Samenvatting verplichte stof en collegeaantekeningen week 4

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


Clinically Oriented Anatomy,hoofdstuk 1: Thorax
 

Pagina 72-97, 106-127
De thorax is het gedeelte tussen de nek en de buik. De term ‘borstkas’ wordt vaak als synoniem gebruikt, maar is in werkelijkheid uitgebreider dan de thorax. Bij de borstkas zit de schoudergordel inbegrepen, waar de thorax puur de holte met organen is.
De thoraxholte en –wand hebben de vorm van een kegel, met het smalste gedeelte bovenaan en het breedste gedeelte ter hoogte van de overgang met het abdomen. De thoraxwand is net zo dik als de ribbenkast, echter bestaat de ribbenkast enkel uit bot en kraakbeen en de thoraxwand tevens uit spieren. Het sternum is één aanhechtingsplaats voor de ribben, posterior zitten ze vast aan de wervels. Het diafragma is de onderkant van de thorax en wordt diep geïnvagineerd (teruggeduwd) door de buikorganen.
In de thoraxholte liggen de primaire organen voor ademhaling en circulatie, namelijk het hart en de longen. De oesophagus (slokdarm) loopt dwars door de thorax om voedsel van de mond naar de maag te transporteren. De thoraxholte valt onder te verdelen in drie ruimtes:
Rechter- en linkerpulmonairholten: hierin bevinden zich de longen en de pleura. Deze holten beslaan het grootste gedeelte van de thoraxholte.
Het centrale mediastinum: dit compartiment ligt tussen de pulmonairholten en scheidt deze volledig van elkaar. Hierin bevinden zich het hart, de thoracale delen van grote vaten, het thoracale deel van de trachea, oesophagus, thymus en lymfeknopen.
De thoraxwand bestaat uit de ribbenkast, de spieren daartussen, de huid, subcutaan weefsel, spieren en fasciae. De functies zijn:
Beschermen van de vitale organen in de thoraxholte.
Weerstand tegen de negatieve interne druk door de elastische retractie kracht van de longen.
Aanhechting en support voor de bovenste ledematen.
Aanhechting voor veel spieren, bijvoorbeeld voor de buik, nek, rug en armen en de ademhalingsspieren.
Door de vorm is de thoraxwand erg stevig, maar omdat de ribben flexibel zijn en door het kraakbeen kunnen grote krachten worden opgevangen, zonder dat er breuken optreden. Door de organen die constant in beweging zijn, kan de inhoud van de thorax flink variëren. Daarom is deze structuur één van de meest dynamische van het lichaam.
Het skelet van de thorax vormt de osteocartilagineuze borstkas. Het skelet van de thorax bestaat uit 12 ribben en de bijbehorende costale kraakbeendelen, 12 thoracale wervels en de bijbehorende tussenwervelschijven, en het sternum.
Ribben (in het Latijn: costae) zijn kromme, platte botten. Ze zijn wonderbaarlijk licht en toch veerkrachtig. Ze bevatten een sponzig binnenste deel. Dit bestaat uit beenmerg en maakt bloedcellen aan. Er zijn 3 verschillende soorten ribben:
Echte (vertebrocostale) ribben: #1-7. Deze ribben zitten vast aan het sternum.
Valse (vertebrochondrale) ribben: #8-10. Deze ribben zitten vast aan het kraakbeen van de rib boven hen in plaats van direct aan het sternum.
Zwevende (vertebrale) ribben: #11-12. Het kraakbeen van deze ribben zit niet vast aan het sternum (direct of indirect). In plaats daarvan eindigen ze in de spieren van de buik.
Daarnaast kunnen de ribben ook verdeeld worden in typische ribben en atypische ribben. Kenmerken van typische ribben zijn:
De kop van de rib is wigvormig en heeft twee facetten, welke gescheiden zijn door een kruin. Eén facet sluit aan op de bijbehorende wervel, het andere facet sluit aan op de wervel erboven.
De nek van de rib verbindt de kop met het lichaam.
De tuberkel ligt tussen nek en lichaam in. Het gladde, articulaire deel sluit aan op de processus transversus van de wervel, en op het ruwe, non-articulaire deel hecht het costotransversale ligament aan.
