-M2 is found by taking the square root (√) of the 
outcome (s2

p / (n1 + n2)). A different formula for the pooled variance is: 
s2

p = ((n1-1)s21 + (n2-1)s22 / (n1+n2-2). The new t-formula is then:

( X́1− X́2)/√ sp
2 ( 1

n1

+ 1
n2

)
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Effect size
As mentioned before, Cohen’s d can be computed by dividing the difference between the 
means by the standard deviation of the population. For two independent samples, the 
difference between the two samples (M1 – M2) is used to estimate the difference in means. The
pooled standard deviation ( √ s p

2 ) is used to estimate the standard deviation of the 

population. The formula to estimate Cohen’s d is thus: d = (M1 – M2) /  √ sp
2 .

Paired t-test
A paired t-test is used when there is a matched design or when there are repeated measures. 
The paired t-test takes into account that participants in two conditions are similar to each 
other. In this case, there are two different samples, but each individual from the one sample is 
matched to an individual from the other sample. Individuals are matched basis on variables 
that are considered to be important for the study. This causes an increase of the power: if the 
independent variable truly has an effect, it is more likely that this will be found in the study. 
The lower the error variance, the higher the power of the experiment. A high power results in a 
lower pooled standard deviation (sp). The lower the pooled standard deviation, the higher the t-
value.

The t-statistic for related samples is, with regard to its structure, similar to the other t-statistics.
The main difference is that the t-statistic for matched samples is based upon difference scores 
instead of raw scores (X-values). Because participants before and after the treatment are 
examined, each participant has a difference score. The difference score is:

D = X2 – X1

In this formula, the X2 refers to the second measurement (often: after the treatment). When D 
is a negative number, it implies that the extent of occurrence of the variable X has decreased 
after the treatment. A researcher tries to examine whether there is a difference between two 
conditions in the population by using difference scores. He wants to know what would happen 
when each individual in the population would be measured twice (before and after the 
treatment). The researcher strives to know what the mean of the difference score (µD) in the 
population is. 

The null hypothesis is that the mean of the difference scores is zero (µD = 0). According to this 
hypothesis, it is possible that some individuals in the population have positive difference 
scores. In addition, it is possible that some individuals have negative difference scores. 
However, the main question is whether the mean of all difference scores equals zero. The 
alternative hypothesis H1 states that the mean of the difference scores does not equal zero (µD
≠ 0). The t-statistic for the difference scores is calculated as:

T s=
X́1− X́2−(µD)

SD /√n

Assumptions for the paired-samples t-test
1. The scores within each condition are independent.
2. The difference scores (D) are normally distributed. Violation of this assumption is not a 

big matter, as long as the sample sizes are large. For a small sample, this assumption 
has to be met. A large sample size refers to a sample with at least 30 participants. 

If one or more assumptions of the t-test for repeated measures are not met, an alternative test 
can be used. This is the Wilcoxon-test, in which rank scores are used for comparing difference 
scores. 

Effect size
The two most frequently used measures for effect size are Cohen’s d and r2 (proportion of 
explained variance). Because Cohen’s d assumes population parameters (d = µD – σD) it is 
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useful to estimate d. The estimated d can be computed by dividing the mean of the difference 
scores by the standard deviation (d = MD/s). A value higher than 0.8 is considered a large 
effect. The proportion of explained variance van be computed as: r2 = t2 / t2 + df.

Summary of formulas t-test

T-test Formula
T-test for equal 
variances (independent
samples)

T p=
Ý 1−Ý 2−(µ1−µ2)

S p√ s1
2

n1

+
s2

2

n2

s p
2=

(n1−1 ) s1
2+(n2−1 ) s2

2

n1+n2−2

S p=√ S p
2  

T-test for unequal 
variances 
(independent samples)

T s=
Ý 1−Ý 2−(µ1−µ2)

√ s1
2

n1

+
s2

2

n2

df are given in the exercise

Paired sample T-test
(dependent samples) T s=

X́1− X́2−(µD )
SD

√n

t (n−1)
SD

2 =S1
2−S2

2−2 r1,2 S1 S2  

SD=√ SD
2  

Confidence intervals
Confidence intervals can assist in describing the results from hypothesis tests. When we obtain 
a specific estimation of a parameter, we call this a point estimation. Next, there are interval 
estimations, which obtain the limits within the true population parameter(µ) likely is. These are 
called the confidence limits, that make the confidence interval. We want to know how high and 
how low the µ-value can be, for which we do not reject H0. This provides the limits within we 
keep the null hypothesis. 

 z-test confidence interval: X́ ± Zα /2 σ
√ n

 one sample t-test confidence interval: : X́ ±t
n−1,α /2

s
√ n

 t-test for independent samples with equal variances: Ý 1−Ý 2 ±t n−2,a /2 √ 1
n1

+ 1
n2

 t-test for independent samples with unequal variances: Ý 1−Ý 2 ±t df , a/2√ s1
2

n1

+
s2

2

n2

 t-test for paired samples: µD=M D ± t∗SM D

Power
Besides measuring the effect size, it is also possible to measure the power of a statistical test. 
Power refers to the extent to which a study is capable of detecting the effects in the examined 
variable. A study with a high power is able to detect existing effects, while a study with a low 
power will likely not detect these effect. The power is influenced by many things. One of these 
is the number of participants. In general, it applies that the more participants there are, the 
higher the power is. Strong effects are easier to identify than weak effects. A study with a low 
power will often not identify weak effects, but may identify the strong effects. To identify a 
weak effect, a high power is required. For identifying weak effects, it is also useful to have data 
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from many participants. Power can be calculated as 1 – the chance on a type-II error. 
Researcher often require a power of 0.80. The power of the test is influenced by three factors:

1. First, the sample size is important. The larger the sample size, the higher the chance of 
rejecting the null hypothesis when the null hypothesis is actually false. This means that 
the power of the test increases when the sample size increases.

2. Second, the power of the test decreases when the alfa level is lowered. When the alfa 
for example is decreased from 5 to 1%, the chance that a true effect is found (thus that 
the null hypothesis is rejected correctly) decreases.

3. Third, the power increases when a two-sided test is transferred to a one-sided test.
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Chapter 7 – What are correlation, regression and linear 
regression?

Correlation versus regression
Correlation and regression are two topics that are strongly related to each other, but 
nevertheless differ. With simple correlation and regression, we examine N participants who are 
observed or tested on two variables. Imagine that we examine the running speed of mice in a 
maze (Y). This is a random variable that we can not control. When we examine the relation of Y
with the number of times that the mouse presses a button before it finally succeeds (X) we 
have two random variables that we can not influence. In this case, we use the correlation. Both
variables will vary per experiment (it are random variables) and we are facing a sampling error.
When X is a predefined variable, it is specified by the researcher (for example: the number of 
food grains the mouse receives per succeeded attempt), we have a regression. 

Correlations
A correlation measures three characteristics of the association between X and Y:

1. The direction of the relation. A positive correlation (+) emerges when two variables are 
moving in the same direction. If the value of X increases (for example the length of a 
person), the value of Y also increased (for example the weight of a person). A negative 
correlation occurs when two variables are moving in different directions. If X increases, 
Y decreases (or vice versa). 

2. The form of the association. It can be for example linear. 
3. The degree of the association. A perfect correlation has a value of -1 or 1. A correlation 

of 0 implies that there is no association between the two variables. A correlation of 0.8 
is therefore stronger than a correlation of for example 0.5 

Pearson correlation
The most well-known measure for correlation is the Pearson correlation. This correlation 
measures the degree and direction of a linear relation between two variables. The Pearson 
correlation is denoted with r and calculated as follows: r = covariance of X and Y / the 
variability of X and Y separately. To be able to calculate Pearson r, a new concept has to be 
introduced, namely the sum of products of the deviations (SP). In previous parts, we used the 
sum of deviations (SS) to measure the variability of one variable. Now, we use the SP to 
measure the degree of covariance between two variables. Two formulas can be used to 
calculate the SP. For one formula however, the mean values of X and Y have to be calculated 
beforehand.

1. The formula which requires to calculate the means beforehand is: 
SP = ∑(X - MX) (Y - MY). 

2. Another formula (which does not require to calculate the means beforehand) is:
SP = ∑XY – (∑X∑Y)/n.

3. Also, the formula r = (SP / √SS∗SY ) can be used to calculate the sum of squares.
4. Finally, the Pearson correlation can also be calculated for z-scores. In that case, the 

formula is: r = ∑(zX*zY)/n. 

