Videogames and attentional capacity
Playing videogames can influence perceptual and motor skills. This happens because when a person is exposed to a different visual environment, the visual system automatically adapts. There is a lot of scientific research supporting this claim. However, perceptual learning tends to be specific to the trained task. Generalization to another task is hardly ever found.
This study will show that playing action videogames is indeed capable of altering a range of visual skills. The results from four experiments indicate changes in different aspects of visual attention between habitual videogame players and non-videogame players. In the last experiment, playing an action videogame by non-players improved their pre-training abilities.
Flanker compatibility effect
This experimental paradigm can determine whether or not playing videogames produces an overall increase in attentional capacity. The task measures the effect that a distractor has on the target task. The size of the distractor-effect shows how much is left of the attentional resources. Results indicate that the effect of the distractor is large when the target task is easy, but small when the target task is difficult. This may be because when the target task is easy, spare attentional resources are spent on the distractor and thus distract. But when the target task is difficult, there are no attentional resources left and the participant is thus not distracted and the distractor-effect is smaller.
Increased attentional capacity
Flanker compatibility effect
With this task they will examine if playing videogames can increase the capacity of the visual attentional system. If videogame players have more attentional capacity, they should run out of their attentional resources slower than non-videogame players as the task becomes more difficult.
The results indicate that videogame players have greater attentional capacity, because they showed a distractor effect that remained even when the target task was difficult.
Enumeration task
They were also confirmed by the enumeration task, which showed that playing videogames increases the number of visual items that can be remembered.
Useful field of view task
Because it was still unclear whether or not playing videogames also helps processing outside the training range, they performed some extra tests. The results indicate that videogame players have an enhanced allocation of spatial attention over the visual field, even at untrained locations.
Attentional blink task
The fourth experiment examined if the pressure to act quickly on several visual items changes the ability to process items over time. Particularly they examine whether or not there is a bottleneck-effect of attention that often happens in temporal processing. The results indicate that videogame training improves task-switching abilities and decreases the attentional blink. Players of videogames have reduced visual and amodal bottlenecks. This means that they have an increased ability to process information over time. It is however not clear why that is. It might be due to faster target processing or an increased ability to maintain several attentional windows in parallel.
Training experiment
The results may be explained by selection-effects. Meaning that they may have selected videogame players with inherently better attentional skills than non-videogame players. For this reason, the last experiment was set up. The training was successful, and all the participants who got trained in playing videogames improved on the experimental tasks. It shows that only a few hours of training can increase the capacity of visual attention, its spatial distribution and its temporal resolution.
Applied Cognitive Psychology
- Safety science and models of accident causation
- Human factors & adverse events
- Human errors and education
- Complexity theory
- Executive functions and frontal lobe tasks
- Dopamine and working memory
- Dopamine and task switching control
- Dopamine and inhibitory action control
- The neurological reaction to amphetamine
- Taking tyrosine supplements when experiencing stress or cognitive demands
- Tyrosine and working memory
- Tryptophan and emotional material
- Tryptophan and charity
- Improving fluid intelligence
- Brain training
- Videogames and attentional capacity
- Videogames and cognitive flexibility
- Videogames and perception
- Videogames and cognitive decline
- Videogames and visual skills
- Brain plasticity
- Videogame training and cognitive control
- Causal reasoning
- Accusations of sexual child abuse
- Information gathering
- Learning through videogames
- Cognitive training and traffic safety
- Computerized cognitive training programs
- A cognitive neuroscientific view on ageing
- Cognitive performance, lifestyle and aging
- Neurocognitive ageing
- A review on getting older, executive control, and attention
- Older brain functionality
- Human factors & professional diversity
- Improving road safety
- Intelligence and faster learning
- Mood and creativity
- Videogames and spatial cognition
- The effects of multispecies probiotics on sad mood reactivity
- Human working memory and cognitive control
Add new contribution