Het corpus is dun, plat en krom. Waar de kromming van de ribben het grootst is en de ribben naar anterolateraal draaien, heet de costale hoek. Dit is ook het verste punt waar de rugspieren kunnen aanhechten. De binnenkant van de rib op deze plek heet de costale groeve.
Atypische ribben bevatten niet al deze kenmerken:
De 1e rib is het breedst, kortst en meest gekromd van alle zeven echte ribben. Hij heeft maar een facet omdat de kop niet aansluit op de wervel erboven. Daarnaast heeft de 1e rib twee groeven voor de subclaviale vaten, en een tuberkel waar de musculus scalenus anterior aanhecht.
De 2e rib bezit een extra tuberkel aan de bovenkant, waar de musculus serratus anterior aanhecht.
De 10e, 11e en 12e rib hebben net als de 1e rib maar één facet, daarnaast zijn de 11e en 12e rib heel kort en hebben nauwelijks een nek of tuberkel.
Het costale kraakbeen is een anterieure verlenging van de ribben, draagt bij aan de elasticiteit van de thoraxwand en zorgt voor een flexibele aanhechting van de ribben aan de anterieure zijde. Het kraakbeen van de 1e tot 7e rib neemt steeds toe, vanaf de 8e tot de 12e vermindert het weer. Het kraakbeen van de 8e, 9e en 10e rib vormt samen de ribbenboog. Het kraakbeen van de 11e en 12e ribben vormen een kap op de anterieure eindes van de ribben en reiken niet naar een ander bot of kraakbeen.
De intercostaalruimtes bevinden zich tussen de ribben. Ze zijn genummerd naar de rib die de superieure rand vormt (dus de ruimte tussen rib 1 en 2 heet intercostaalruimte 1). Hier liggen de intercostaalspieren, en twee sets (hoofd- en collaterale-) bloedvaten en zenuwen. De ruimte onder de 12e rib heet de subcostale ruimte.
Thoracale wervels T2 tot T9 zijn typische thoracale wervels: ze zijn onafhankelijk, hebben een lichaam, wervelboog, en zeven processen voor spier- en gewrichtsaanhechtingen. Typische thoracale wervels bevatten:
Bilaterale costale facetten op het lichaam van de wervel (demifacetten) waarop de koppen van de ribben aansluiten
Costale facetten op de processus transversus waarop de tuberkels van de ribben aansluiten
Lange, inferieur hellende processus spinosus
De bilaterale (superieure en inferieure) costale facetten (demifacetten) zijn bilateraal gepaard, en zijn geplaatst op de superieure en inferieure posterolaterale randen van de lichamen van de thoracale wervels. De facetten zijn gerangschikt in duo’s op twee wervels, aan weerszijde van een tussenwervelschijf. Zo’n duo van facetten vormt samen een houder voor de kop van één rib: de rib die correspondeert met de onderste wervel van het duo.
Er zijn 4 atypische costale wervels: T1, T10, T11 en T12. Deze wervels hebben geen demifacetten (en vormen dus geen duo voor de kop van één wervel) maar maken in hun eentje een houder voor de kop van een wervel. NB: T1 heeft superieur een heel facet, en inferieur een demifacet welke een duo vormt met het superieure facet van T2. T10, T11 en T12 hebben maar 2 facetten (hele facetten) in plaats van vier demifacetten (superior en inferior). Bij T10 zijn deze facetten half op het lichaam geplaatst, en half op het pedikel van de wervelboog. Bij T11 en T12 zijn ze geheel geplaatst op het pedikel.
De processus spinosus van de typische thoracale wervels zijn lang, en inferieur geheld zodat ze over de wervels eronder hellen. Ze beschermen de intervallen tussen de lamina van de wervels zodat scherpe objecten niet tussen de wervels kunnen schuiven en het ruggenmergkanaal niet kunnen binnendringen. Door de plaatsing van de facetten tussen de wervels kan de wervelkolom roteren.
Het sternum is het platte bot dat het midden van de anterior borstkas vormt. Het ligt direct boven de viscera van het mediastinum en dient tot bescherming van vooral het hart. Het sternum bestaat uit 3 delen, het manubrium, het corpus (lichaam) en het processus xiphoidus. De drie delen zijn gekoppeld door kraakbeengewrichten die ontstaan in midden- tot late volwassenheid.