The proportion explained variance
With the Pearson correlation itself, you can not do so much, because it is not ratio scaled and 
thus not suitable for calculations. Therefore, you have to multiply it. The value r2 is called the 
coefficient of determination. This value measures the proportion of variance within one 
variable, that can be explained by the association of this variable with another variable. A 
correlation of 0.80 (r = 0.80) implies for example that 0.64 (r2), that is 64% of the variance of 
scores on Y can be explained by variable X. A r2 of 0.01 refers to a small correlation and a r2 of 
0.09 refers to a medium correlation. A large correlation is characterized by a r2 of 0.25 or 
higher.
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Spearman correlation
The Pearson correlation quantifies the linear relation between two variables. This correlation 
measure is used primarily when data are interval or ratio scaled. Other correlation measures 
are developed for non-linear relations and other measurement scales. The Spearman 
correlation measures the relation between two variables with an ordinal scale. The Spearman 
correlation can also be used when data are interval- or ratio scaled and there is no linear 
relation between X and Y.

The Spearman correlation looks for a consistent relation between X and Y, regardless of its 
form. The original values have to be ordered (from small to large). The Spearman correlation 
can be calculated as follows: rs = 1 – 6∑D2/n(n2-1). In this formula, n refers to the number of 
scores and D refers to difference: the difference between each order of a X- and Y-value. For 
example, one can have the second best score on variable X, but the ninth on variable Y. 

The point-biserial correlation
A special variant of the Pearson correlation is called the point-biserial correlation. This 
correlation is used when one variable consists of number, but the other variable consists only 
of two categories. A variable with only two categories is called a dichotomous variable. An 
example is gender. To calculate the point-biserial correlation, the dichotomous variable first has
to be transferred to a variable with numerical values. One value (for example women) receives 
a zero and the other value (for example men) receives a one. Next, the formula for Pearson r is 
used. The point-biserial correlation can also be described as: 
r = SP / √(SSx)(SSy). Quaring the point-biserial correlation results in the proportion of explained
variance, which is a measure of effect size. The relation between proportion explained variance
and a t-test for independent samples is: r2 = t2/(t2 + df). It can also be written as: t2 = r2(1/r2) / 
df

The phi-coefficient ( ϕ )
The phi-coefficient (ϕ)  measures the relation between two variables that are both 
dichotomous. To do so, first the values 0 and 1 have to be given to both variables. Next, the 
Pearson r formula can be applied.

Strong and weak correlations
For large samples, even very small correlation may become statistically significant quickly. A 
significant correlation tells us nothing more than that the chance is very small that the 
correlation in the population equals zero. The presence of significance thus does not imply 
whether the relation between the variables is strong. The strength of a correlation is in 
accordance with the size of the correlation and not with the statistical significance of the 
correlation. The rule-of-thumb is that a correlation of .10 is weak, a correlation of .30 is 
moderate, and a correlation of .50 is strong. 

Scatterplot
A useful way to examine the relation between two quantitative variables is a scatter plot. Each 
participants is displayed by a dot with coordinates, that refer to the values on the variables X 
and Y. Normally, the predictive variable is presented on the X-axis and the criterion variable is 
presented on the Y-axis. The criterion variable is predicted from the predictor variable. 
However, if it concerns a correlation coefficient, it is not always clear which variable is X and 
which is Y. In that case, it does not matter how the variables are labelled. In a scatterplot, a line
is drawn through the cloud of dots as best as possible. That line is called the regression line of 
Y predicted by X (that is: Y on X) which gives the best approximation of Yi for a value Xi. If the 
regression line is straight, the relation between the variables is linear. If the regression line is 
curved, it is called a curvilinear relation.

The degree to which the dots lie around the regression line is related to the correlation (r) 
between X and Y. The closer the dots (the observed results) lie around the regression line (the 
predicted results), the higher the correlation. The correlation coefficient ranges from -1 to +1, 
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in which a perfect correlation (all points are on the regression line) is referred with 1. The plus 
and minus sign indicate the direction and do not influence the relation between the variables. 

Simple regression
The general formula for a simple regression is Y = b0 + b1X + e, in which Y refers to the 
dependent variable and X to the independent variable. The parameters that have to be 
estimated are called the intercept (b0) and the regression weight (b1). The error (e) is the 
difference between the estimated and observed value of Y. For example, you have to pay 5 
euros per hour next to the 30 euros entrance fee for a tennis club. In this case, the regression 
formula is: Y = 5X + 30. The regression coefficient (slope) is b1, which shows how Y changes 
when X increases by one point. In this example, the regression coefficient is 5, because the 
total cost increases with 5 euros per hour. The value of b0 is called the intercept, because it 
shows the value of Y when X is zero. If the regression coefficient equals zero, the regression 
line is horizontal.

The relation between X and Y can also be displayed graphically. The most frequently used 
method to do an optimal prediction is the least squares method in which parameters are 
chosen such that the sum of the squared predicted errors is as small as possible.

Assumptions for regression
A few assumptions have to be met. First, there has to be homogeneity of variances. That 
means that the variance of Y is the same for each value of X in the population. In addition, the 
values of Y that are in accordance with the X-values have to be normally distributed.

When examining the sample correlation, we replace the regression model assumptions with the
assumption that we draw a sample from a bivariate normal distribution. The conditional 
distributions in this distribution are the distributions of Y and X given a specific value of X or Y. 
When we look at all Y-values, independent of X, we call it the marginal distribution of Y. Finally, 
we assume that the relation between X and Y is linear. 

Predicted values
To determine how well a line fits the data, we first have to calculate the distance between the 
line and each data point. For each X-value, the linear regression line determines the value for 
the Y variable. This value is called the predicted value ( Ŷ ). The distance between this 
predicted value and the actual Y-value is determined by the following steps:

1. Distance = Y - Ŷ . This distance measures the error between the line and the actual 
data.

2. Because some distances are negative, and others are positive, the next step is to 
square each distance, so that only positive values remain.

3. Finally, the total distance between the line and the data has to be calculated. The 
squared values from step 2 are summed up: ∑(Y - Ŷ )2. This is called the total 
squared error.

An example
Assume we want to examine the association between stress and mental health. The latter is 
measured with a checklist. The first step to calculate the correlation is to calculate the 
covariance (covXY or SXY), which refers to the degree to which the two variables vary together.
It looks much like the variance, because if we replace all Y’s with X (or all X with Y) we obtain 
s2X (or s2Y). The formula is given as: (∑XY - ∑X∑Y / N) / (N – 1). We expect a strong positive 
relation: higher values of X (stress) give higher values of Y (mental health). This will result in a 
high covariance value. If there would have been a strong negative relation, the sum of products
of deviations from the mean would have been large and negative. If there would have been no 
relation between the variables, the sum would be approximately zero. The covariance of the 
example is 1.336. To calculate the correlation coefficient, we have to take the standard 
deviations of X and Y into account.
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R = covXY / sXsY

The correlation ranges from -1 to +1. In the example, the correlation is r = .529. This does not 
mean that there is a 53% relation between stress and symptoms. It only indicates the strength 
of the relation between the two variables; values closer to +1 indicate a stronger relation. The 
plus and minus indicate the direction of the relation, in which a positive correlation indicates 
that higher values of X are in accordance with higher values of Y.

Standardized regression coefficients
When the data is standardized, a difference of one unit in X refers to a difference of one 
standard deviation. If the slope is for example 0.75 (for standardized data), the Y will increase 
with 0.75 for each increase of one standard deviation of X. The slope of standardized data is 
called standardized regression coefficient or β .

For standardized data, it applies that sX = sY = s2X = 1, in which the slope and correlation 
coefficient are equal. A correlation of r = .80 implies that an increase of one standard deviatin 
of X is associated with 8/10 standard deviation increase of Y. However, because it is a 
correlational association, we can not make claims about cause-and-effect.

Hypothesis tests for regression 

The significance of b
If X and Y correlate, and there is a linear relation, the slope of the regression line will not be 
equal to zero and b will have a value different from zero. This is the case for one predictor 
variable, but when there are multiple predictor variables, the slope does not have to be 
significant for each of these variables.
b* is the parametric equivalent of b, namely the slope if we had X and Y measures on the 
whole population.

The standard error is: sb=
Y−X

X √ N−1
 

To test if the population slope is zero, we use the formula: 
t = (b-b*)/sb = b / (sY*X / sX * √(N-1) ) with N-2 degrees of freedom.

The confidence interval of b* is: CI(b*) = b ± (ta/2)(
Y−X

X √N−1
)

The difference between two independent b’s 
It may happen that two samples have a different slope. You can test if this difference in slope is
significant as follows.

H0  = b*1 = b*2 and the sampling distribution of b1 – b2 is normally distributed with a mean of

zero and a standard deviation of sb1 – sb2 = √sb1
2 +sb 2

2  with t = (b1 – b2) / √sb1
2 +sb 2

2  with 

N1 + N2 – 4 degrees of freedom.

Filling in the standard error with the formula described above, we obtain:

sb1 – sb2 = √ sY
2 −x1

sx1
2 (N 1−1)

+
sY

2−x2

sx 2
2 (N 2−1)

If we assume homogeneity of error variances, we can combine the two estimates, weighted by 
the degrees of freedom:
s2Y*X = ((N1 – 2)s2Y * X1 + (N2 – 2)s2Y * X2(N1 + N2 – 4)
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Chapter 8 – What is multiple regression?

Predicting and explaining (causal) relations can also be important when there are more than 
two variables, because a phenomenon can be predicted by multiple factors. It is wise to take 
into account as many factor as possible Using a multiple regression has three advantages 
compared to using Pearson correlations. First, it provides information about optimal predictions 
of Y by a combination of X variables. Second, it allows you to determine how well the prediction
is, by examining what the total contribution is of the set of predictors on the prediction. Finally, 
it allows you to determine the contribution of each predictor separately. It is important to note 
that the most optimal prediction is not per se a correct prediction. The last advantage can be 
used to determine more clearly a causal relation, or to determine the added value of a 
predictor. The formula for multiple regression is: b0 + b1X1 + b2X2 + … + bpXp.

Multiple correlations
The multiple correlation (R) has a value between 0 and 1, and hence can not be negative which
is different from the Pearson correlation. R2 refers to the proportion of explained variance of Y, 
in which a higher R2 indicates a better prediction. To correct for an overestimation of shared 
variance, one can use the adjusted R2 which is calculated as: 
1 – ((1-R2 )(N-1) / (N-p-1)). The predictors can thus have shared and unique variance. The 
unique variance can be displayed with the squared semi-partial correlations. Sometimes, there 
is suppression, that is when the unique contribution of a variables is larger after correction for 
another variable, than without correction. In other words, the real effect of X1 on Y was 
suppressed by the relations of X1 and Y with X2.

Partial and semi-partial correlation
The (semi-)partial correlation coefficients control for the effect of one or more other variables.

Partial correlation
The partial correlation r01.2 is the correlation between two variables with one or more 
variables removed from both X and Y. Imagine that we want to examine the relation between 
income and school achievement. We find a significant correlation between these two variables. 
However, this does not mean per se that success on school results in a higher income. It might 
also be explained by for example IQ: this causes both higher school achievements and a higher
income. The way to examine this, is by calculating the partial correlation between school 
achievement and income, after removing IQ from both variables.

For the partial correlation, we conduct a separate regression analysis for both variables with 
the to be controlled variables (in the example: income with IQ and school achievement with 
IQ). We take the residual of both analyses. This is the part of variance that is not explained by 
IQ. The correlation between these is the partial correlation.

The notation of the partial correlation coefficient is r01.23..p in which the correlated variables 
stand left from the dot, and the variables which are controlled stand right from the dot. 

The squared partial correlation is the proportion of explained variance.

Semi-partial correlation
The semi-partial correlation is the correlation between criterion Y and a controlled (partialled) 
predictor variable. While the partial correlation removes a variable from both the criterion and 
the predictor, here we only remove a variable from the predictor. The semi-partial correlation is
the correlation of Y with that part of X1 that is independent of X2 (the residual). The notation of
the semi-partial correlation is: r0(1.2) in which we remove variable 2 from predictor 1. For the 
correlation, it applies that: r20(1.2) = r20.12 – r202.
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Constants and regression weights
In general, the constant does not have an intrinsically value for psychologists and is therefore 
difficult to interpret. In addition, the interpretation of the regression weights can be difficult, 
because the measurement units are often arbitrary. This also makes it difficult to determine 
which predictor is most important. The latter problem can be resolved by using standardized 
regression weights. Standardized regression weights are noted with the sign β . This way, 
you are independent of measurement units and you can compare different predictors well. 
However, this has the negative consequence that you are dependent on the standard deviation
within samples, which is especially problematic if you want to compare different studies. 
Regression weights are always partial, which implies that they are only valid when all variables 
are included in the equation. Thus, when a correction is applied for the effects of all other 
variables. You can not examine the regression weights as something separately, but only within
the context.

Testing: from samples to population
So far, we only looked at descriptive statistics. However, we can also use inferential statistics to
say something about the population, from which the sample is drawn. To determine if the total 
contribution of all variables differs from zero, the F-test can be used. To determine the unique 
contribution of each predictor, a t-test can be conducted for each predictor. However, the more 
predictors (the more t-tests), the larger the chance on a type-I error. Therefore, the F-test is 
used as a kind of ‘gatekeeper’ to determine how many t-tests should be considered. If the F-
test is significant, t-tests are conducted. The F-test is calculated as: 
F = ((-p-1)R2)/p(1-R2) with N participants/observations and p predictors. There are p and
N-p-1 degrees of freedom involved. For the t-test, the standard error of the statistic is required. 
That is the variance of the statistic over repeated samples. The test is: t = (bj – bj*)/sbj with N-
p-1 degrees of freedom. To test the null hypothesis: bj* = 0, we use t = bj/sbj. 

Assumptions
Different assumptions have to be met:

1. The dependent variable should be interval scaled; predictors can be binary or interval 
scaled. Fortunately, multiple regression is fairly robust for small deviations of the 
interval level.

2. There is a linear relation between the predictors and the dependent variable. With a 
standard multiple regression, only linear relation can be identified (and for example no 
curvilinear relations). Deviations can also be determined with a residual plot.

3. The residuals have (a) a normal distribution (b) the same variance for all values of the 
linear combinations of predictors and (c) are independent of each other.

The assumption of normally distributed residuals is not very important to consider, because 
regression tests are robust against violations when the sample is large enough (N > 100). 
Often, the assumption is checked with a histogram. The assumption of heteroscedasticity (3b) 
should be checked properly, because regression is not robust against violations of this. A 
residual plot is used for this. The latter assumption (independence of mistakes, 3c) is very 
important, but difficult to check. Fortunately, most research designs meet this assumption. 
Checking assumptions is thus always dependent on the assessment of researchers and can 
thus be interpreted differently by people. 

Multicollinearity and outliers
Outliers are scores of three of more standard errors above or below the mean. It is important to
consider why the score of an individual is an outlier in the analysis. In addition, outliers can 
have a disproportional influence on the regression weights. If you decide to exclude outliers 
from the analysis, it is good practice to be very explicit about this in you report, and note why 
you chose to do so. 

Different problems may arise when correlations between dependent variables are strong. 
Sometimes, the regression does not provide any results. In other cases, the estimates are 
unreliable or it is difficult to interpret the results. To check for multicollinearity, you can check 
the tolerance of each predictor (it should exceed 0.10). Tolerance is calculated as 
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1 – R2j,in which Rj is the multiple correlation between variable j and all other predictor 
variables. Furthermore, you can check the VIF which can be calculated as 1/tolerance. This 
should be as low as possible, at least below 0.10. 

Mediating and moderating relations
In psychology, mediators and moderators are important: variables that play a role in the 
relation between two other variables.

Mediation
A mediator mediates the relation between two other variables. For example: the degree of self-
confidence is mediated by the amount of care received from parents and the way someone 
thinks about raising children (Caring parents result in a high confidence, which results in 
confidence to raise children).

Baron and Kenny wrote a lot about mediation. They mention three steps that have to be taken, 
in order to have a mediating effect. First, you have to show that the independent variable has a
significant relation with the mediator. Second, you have to show that there is a significant 
relation between the mediator and the dependent variable and between the independent and 
dependent variable. Finally, you have to demonstrate that, when the mediator and 
independent variable are used together to predict the dependent variable, the path between 
the independent and dependent variable (c) becomes less strong (preferably non-significant). 
But, when path ‘c’ does not disappear fully and remains significant, what then? One way is the 
Sobel test, with which we question whether the full mediating path of the independent variable
to the mediator to the dependent variable is significant. For this, we need the regression-
coefficients and standard errors of the two paths. The standard error of Beta (s β) is not given 
and should be calculated as: t = β/sβ , so s β = β/t.