Het manubrium is trapeziumvormig en is het breedst en dikst van de 3 botten van het sternum. De top van het manubrium kan gevoeld worden en heet de jugularisinkeping. Links en rechts hiervan zitten de inkepingen voor de claviculae; de sternoclaviculaire gewrichten. Links en rechts (inferiolateraal) naast de sternoclaviculaire gewrichten zitten de inkepingen voor de 1e ribben; de synchondrosen. In Figuur 1.6 B op pagina 78 is te zien dat het manubrium en het corpus niet geheel in hetzelfde vlak liggen. Het manubriosternale gewricht vormt daardoor de zogenoemde sternale hoek.
Het corpus is dunner, langer en minder breed dan het manubrium. Deze ligt ter hoogte van de 5e tot 9e thoracale wervel. Langs de laterale kant van het corpus liggen de inkepingen voor de 2e tot 6e rib. De inkeping voor de 7e rib bevindt zich op het processus xiphoidus. In jonge kinderen bestaat het corpus uit 4 sternebrae die aan elkaar groeien tot het 25e jaar. De lijnen waar de vier delen gefuseerd zijn, zijn te zien bij volwassenen.
De processus xiphoidus is het kleinste deel van het sternum. Het is dun en lang, en het inferieure eind ligt op de hoogte van wervel T10. De vorm van het processus xiphoidus verschilt per persoon. Het is een belangrijk herkenningspunt, omdat het sternoxiphoidale gewricht de inferieure begrenzing van de borstholte aantoont, en omdat het een marker is voor de superieure begrenzing van de lever, het diafragma, en de inferieure grens van het hart.
De reeks bewegingen die de gewrichten van de thoraxwand kunnen maken is maar gering. Toch kan elke verstoring voor problemen bij het ademhalen zorgen. Figuur 1.8 op pagina 80 toont de verschillende gewrichten van de borstkas.
Typische ribben articuleren posterieur met de wervelkolom op twee gewrichten; het gewricht van de kop van de rib en het costotransversale gewricht. De gewrichten van de koppen van de ribben worden gevormd door de koppen van de ribben, de superieure costale facetten van de bijbehorende wervels, de inferieure facetten van de wervels erboven en de tussenwervelschijven tussen deze twee wervels in. De kop van de rib zit vast aan de tussenwervelschijf met behulp van een intra-articulair ligament van de kop van de rib. Hierdoor wordt de ruimte in het gewricht verdeeld in twee synoviale ruimtes. De gewrichtskapsels van de kopgewrichten zijn anterieur het sterkst waar ze het ligamentum capitis costae radiatum (ligament dat rondom de rib loopt, vandaar de naam) vormen.
Sternocostale gewrichten hebben dunne gewrichtskapsels. De bewegingen van deze gewrichten worden gelimiteerd door laterale en posterieure ligamenten. Toch zorgen deze ligamenten voor bescherming van het gewricht. De anterieure en posterieure delen van het gewricht worden beschermd door het costotransversale gewricht respectievelijk het laterale costotransversale gewricht. Een superieur costotransversaal ligament verenigt de nek van de rib en de processus transversus die erboven ligt. Dit ligament kan verdeeld worden in een sterk, anterieur costotransversaal ligament, en een zwak, posterieur costotransversaal ligament. Tussen dit ligament en de bijbehorende wervel passeert de nervus spinalis en de posterieure tak van de intercostaal arterie.
De bewegingen van de thoraxwand zijn verantwoordelijk voor in- en expiratie. Tijdens passieve expiratie relaxeren het diafragma, de intercostaalspieren en de secundaire ademhalingspieren waardoor het interthoracale volume omhoog gaat. Groter volume betekent een hogere interthoracale druk. Daarnaast wordt de intra-abdominale druk verlaagd en worden de abdominale organen gedecomprimeerd. Hierdoor wordt het grootste deel van de lucht in de longen geëxpireerd.
Tijdens inspiratie neemt de hoogte van het centrale deel van de borstkas toe doordat het diafragma contraheert. Hierdoor worden de abdominale organen gecomprimeerd. Daarnaast vergroot de anteroposteriore dimensie van de borstkas als de intercostaalspieren contraheren. Als de ribben bewegen bij de costotransversaal gewrichten worden de anterieure einden van de ribben omhoog verplaatst. De transversale dimensie van de borstkas wordt ook vergroot als de intercostaalspieren contraheren.