Moderation
With moderating relations, the relation between independent and dependent variables changes
by a third (moderator) variable. For example: we examine the influence of faily stress-events 
on the number of symptoms of stress as indicated by the student. In addition, we find that 
when the student receives much social support, he shows less symptoms than someone who 
receives little social support. 
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Chapter 9 – What is logistic regression?

Logistic regression
This chapter is about logistic regression with a categorical dependent variable and quantitative 
or dichotomous independent variables. In a normal logistic regression, there is always a 
dependent variable (Y) and a set of independent variables (X’s) that can be dichotomous, 
quantitative or a combination of both. The dependent variable can be dichotomous (in a binary 
logistic regression) or categorical with multiple categories, which refers to polytomous or 
multinomial logistic regression. Binary logistic regression is a technique with which a regression
analysis is conducted for a dichotomous dependent variable. It provides a model for the chance
that an event occurs dependent on the values of the independent variable. For example, for 
predicting the response to a treatment for cancer, and the participants can ‘survive’ or ‘not 
survive’. The categorical independent variables can be both categorical and continuous. 

Assumptions logistic regression
 No multicollinearity (when more than two predictive variables correlate strongly).
 No errors in the specification. All irrelevant predictor variables are excluded.
 The independent variables have to measured on a numeric scale, either ratio or 

interval.
 The errors are independent of each other, so each observation is independent of other 

observations. 
 The dependent variable should be binary.
 Large sample size, preferably 30 times the number of estimated parameters. 

Coding binary variables
It is good practice to code the presence of a characteristic with 1 and the absence of that 
characteristic with 0. Variables that are examined, are labelled with 1 (response group, 
comparison group, purposive group), others with 0 (reference, basic or control group). The aim 
of a logistic regression is to predict to which group each individual belongs. This is obtained by 
calculating the chance that the individual belongs to category 1. An advantage of this coding is
that the mean of the dependent variable equals the proportion ones in the distribution. The 
mean is also equal to the chance to label a random person as 1 in a random sample.

 P = proportion ones.
 Q = proportion zero’s (1 – P)
 PQ = variance
 √PQ = standard deviation

There are more than two categories for the dependent variable with multinomial logistic 
regression. These are often coded as 1, 2, 3 and so on. The reference group should be 
identified and the other groups are used as target group in separate analyses. 

Graphical displaying logistic regression
The graphical display of a linear regression is a line, with which it is assumed that the 
proportions are constant. If x changes with a certain amount, y changes with a certain amount 
for all numbers. With logistic regression, the line is S-shaped. As a result, we can predict the 
chance on outcome 1, based on the value of the predictor. The first and last values of X hardly 
result in differences. Difference is present in the middle: the steeper the slope, the more 
difference is present. A logistic regression is used when the relation is not constant. In those 
cases, a logistic regression has a high predictive value. 

Logistic regression and odds
To be able to conduct a logistic regression, you first have to transform the data with the natural
log transformation. Below, you’ll find some core definitions:
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 Odds: for a dichotomous variable, the odds of group membership equal the probability 
of membership of that group divided by the probability of membership of another group.
Odds imply how likely it is that an observation belongs to a certain group, compared to 
another group.

 Chances: the chance to belong to one group divided by the chance not the belong to 
that group = P / (1 – P). It ranges from 0 till infinity.

 Odds ratio: another important concept is the odds ratio, which estimates the change in 
odds of group membership of a target group per one-unit increase of the predictor. The 
raw coefficient of the predictor variable indicates the change in the natural logarithm of 
the odds ratio, which is more difficult to interpret than the odds ratio. This raw 
coefficient does have a useful function: a positive raw coefficient implies that the 
predicted odds ratio increases when the predictor value increases and vice versa. For a 
raw coefficient of 0, the odds ratio is 1 (de odds are the same for each value of the 
predictor). 

We want to calculate what the chance is that an individual belongs to a certain group. To do so,
the probability of the event is transferred to chances. This is done by taking the natural log (ln).
As a result of this transformation, the data fit the S-curve to predict the group membership as 
good as possible. The logistic regression equation with v independent variables: ln[chances] = 
grouppred = a + b1X1 + b2X2 + … + bvXv in which grouppred refers to the predicted group 
membership. The b coefficients give the change in log chances for membership for a change of
one unit for the independent variables, controlled by the other predictors. The values of b 
(slope) and a (constant) are calculated by using the Maximum Likelihood Estimation (MLE), that
you can obtain after transforming the dependent variable in the logit. This is a method to 
change the data to obtain a linear function. The scores are transferred to chances, and then to 
log odds[llog(p/1-p)] with p the chance on improvement and 1 – p the chance on no 
improvement. The log odds are positive for odds larger than one and negative for odds smaller 
than one.

X is the score of the predictor. This can be either 0 or 1 for dichotomous variables or a range of 
numeric values for quantitative variables. It implies how likely it is that the observed value of 
the dependent variable can be predicted from the observed values of the independent 
variables.

The logistic function can be described as P = en / 1 + en. The logistic function has a range of 0 
to 1. If n is large and negative, the chance P is small. If n is large and positive, the chance P is 
large. When it applies that: n = 0, then e0 = 1. The corresponding chance is 1/1+2 = 0.5.

In the logistic function, n is replaced by a linear regression part: P1 = ea + b1x1 + … / 1 + ea 
+ b1x1 + b2x2 + … P1 is the chance of succeeding (success = 1), a is the constant under B 
(from the SPSS table), b1 and b2 are the corresponding regression coefficients, x1 andx2 are 
the corresponding predictors. The outcome is interpreted with the following rule: if P1 is equal 
than or larger than 0.5, the code is 1, if P1 is smaller than 0.5, the code is 0. The chance ratio 
can be calculated from the e and the b-coefficient: eb = chance ratio. 

Evaluation of the logistic model
2 Log Likelihood Test examines if the set of the independent variables can predict the 
dependent variables better than on chance alone. The likelihood values are often very small 
and therefore the natural log is presented in the output. This is calculated by multiplying the 
log likelihood value with -2, so that the significance can be tested with the X2 test. This the the 
-2LL (log likehood). It is tested whether at least one predictor has a significant contribution, 
different from zero. The higher the -2LL, the less well the model fits the data. The 0-model 
always fits the data least. 

To compare models with each other, the model without predictors is compared to the model 
with one parameter. The difference between the -2LL values indicates the change in X2 that is 
caused by adding a predictor. The difference can be examined with 1 df. In the Model 
Summary* (SPSS), the -2LL shows you the strength of the relation. The -2LL is included in the 
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formula of Hosmer and Lemeshow: RL2 = -2LLmodel 0 - -2LLmodel x / -2LL model0. You always 
compare the current model, for example model 1 or model 2, with the zero model. RL2 gives 
the proportion reduction in -2LL. For the null model, see the ‘Iteration history’ in SPSS. 

Classification analysis
The percentage accurate classified cases (PAC) is the number of correct classified cases divided
by the total number of classified cases. However, a different measure of accuracy can be used. 
Sensitivity is the percentage of the target group that is classified correctly. Specificity refers to 
the percentage of the other group that is classified correctly. The negative predictive value is 
the percentage that is correctly allocated to the other group by the model. If you want to 
conduct a good prediction for both groups, the mean predictive value over classes is very 
useful. Finally, it is important to take the generalizability of the results into account, for 
example by using a cross-validation sample.  
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Chapter 10 – How to conduct an analysis of variance 
(ANOVA)?

Analysis of variance (ANOVA) is a way to test hypotheses. By means of an ANOVA, the 
difference in means between two or more groups are examined. ANOVA has a main advantage 
compared to the traditional t-test. T-tests can only be conducted for comparing two groups. 
With an ANOVA, more than two groups can be compared. With an ANOVA, an independent 
variable or a quasi-independent variable (for example gender) are called a factor. The 
individual groups or treatment conditions that are part of the factor are called levels of the 
factor. Another advantage of ANOVA compared to t-tests is that the chance on type-I remains 
equal when comparing multiple hypothesis. Normally, there is risk on a type-I error of the 
selected alfa level (often 5%) for each individual comparison. With multiple conditions, there 
are multiple hypothesis tests required to compare all of them, and for each hypothesis test 
there is a chance on a type-I error. These result in an increased risk for the total experiment 
compared to the alpha level of an individual hypothesis test. The advantage of ANOVA is that 
all comparisons that are required to test all different hypotheses of one experiment, can be 
conducted at once. Consequently, the alpha value remains at the selected value (often 0.05). 

One-way ANOVA
The one-way ANOVA is an analysis of variance in which only one independent variable is 
examined. This is for example the case when a therapy for depression is offered to three 
different conditions. The structural model of the analysis of variance is: X = µ + τj + Єij. τj refers
to the difference of the group means and the large mean. Єij refers to the difference between 
the individual score and the group mean.

Assumptions ANOVA
Three assumptions have to be met to conduct an ANOVA:

1. Homogeneity of variances (homoscedasticity): each group that is used in the study has 
the same variance. You can check this with Levene’s test for equal variances. The F-test 
is robust for this assumption when the largest group and the smallest group do differ no 
more than a factor 1.5. 

2. Normal distribution of the error: the second assumption is that the scores are normally 
distributed for each condition or sample. Because deviation from the mean is also called
error, this assumption is also called ‘the normal distribution of the error’. The F-test is 
robust for non-normality if n is larger than or equal to 15 in each group.

3. Independent scores: the third assumption is that the observations or scores are 
independent. That implies that, if we know one observation, it does not provide any 
information about another observation. This may go wrong when the participants are 
not allocated randomly to a group.

The ANOVA is, in general, a quite robust test. That means that the assumptions may be 
violated to a certain extent, without having much consequences for the test. When the 
populations are fairly symmetrically distributed, and the largest variance is no more than four 
times as large as the smallest variance, the ANOVA is still valid. If the sample sizes differ 
substantially, the test is less robust against heterogeneity of variances. 

Hypotheses for ANOVA
Imagine, you examine three conditions. Then the null hypothesis is µ1 = µ2 = µ3. This means 
that the mean of all three conditions is the same. The alternative hypothesis is that at least two
population means differ from each other. The alternative hypothesis can also be more specific: 
µ1 ≠ µ2 ≠ µ3. That means that all three population means differ from each other. With ANOVA, 
the t-statistic is also called the F-ratio. F = variance between sample means / variances 
expected on coincidence (thus when the treatment does not have an effect). The F-ratio is thus
calculated over the variance, and not over the difference in sample means. A found F-value is 
the same as the squared t (F = t2). If the researcher for example conducts a t-test with two 
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independent samples, a difference of means may result. For example, the researcher finds a t-
value of 2.00. If the researcher would have used an ANOVA, the F-value would be 4.00. 

ANOVA
Imagine: you have three samples. The first step is to determine the total variance in the full 
data set. This can be obtained by combining all scores of the samples. Next, the total variance 
has to be subdivided into parts. The total variability can be subdivided into (1) between-groups
variance and (2) within-group variance. Between-groups variance occurs when one group 
systematically scores higher or lower than the other group(s). Within-group variance occurs 
when there is variance within each group. The aim of ANOVA is to discover whether differences 
between conditions are coincidence or not. If there is a coincidence phenomenon, there there is
no effect. In that case, differences between the scores are only present due to the fact that 
each sample consists of different individuals. If there is an effect, the difference between the 
groups should be larger than expected based on coincidence alone.

The F-ratio
After subdividing the total variance into two parts (between- and within-group variance) these 
parts have to be compared. This can be done with the F-ratio. For an ANOVA with independent 
samples, the F-ratio is de variance between the conditions divided by the variance within the 
conditions. If there is no effect, the difference between the treatments is the result of 
coincidence only. In that case, the F-ratio is 1. A large F-ratio implies that the difference 
between conditions is larger than expected based on coincidence alone. Wit ANOVA, the 
denominator of the F-ratio is called the error term. The error term provides an indication of the 
variance resulting from coincidence. 

Important symbols
1. The letter k refers to the number of conditions (the levels of the factor).
2. The letter n refers to the number of scores in each condition. The total number of scores

in the study is noted as N.
3. The total (∑X) for each condition is noted with the letter T.

Calculating with ANOVA
It is important to be able to calculate with the ANOVA and to understand the logic behind it. 
First, the formulas are introduced.

SSB = Sum of Squares Between 

SSB=∑
i=1

a

ni( ý i− ý)2

The number of people within one group times the squared difference between the group mean 
and the total mean. And summing that up over all groups.

SSW = Sum of Squares Within

SSW =∑
i=1

a

(ni−1)si
2

The number of people within a group -1 times the variance of that group, summing up over all 
groups.

SST=( n−1 ) s2

SST = Sum of Squares Total

The total number of people within the study -1 times the total variance.
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SSB + SSW = SST 

Degrees of freedom for ANOVA
Each degree of freedom is related to a specific SS-value. 

1. The number of degrees of freedom of the total (df total) is found by adding up the 
number of scores (of all conditions combined) minus 1 (df total = N – 1).

2. Next, the degrees of freedom for the within group variance have to be found (df within). 
This can be obtained by df within = ∑(n-1) = ∑df in each treatment. Another formula is 
N – k.

3. Finally, the degrees of freedom for the between-group variance have to be determined 
(df between). Df between = k – 1 (the number of conditions minus one). If the degrees 
of freedom of the within-group variance and the between-groups variance are added, 
you obtain exactly the degrees of freedom of the total.

Mean Squares
Next, the variance between and within conditions has to be calculated to find the F-ratio. With 
ANOVA, the term mean square (MS) is used instead of variance. The corresponding formula is 
the same as for the variance: MS = s2 = SS/df.

1. To find the MS between groups, use: MSbetween = s2between = SSbetween / 
dfbetween.

2. MSwithin = SSwithin / dfwithin
3. Next, the F-ratio can be found by dividing these values by each other: 

F = MSbetween / MSwithin

The F-distribution
The null hypothesis is correct, when the F-ratio is 1. Because the F-ratio is calculated by means 
of two variances, the F-value is always positive. Found F-values can be looked up in the F-table.
These are made such that first the degrees of freedom of the denominator and then the 
degrees of freedom of the numerator have to be looked up in the table. Then, the F-value can 
be found in that part of the table. The F-value lies between the two values that are found in the
table. The chance on these values are also mentioned in the table. For example, when there is 
a 1% chance for the obtained F-value, the null hypothesis can be rejected for an alfa of 5%. If 
there is chance of more than 5%, then the null hypothesis can not be rejected.

Example of a hypothesis test with ANOVA 
To conduct an analysis of variance, four steps have to be taken:

1. Formulate the null and alternative hypothesis. For example:
a. H0: µ1 = µ2 = µ3
b. H1: at least one of the population means differs from the others

2. Determine the degrees of freedom for the between- and within-group variance to 
determine the critical region for the F-ratio.

3. Conduct the following computations to find the F-ratio: calculate the MSbetween and 
MSwthin. Next, the F-ratio is: F = MSbetween / MSwithin.

4. Finally, check if the found F-value lies within the critical area. As with the t-test, the null 
hypothesis is rejected when the F-value falls within this critical area.

It is important to remember that the size of the sample may influence the results of the ANOVA.
The larger the sample size, the higher the chance to find evidence to reject the null hypothesis.
Such a problem can be avoided by an alternative statistical analysis: the Kruskal-Wallis test. 
With this test, the data are transferred to ordinal scale, and rank scores are used. The Kruskal-
Wallis test can also be used when the assumption of normality is violated. This test uses 
medians. 

Effect size
As with other tests, a significant result only is not sufficient. We also need to know if the results
are practically significant. For the F-ratio, we can use the r-family of effect sizes. For the 
ANOVA, the effect size refers how much variance of the dependent variable can be attributed 
to a treatment effect. Two of the most frequently used statistics are η²and ω²
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Eta-square η² 
SS_treatment is a measure for the degree of observation differences between the different 
conditions. SS_total is the measure for the differences in the complete data set. These two SS’s
divided by each other provide a percentage of variance for the treatment:

η2=
S S treatment

SS total

When the sum of squares is unknown, the eta-square can also be computed differently:

η² = 1 /( 1+(dferror / (F x dfbehandeling)))

η² assumes that the regression line crosses the mean of each group. However, this does not 
apply when the measures are biased. η² is the effect size with most bias.

Omega-square ω²
The omega-square is a good measure for the effect of balanced design (with equal n’s). This 
statistic provides less bias than η².