Spieren van de thoraxwand
Axioappendiculaire spieren hechten aan de thorax (m. pectoralis major/minor, m. subclavius, m. serratus anterior en m. latissimus dorsi), net als de anterolaterale buikspieren en een paar rug- en nekspieren. Daarnaast helpen de m. pectoralis major en minor en de m. serratus anterior inferior bij respiratie door ribben te liften bij krachtige inademing. De m. scalenus helpt hierbij ook door het fixeren van de eerste twee ribben. De m. serratus posterior superior lift de bovenste vier ribben, waardoor de thorax breder wordt en het borstbeen omhoog komt. De serratus posterior inferior heeft voornamelijk een proprioceptieve functie.

De mm. levatores costarum lopen van de wervelkolom naar de ribben. Ze liften de ribben, maar hun functie is verder onduidelijk. De intercostale ruimtes bevatten van buiten naar binnen:
mm. intercostales externi (liften de ribben bij inspiratie)
mm. intercostales interni (behouden tonus bij expiratie)
mm. intercostales intimi (ondersteunen de mm. intercostales interni)
Subcostale spieren variëren in vorm en grootte en dienen voornamelijk als ondersteuning van de mm. intercostales interni en om de ribben omlaag te duwen. De m. transversus thoracalis heeft een zwakke functie bij de expiratie. Deze loopt met meerdere delen van de posterieure zijde van het borstbeen naar het ribkraakbeen. Hij loopt hierbij gelijk met de m. abdominalis transversus.
De intercostale spieren hebben voornamelijk een isotonische werking. Dat wil zeggen dat de spieren vooral bij een krachtige ademhaling actief moeten werken. Het diafragma is de belangrijkste spier wat betreft de inspiratie.
Fascie van de thoraxwand
Elke fascie draagt de naam van de onderliggende spier. Dit betekent dat het grootste deel van de voorkant van de thorax bedekt wordt door de fascia pectoralis. Onder de m. pectoralis minor bevindt zich nog een diepere fascie; fascia clavipectoralis. Het membraan dat de longen bedekt, heet fascia endothoracica.
Zenuwen van de thoraxwand
De thoraxwand wordt geïnnerveerd door de twaalf thoracale spinaalzenuwen. De anterieure rami van zenuwen T1 tot en met T11 vormen de intercostale zenuwen. De anterieure ramus van T12 vormt de subcostale zenuw. Typische intercostale zenuwen zijn de derde tot en met de zesde nervus intercostalis. Deze lopen initieel door de fascia endothoracica in de intercostale ruimte tussen de intercostaalspieren, maar gaan in de bocht van de rib in de sulcus costae liggen. Ze geven vervolgens bij het borstbeen tussen het costale kraakbeen vertakkingen af om de huid te innerveren. Naast vertakkingen voor de huid bestaan er ook:
rami communicantes; vertakkingen voor communicatie tussen het sympathische zenuwstelsel en doelorganen
collaterale vertakkingen; ter ondersteuning van de intercostaalspieren en pariëtale pleura
musculeuse vertakkingen; om de borstspieren te innerveren
Atypische kenmerken van intercostale zenuwen zijn als volgt:
De eerste nervus thoracicus vertakt naar voren in twee delen. De ene vertakking vormt, zoals de typische costale zenuwen, een intercostale zenuw en de andere vertakking sluit aan bij de plexus bracchialis die het bovenste lidmaat innerveert.
De eerste en tweede nervus intercostalis lopen over de ribben in plaats van in de sulcus costae.
De eerste nervus intercostalis heeft geen vertakkingen naar de huid
De tweede nervus intercostalis sluit aan bij een grote zenuw voor de huid, de nervus intercostobrachialis
De zevende tot en met de elfde nervus costalis geven een vertakking af naar de huid en innerveren verder de huid en spieren van de buik.

Vasculatuur van de thoraxwand
De aanvoer van bloed voor de thoraxwand komt voornamelijk van de aorta thoracica, arteria subclavia en arteria axillaris. De intercostale ruimtes bevatten elk een grote arteria intercostalis posterior en twee kleine arteriae intercostales anteriores. Daarnaast lopen er nog twee arteriae thoracicae internae.