ω2=
SStreatment−(k−1 ) MSerror

SStotal+MSerror

Post-hoc tests
The main advantage of ANOVA (compared to t-tests) is that more than two conditions can be 
examined. If the null hypothesis is rejected by means of the F-ratio, it thus implies that there is 
a significant difference. But where is that significance difference? This can be examined with 
post-hoc tests. Post-hoc tests are always conducted after an ANOVA. The null hypothesis should
first be rejected and there have to be more than two groups in order to do meaningful post-hoc
tests.

With each post-hoc test, two conditions are compared, so pairs of comparisons are made. For 
example, with three conditions we can compare µ1 with µ2, µ2 with µ3 and µ1 with µ3. Each 
pair of comparisons has its own hypothesis test to examine which conditions differ. The 
disadvantage of post-hoc tests is the increase in type-I error. 

(Un)planned comparisons
Statisticians often distinguish between planned and unplanned comparisons.

 A planned comparison emerges when the researcher forms expectations that are 
important for the hypotheses of the study. A means of protection against increasing 
type-I error s to divide it by the number of planned comparisons. For example, if the 
researcher uses two planned comparisons, he should divide the alfa of 5% by two. Thus,
he uses an alfa of 2.5% for these comparisons.

 Unplanned comparisons refer to the situation when the researcher has no idea about 
the effect and conducts all kinds of post-hoc tests in order to find a significant effect. 
Here, too, the type-I error has to be minimized. This can be obtained by Tukey’s HSD 
test.

Tukey’s HSD test
Tukey’s HSD test is used frequently in psychological research. With this test, the minimal 
difference between conditions required to find a significant effect can be determined. This 
value is called the honestly significant difference (HSD). This value is used to compare two 
conditions. If the mean difference between these two conditions is larger than the predefined 
HSD, it can be concluded that there is a significant difference between the conditions. This 
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value can be computed as: HSD = q * √MSwithin / n. The value of q can be found in the 
corresponding table. To find q, you need to know the number of conditions (k) and the degrees 
of freedom of MSwithin. The n represents the number of scores in each condition, which has to 
be equal per condition. 

Using a-priori contrasts
With the multiple comparison procedure (MPC), group means are compared. A MPC is used 
when there are at least three groups. A contrast is a weighted combination of the means. Use 
for example the hypothesis: Does drinking alcohol cause a disturbed subjective perception of 
physical reality? The three groups are: not drinking alcohol, moderately drinking alcohol, and 
drinking a lot of alcohol. You determine a-priori contrasts before you start the study, based on 
your expectations. You can formulate different  hypotheses. A contrast is a combination of 
population means. The degrees of freedom are: DFE = N – I. The alternative hypothesis can be 
both one- and two-sided. The confidence interval of ψ is c ± t*Sec.

For example, one can ask: Does the no-drinking population scores higher than the drinking 
population (both moderately and a lot)? The following hypotheses can be formulated:

H0: µ1 = 0.5(µ2 + µ3).
Ha: µ1 > 0.5(µ2 + µ3)

The following contrasts can be made from these hypotheses:
H0: µ1 = 0.5(µ2 + µ3)
H0: µ1 – 0.5(µ2 + µ3) = 0
H0: µ1 – 0.5µ2 – 0.5µ3 = 0
Ψ = µ1 – 0.5µ2 – 0.5µ3

This is thus your final contrast. The contrast coefficients (ai’s) are: 1, -0.5, -0.5. These indeed 
add up to zero, as it is meant to. When there are multiple contrasts, it is required that these are
orthogonal. That means that the products of these contrast coefficients are zero if you add 
them. Imagine that contrast 1 has the following contrast coefficients: 1, 1, -2. Contrast 2 has 
the contrast coefficients: 1, -1, 0. These contrasts are orthogonal, because
(1*1) + (1*-1) + (-2*0) = 0
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Chapter 11 – Wat is the two-way ANOVA model?

ANOVA with multiple factors
In practice, behavior is often influenced by different interacting factors. To examine these 
complex effects, researchers often design studies with more than one independent variable. 
Thus, researcher manipulate two or more variables to observe the effect on behavior. A design 
with more than one factor is called a factorial design. An ANOVA with two factors combines 
multiple hypotheses. Therefore, multiple hypothesis tests have to be conducted. Again, the F-
ratio is used: differences between the sample means / differences expected by sampling errors 
or coincidence.

Example
You are interested in the degree to which light and temperature influence the speed of 
learning. You can create two conditions for light: no light and normal light. For temperature, you
use three conditions: 10, 20 and 30 degrees. These conditions of the two factors have to be 
combined. In total, there are six conditions. These are called cells, because the combined 
factors are presented in a matrix. Each cell refers to a combination of the two factors. For 
example, a condition with 20 degrees and no light, a condition with 30 degrees and light and so
on. The researcher is interested in three things:

1. The differences in means between the light levels.
2. The differences in means between the temperature levels.
3. The differences in means that emerge from a unique combination of specific 

temperature and specific light level. An example is that learning is stimulated by light 
and 20 degrees. 

Main effects
Factors are assigned a letter – the factor light for example receives the letter A and the factor 
temperature receives the letter B. The aim of an experiment is to check if these factors cause 
differences independent or combined. The mean of the condition ‘light’ is found by adding all 
mean scores of the three temperature levels combined with the condition light. In total, there 
are three row means that have to be used to calculate the mean. The mean of ‘no light’ is 
obtained by adding the means of the three temperature levels that are combined with the 
condition no light. Again, there are three row means to add. The difference between these two 
means is called the main effect of factor A. In addition, there are three columns means (for the 
three temperature levels). The mean of the condition ’10 degrees’ can be found by taking the 
mean of the condition ’10 degrees with light’ and ’10 degrees without light’. This can also be 
done for the other two temperature conditions. The difference between the means of these 
three conditions is called the main effect of factor B.

Hypotheses
For an ANOVA with two factors, it is examined whether the main effects of A and B are 
significant. Thus, two hypotheses arise:

1. For factor A, the null hypothesis is: µA1 = µA2. This hypothesis states that there is no 
significant difference between the condition ‘no light’ and the condition ‘light’. The 
alternative hypothesis states that there is a significant difference: µA1 ≠ µA2.

2. For factor B, there is a comparison between the three temperature levels. The null 
hypothesis is: µB1 = µB2 = µB3. The alternative hypothesis is that at least one mean 
differs from the others. 

Interaction
With a two-way ANOVA it is also possible to examine the unique effect of combinations of factor
levels. An interaction between two factors emerges when the differences in means between 
individual levels (cells) differs from expected based on the main effects only. For example, 
people who can study exceptionably well with light and a temperature of 10 degrees, while this
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effect does not exists when someone studies with light or a temperature of 10 degrees. For the 
interaction effect too, a hypothesis is formulated:

1. The null hypothesis states that there is no interaction between factor A and B. All 
differences in means between conditions can be explained by the main effects of the 
two factors.

2. The alternative hypothesis states that there is an interaction between the two factors. 
The differences in means between the conditions are not (only) caused by main effects 
of the two factors.

3. The corresponding F-ratio is: differences in means that can not be explained by the 
main effects / differences in means that are expected based on coincidence or error.

The interaction-effect can be observed in a graph. You can plot for example the three 
temperature levels on the X-axis (10, 20, 30 degrees) and the mean scores on the Y-axis. There
emerge two lines in the graph: one for mean temperature in combination with no light and one 
for mean temperature in combination with light. If there is no interaction, the lines are parallel. 
If the lines are not parallel, there is an interaction-effect. 

Testing
An ANOVA with two factors thus has three different hypotheses: the main effect of A, the main 
effect of B and the interaction effect of A and B. First, divide the total variance in between-
groups and within-group variance. Second, divide the between-groups variance into variance of
factor A, variance of factor B and variance of the interaction. Within each condition, 
participants are treated equally. Differences within a condition can thus not be caused by the 
effects of the condition. The within-group variance can therefore only be caused by coincidence
or error. Therefore, we need three types of within-group variance (for factor A, B and the 
interaction) and we need one within-group variance. Each of these variances is determined by 
a SS-value and a df-value. MS (mean square) = SS / df. 

Formulas
Calculating the F-value for the main effects of A and B is conducted similarly to the calculations
for a one-way ANOVA. The difference is that you calculate it for both effects. Next, you can 
compute it for the interaction between factor A and B: SSA*B  = SSA – SSB. The corresponding 
degrees of freedom are: dfA*B = dfbetween treatments – dfA – dfB. The MS for the interaction is: MSA*B = 
SSA*B / dfA*B. The three F-ratio’s are: FA = MSA / MSwithin treatments.
FB = MSB / MSwithin treatments. FA*B = MSA*B / MSwithin treatments.

FA = MSA / MSwithin treatments.

Effect size for ANOVA with two factors
For the ANOVA, we use the η2 (eta-squared) to calculate the proportion of explained variance.

1. For factor A: η2 = SSA / (SStotal – SSB – SSA*B). This is the same as 
SSA / (SSA + SSwithin treatments).

2. For factor B: η2 = SSB / (SStotal – SSA – SSA*B). This is the same as 
SSB / (SSB + SSwithin treatments)

3. For the interaction effect: η2 = SSA*B / (SStotal – SSA – SSB). This is the same as 
SSA*B / (SSA*B + SSwithin treatments).
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Table for a two-way ANOVA

Source Degrees of freedom SS MS F
A I – 1 SSA SSA / DFA MSA / MSE
B J – 1 SSB SSB / DFB MSB / MSE
AB (I – 1)

(J – 1)
SSAB SSAB / DFAB MSAB / MSE

Error N - IJ SSE SSE / DFE
Total N – 1 SST

Using more than two factors
It is possible to use more than two factors for a study. However, if more than three factors are 
used, the results become incomprehensible. It is therefore best to use no more than three 
factors. 
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Chapter 12 – What is ANCOVA?

ANCOVA is a combination of regression analysis and ANOVA and can be used to predict a 
dependent variable of interval level as accurate as possible based on a number of independent
variables. These independent variables are called factors (nominal) and covariates (interval). 
The combination of different types of predictors allows you to do a better prediction in different
kinds of situations. Adding covariates makes it possible to test the effects of factors better by 
(1) reduced error variance and (2) elimination of systematic bias. 

Example
Assume that we want to examine whether large of small calls are easier to control. We have 
three different car sizes, three different types of participants, with large differences in driving 
experience. We are not able to match participants on experience, so we assume that the mean 
driving experience is equal across groups. The dependent variable is the number of driving 
mistakes and the covariate is driving experience. We want to examine the achievement of 
participants, independent of their driving experience (thus based on the car size). By adding 
driving experience as covariate, we reduce the error.

The ANCOVA model
By subdividing the variance into within-group and between-groups, the F-test and other 
statistical data can be computed. For both ANOVA and ANCOVA, we try to optimally calculate 
the Y-score for all individuals in the groups. With ANOVA, we only know to which group an 
individual belongs, so the group mean is the estimated score. With ANCOVA we also know the 
individual score on the covariate, which allows us to make the prediction of Y more accurate. 
The ANOVA model can be decomposed into a (1) ANOVA component and a (2) regression 
component.

An ANOVA model has three components:
 The overall mean: Ý
 The deviation of the group from the overall mean: aj = Ýj -  Ý
 The error or deviation of each individual from the group mean: eij =  Ýij -  Ýj

This provides the following model:  Ýij =  Ý + aj + eij. The variance of Y is subdivided into a 
between-groups component (aj) and a within-group component (eij). In the ANCOVA model, a 
covariate is added to the formula:  

Ý ij =  Ý + a’j + bw (Cij – Ć ) + e’ij

With this formula, we try to predict the Yij score of each individual i from group j. The difference 
between ANOVA and ANCOVA is that with ANOVA we only, we only know to which group the 
individual belongs, while with ANCOVA we also know the individual score on the covariate. As a 
result, the prediction of ANCOVA is more accurate. The ANCOVA formula consists of a variance 
analysis component ( Ý + a’j) and a regression analysis component (bw (Cij – Ć )).

Pooled-within vs. total regression and correlation
The regression weight of the covariate is called bw, because it refers to the prediction of Y by C
within each of the groups (the pooled within-groups regression weight). The assumption that 
this weight is equal for all groups applies only to the population, not to the sample.

The F-test is ANCOVA
The F-test in ANCOVA is similar to the one in ANOVA, only with an adapted sum of squares and 
degrees of freedom, in which the overlap with the covariate is filtered. The total adapted sum 
of squares consists of a between-groups component and a within-group component: SST* = 
SSb* + SSW*. With the following formula, the total variance of the dependent variable can be 
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calculated: SST* = SST – rYC2SST = (1 – rYC2)SST. rYC2SST refers to the variance explained by 
the covariate.

The within-group variance is calculated as: SSW* = (1 – rYC(W)2r2YC(W))SSW. The between-
group variance can easily be calculated as: SSB* = SST* - SSW*. Before calculating the F-value,
the MS (mean squares) has to be calculated by dividing the sum of squares by the degrees of 
freedom: MSb* = SSb* / k-1 and MSW* = SSW* / N-k-c. Here, the k is the number of groups, N 
the sample size and c the number of covariates. The F-value is then: MSb* / MSW* with degrees
of freedom dfb = k -1 and dfw = N – k – c.

Adapted group means
If the groups differ on the covariate, we use adapted group means. These refer to the best 
estimate of the means if the groups do not differ on the covariate. The covariance-analysis 
examines whether the group means differ significantly. The adapted group mean can be 
obtained from: Ý j = Ý + a’j + bw (Ci – Ć ). Because : Ý j* = Ý + aj is the adapted group mean:  Ý 
j* = Ý j – bw(Ci - Ć). If this is displayed in a diagram, the adapted group mean is found on the 
intersection of the regression line of the group with the line C = Ć.

In general, it applies that the groups with a high mean on the covariate will have a lower mean 
on the dependent variable after adapting. Groups with a lower mean of the covariate will have 
a higher mean on the dependent variable after adapting. If the group with the highest score 
has the lowest score on the covariate, the differences on the dependent variable are thus 
larger, while if this group also has the highest score on the covariate, the differences will 
become smaller, disappear or switch. The above applies only for a positive bw. If the bw is 
negative, the reverse holds. 

Reducing error variance
Even if the groups do not differ on the covariate, the second aim of the ANCOVA (reducing error
variance) still applies. However, ANCOVA is not the perfect solution, because adding one or 
more covariates may result in a decreased power and a more difficult interpretation. There are 
three types of situations for which interpretations may become complex or irrelevant. First, the 
adapted means may not be equal to the research aim. Second,  extrapolation to reality may 
happen that actually does not exist, or does not mean anything. Third, a covariate may 
eliminate a part of the effect. 

Assumptions
Besides the general assumptions (normal distribution, homogeneity of variances and 
independent observations), the ANOVA has some additional assumptions about the covariate:

1. No error in the covariate. The effect of random error in the covariate is an 
underestimation of the relation with other variables. The most important consequence 
of error is a too small adaption in the computation of the adapted group means, which 
results in false conclusions. However, it is not always better not to include unreliable 
covariates: some an incomplete adaption is better than no adaption at all. 

2. Linear relation with the dependent variable. This assumption applies to pooled within-
group correlation between the covariate and the dependent variable. The relation 
between these variables can be displayed best with a straight line, not with a curve. 
Violation of this assumption results in an underestimation of the relation of the above 
variables, which results in incorrect adaption of the group means. This assumption 
refers to the population and can be checked with diagrams, not with a test for non-
linearity.

3. Parallelism. This assumption states that the regression weight bw is equal for all groups.
This assumption may have large implications for the results. The assumption of 
parallelism means implies there is no interaction between the covariate and the 
treatment. The use of a complex ANCOVA model with separate regression weight and 
adaptions is not an appropriate solution, because it makes the computation and 
interpretation more difficult. 
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Limitations of ANCOVA
The described experimental perspective is not the only possible perspective for the ANCOVA. In
addition, post-hoc procedures for the ANCOVA are not described here. As mentioned before, 
covariates should be used carefully, because they ‘cost’ a degree of freedom and may be 
difficult to interpret. In addition, there are limitations in studying existing groups. 
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Chapter 13 - What are MANOVA (multivariate analysis of 
variance) and DA (discriminant analysis)?

Sometimes, researcher want to examine the difference of conditions of different dependent 
variables at the same time. T-tests and ANOVA-analyses can be conducted if there is only one 
dependent variable. MANOVA (multivariate analysis of variance) is conducted to examine the 
effect of two or more conditions on two or more dependent variable. MANOVA is quite clear: we
have a number of dependent interval variables (p) that we want to predict from one or more 
nominal variables, divided over k groups. We compare means, but we examine multiple 
variables at the same time in mutual cohesion (multivariate). With MANOVA, you distinguish 
between 1 independent variable (one-way), 2 independent variables (two-way) and so on. The 
question is why not to conduct an ANOVA for both dependent variables. This has two reasons:

 Sometimes, the dependent variables are associated with each other. They may be part 
of a mutual construct. In that case, the researcher may think it is better to analyse the 
variables combined, instead of separately.