De eerste en tweede arteria intercostalis posterior komen uit arteriae intercostales superiores. De derde tot en met de elfde daarentegen komen uit de aorta thoracica. Posterieure vertakkingen voeden het ruggenmerg, de wervelkolom, rugspieren en huid. Anterieur vormen deze arteriën anastomosen met de arteriae intercostales anteriores.
De arteriae thoracicae internae ontspringen uit de arteria subclavia. Deze werden vroeger de arteriae mammariae genoemd. De arteriën lopen naar caudaal, waar ze eindigen in vertakkingen naar de arteria epigastricus superior en arteriae musculophrenicae. Ook ontspringen hieruit de arteriae intercostales anteriores.
De arteriae intercostales anteriores voeden de anterieure delen van de intercostale ruimtes, musculi pectorales, borsten en huid. De eerste twee arteriae ontspringen uit de arteria axillaris en de derde tot en met de negende arterie uit de arteriae musculophrenicae.  
De afvoer van bloed gaat via de intercostale venen, die net als de arteriën en zenuwen in de sulcus costae liggen. Aan beide kanten bevinden zich elf venae intercostales posteriores en één vena subcostalis. De posterieure venen komen uit in anastomosen met de anterieure venen. Deze lopen aan de rechterkant van het lichaam vervolgens via de vena azygos naar de vena cava superior. Echter aan de linkerkant eindigen de venen in de vena brachiocephalicus.
Allebei de pulmonaire holtes zijn omgeven door pleura. Deze pleura moet gezien worden als twee verschillende lagen, de viscerale en de pariëtale wand. Hier zijn de longen door omgeven, maar hangen er wel buiten. Tussen de twee lagen zit een dun laagje sereuze pleurale vloeistof. Dit zorgt ervoor dat de lagen pleura makkelijk over elkaar kunnen bewegen tijdens respiratie.
De viscerale pleura zit vastgeplakt aan de oppervlakte van de long en de hilus (de ‘poort’ naar de longen). Zo kan de long vrij bewegen tegen de pariëtale pleura aan. Pariëtale pleura bestaat uit een costaal, mediastinaal en diafragmatisch deel. Het cervicale deel van de pleura wordt cupula pleurae genoemd en is versterkt met een fibreuze verlenging van de fascia endothoracica (suprapleuraal membraan).
Afhankelijk van de plaats omvat de recessus costodiaphragmaticus of de recessus costomediastinalis de potentiële ruimte voor een long die niet is uitgezet.
Longen zijn licht, zacht en sponzig en nemen de volledige pulmonaalholte in beslag. Ze zijn elastisch en zijn van elkaar gescheiden door het mediastinum. Beide longen hebben een apex, basis, twee of drie lobben (gescheiden door spleten), drie oppervlaktes en drie afgrenzingen. De rechterlong heeft drie lobben die zijn afgebakend door een fissura major en fissura minor. Het diafragma ligt hier hoger dan bij de linkerlong. De linkerlong heeft een fissura obliqua die onderscheid maakt tussen de twee lobben. Ook heeft deze long een instulping waar het hart ligt. Hierdoor vormt zich vaak een uitstulping die lingula wordt genoemd.
De costale oppervlakte van de long is groot en convex. De diafragmatische oppervlakte is concaaf en vormt de basis van de long. De mediastinale oppervlakte is ook concaaf, omdat het grenst aan het mediastinum met het pericardium en het hart. Hier bevindt zich ook de hilus van de long. De hilus bevat de bronchi, arteriën, venen, zenuwen en lymfevaten. Om de gehele hilus zit het pulmonaire ligament.
De trachea wordt verstevigd met open ringen van hyalien kraakbeen. Deze loopt door in de tracheobracheale boom die uiteenloopt in een bifurcatie. Deze hoofdbronchiën vertakken verder in lobaire bronchiën tot segmentale bronchiën die weer uitlopen in bronchopulmonaire segmenten. Zo’n segment is de verste vertakking van de bronchiën. Er zijn er een stuk of 18 tot 20, ze zijn piramidaal van vorm en worden afgescheiden door bindweefsel.