 The more tests are conducted, the larger the type-I error. The type-I error also increases 
if we use t-tests or ANOVA’s on multiple dependent variables. Because a MANOVA tests 
the differences of group means on multiple dependent variables at the same time, the 
alpha remains 5%.  

Conducting a MANOVA
The null hypothesis of a MANOVA is: the mean of group 1 on variable 1 equals the mean of 
group 2 on variable 1 equals the mean of group k on variable 1. If the null hypothesis is true, 
all groups have the same mean per variable. ‘There is no relation between the set of nominal 
variables and the set of interval variables’. For each dependent variable it applies that the 
population means are equal. The letter k refers to groups and p refers to the number of 
dependent variables. 

The null hypothesis can be tested with multivariate tests Willks, Pillai’s, Hotellings and Roys. 
They do not always provide the same answers. Which one is best, is difficult to determine. 
During a MANOVA analysis, you conduct a multivariate version of the F-test. If you reject the 
null hypothesis, you know that there is a difference for at least one dependent variable 
between the groups. However, that is not a lot of information. Follow-up analyses have to be 
conducted, for example the Protected F approach or the Descriptive Discriminant Analysis. 

A MANOVA followed up by a series of ANOVA’s
If you use a MANOVA to protect yourself against type-I error, you may use multiple univariate 
tests for each dependent variable after a significant result. This is also called protected F-
procedure (with an adapted alfa level by means of the Bonferroni correction: a/p, with p 
dependent variables, so that the alpha level is stricter). However, there is also critique about 
this method. The main arguments are (1) insufficient protection against type-I errors (2) not 
taking into account the underlying correlations between dependent variables. To deal with 
these limitations, a discriminant analysis is a better method. 

Assumptions protected F-approach
 Multivariate normality of the errors: each of the dependent variables has a normal 

distribution of the errors and is also normally distributed for all possible combinations of 
values for the other dependent variables. When n > 20 per cell, you do not have to 
worry about this assumption, because multivariate tests are fairly robust.

 Homogeneity of the variance-covariance matrices: equal variances and equal 
covariances in all groups. If the groups have approximately the same sample size 
(nmin / nmax < 1.5), you do not have to worry much about this assumption. You can 
also check this assumption with the Box M test. However, this test is extremely sensitive
and quickly significant. Only p-values below .001 can be taken seriously. The only thing 
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you can do, is report this clearly. You are less certain about the results of your study, 
what is especially important for determining whether results are significant or not.

 Independent errors: the error of one person does not tell anything about the error of the
other person (independent of to which group they belong). This can not be checked with
a test, but has to be determined based on the research design. 

Discriminant Analysis (DA)
With the discriminant analysis, we try to predict a set of interval variables as good as possible 
based on differences between groups. With DA, the focus can be on describing differences 
between groups (DDA; from the group perspective) or predicting to which group an individual 
belongs (PDA; from the individual perspective). PDA is the opposite of MANOVA, whereas DDA 
is more an extension of MANOVA. The difference between MANOVA and DDS is that the X and Y 
are switched. 

Discriminant function variates
By using discriminant function variates, we can transfer a set of correlated dependent variables
to a new set in which the differences between the groups are presented correctly, but the 
variables do not correlate anymore. Linear combinations are formed between the dependent 
variables with the use of two subscripts per weight. A discriminant analysis is presented as:

Dj = b1jY1 + b2jY2 + … + bpjYp

In which the p refers to the number of dependent variables and j to the variate. The weights for
the first discriminant function (D1) are chosen such that there is a maximal difference between 
the k groups. The same applies to the second and next discriminant function, but the functions 
can not correlate: they have to be orthogonal. The maximum number of discriminant functions 
is k-1 or p. You have to chose the minimum of these. After formulation the discriminant 
functions, you have to determine the position of the groups on the functions. For each group on
each variate, you replace the Y’s by the group means. 

Each variate has an eigenvalue (λi): SSb(i) / SSW(i). The proportion explained variance of the 
variate is displayed as: Ri1 = SSb(i)/SST(i) = SSB(i)/SSr(i) λi / (1 + λi). The maximum explained 
variance equals the number of dependent variables p. Thus, after summing up the squared 
correlation of all variates, you may obtain a value of ∑iRi2 higher than 1. By dividing this by the
number of dependent variables, you obtain the proportion of explained variance of the 
dependent variables. 

DA and PCA
DA and PCA differ in the optimization criterion that is used to select the weight. PCA tries to 
explan as much variance of Y as possible, without taking into account differences between 
group means. With DA, each discriminant function tries to explain as much differences between
the groups as possible. Using DA has two main advantages compared to using the original set 
of variables: (1) data reduction and (2) easier interpretation. If we use both advantages, we can
describe differences between groups (DDA). We can also try to discover underlying dimension, 
from which the group differences can be reduced.

Disadvantages of DDA
The main disadvantages of DDA are (1) the results are sometimes difficult to interpret (2) the 
results are more descriptive than confirmative. In addition, DDA is relatively less popular than 
MANOVA for researchers and journals (although this may be for wrong reasons). 
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Chapter 14 – What are Random- and Mixed Effects Analysis 
of Variance Models?

To minimize the type-I error in an ANOVA, we have to control the total alpha-level. But we also 
have to increase the power. The omnibus F-test can test that total. This test is also used in the 
ANOVA model. The one-way ANOVA has one independent variable with factors of two or more 
levels. 

In the random-effects model, the levels of the independent variable in the sample are 
randomly taken from all levels in the population. As a result, generalizations can be made to all
levels of the populations.

In the fixed-effects model, first, the levels of the independent variable are selected. Next, the 
subject are assigned randomly to levels of the independent variable. In some situations, the 
researcher can control these assignments, but in other situations he can not. The analysis does
not differ between these situations, but the interpretation of the results does differ.

With a fixed-model ANOVA, the treatment groups are selected carefully and remain equal when
the experiment is repeated. With a random model, the treatment groups are obtained 
randomly, and they vary per repeat.

Crossed design with random variable
Sometimes, the design has a fixed factor and a random factor. Assume that we want to test if 
people recognize capital letters quicker than small letters. The letter size is a fixed factor. By 
selecting a sample from the alphabet, we use five letters (A, G, D, K, W) in the experiment. The
variable ‘letters’ is a random factor. Because one of these factors is random, we will select 
different letters when repeating this experiment, and we will obtain different F-values. A 
random effect changes the effect of the test for a fixed effect (here: letter size). To show which 
effect random factors have, we have to examine the expected mean squares:

Fixed Random Mixed
Source A fixed / B fixed A random / B random A fixed / B random
A σ2e + nb2a σ2e + nσ2αβ + nbσ2a σ2e + nσ2αβ + nbθ2a
B σ2e + naθ2β σ2e + nσ2αβ + naσ2β σ2e + nσ2αβ
AB σ2e + nθ2αβ σ2e + nσ2αβ σ2e + nσ2αβ
Error σ2e σ2e σ2e

The F-test for the fixed and random variable model:
 For a random variable: E(F) = E (MSb/MSerror) = (σ2e + nbσ2β) / σ2e
 For the interaction effect: E(F) = E(MSAB/MSerror) = (σ2e + nσ2αβ) / σ2e
 For a fixed variable: E(F) = MSA/MSB = E(σ2e + nσ2αβ + nb σ2a) / (σ2e + nσ2αβ)

The model
In fixed effects models, there is one true effect size. The differences in effect size from different
studies result from random sampling error. In behavioral research, studies often switch multiple
variables. For example, one study will consists of more women in the study than the other, or 
different ages and so on. That implies that we are facing with random models instead of fixed 
models. When we compare effect sizes, the measurement per study consists of random error 
(as always), but there is also a difference n effect sizes caused by the presence of certain 
variables. We assume that the true effect are random and normally distributed around a certain
value. The model for the meta-analysis is then:

Yi = µ + τj + εij
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With µ s the overall mean effect, τ as the difference between the true effect in the study and 
the overall mean effect and ε as the sampling error. We are thus facing a variance by τ and a 
variance by ε.
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