De segmenten bevatten 20 tot 25 generaties van geleidende bronchioli die uiteindelijk terminaal eindigen. Deze bevatten geen kraakbeen of klieren. Hierna komen een aantal generaties respiratoire bronchioli, die zich karakteriseren door de aanwezigheid van alveoli. In de alveoli vindt gasuitwisseling plaats.
Vasculatuur van de longen
Elke long heeft een pulmonaalarterie en een pulmonaalvene. De pulmonaalarteriën ontspringen uit de truncus pulmonalis ter hoogte van de angulus sterni. Deze bevatten zuurstofarm bloed. Elke arterie vertakt zich verder naar lobaire en segmentale arteries. Deze lopen parallel aan de bijbehorende bronchus. Vanuit de capillairen komen steeds meer zuurstofrijke venen samen en lopen onafhankelijk van de arteriën en bronchi terug naar het hart.
De arteriae brochiales voeren voedingsstoffen aan naar het ondersteunende weefsel van de longen. De twee linker arteriën komen altijd uit de aorta descendens thoracica. De rechterarterie komt soms ook uit de aorta, maar komt meestal indirect van intercostale arteriën of vanuit een gemeenschappelijke stam met de rechter bronchiaalarterie. Bronchiale venen draineren alleen de delen die zijn voorzien van bloed door bronchiale arteriën.
Zenuwen van de longen
Parasympatische vezels van de nervus vagus (CN X) en sympathische vezels bevinden zich in plexussen bij de wortels van de longen. De parasympatische vezels werken als bronchoconstrictie, vasodilatatie en secretomotorisch. Het spierige gedeelte van het diafragma wordt geïnnerveerd door de intercostale zenuwen. Het midden wordt daarentegen geïnnerveerd door de nervus phrenicus.
 

Clinically Oriented Anatomy, hoofdstuk 8: Neck

Pagina 1022-1032
De nek verbindt het hoofd met de romp en bovenste extremiteiten en fungeert als een passage voor structuren. Er zitten veel verschillende soorten weefsels dicht op elkaar, om de hals zo flexibel mogelijk te houden. Het skelet van de nek wordt gevormd door de cervicale wervels, het hyoïd, het manubrium en de claviculae. De gestapelde wervellichamen ondersteunen het hoofd. De intervertebrale gewrichten zorgen juist voor flexibiliteit.
Het hyoïd ligt anterieur in de nek, ter hoogte van C3. Het heeft geen verbindingen met andere botten, maar zit door middel van kraakbeen vast. De belangrijkste functie is het vormen van een aanhechtingspunt voor spieren en het openhouden van de trachea.
De structuren in de nek worden omgeven door een laag van subcutaan weefsel. Deze fascies bepalen ook in welke richting een infectie zich kan verspreiden. Fascies bestaan uit bindweefsel met vetcellen. Ze bevatten huidzenuwen, bloed en lymfevaten.
De platysma is een brede, dunne laag spierweefsel gelegen in het onderhuidse weefsel van de nek. Hij bedekt het anterolaterale gedeelte. Er bestaat veel anatomische variatie in de continuïteit en dikte van deze spier.
De diepere fascia bestaat uit een investerende, een pretracheale en een prevertebrale laag. Deze lagen ondersteunen de viscera, spieren, bloedvaten en diepere lymfeknopen. Ook zorgen ze voor een soepele beweging van alle structuren in de nek.
De m. sternocleidomastoïdeus (SCM) en de m. trapezius ontstaan uit dezelfde embryonale structuur, worden beiden geïnnerveerd door de n. accessorius en worden allebei omgeven door de investerende laag van de diepere fascia. Omdat ze oppervlakkig liggen en makkelijk palpabel zijn worden ze gebruikt als afscheiding tussen de verschillende halsregio’s.
De laterale cervicale regio wordt begrensd door de SCM, trapezius en het middelste deel van de clavicula. Hij wordt onderverdeeld in kleinere gebieden door de diagonale inferieure buik van de m. omohyoïdeus. In dit gebied bevinden zich veel belangrijke zenuwvezels en –plexi.
De anterieure cervicale regio zit tussen het lichaam van de mandibula, tot aan de SCM. Ook deze regio wordt onderverdeeld in kleinere gebieden door de m. digastricus, m. omohyoïdeus en het hyoïd.
De prevertebrale spieren, die diep in de prevertebrale fascia liggen, worden door de cervicale en brachiale plexi en subclaviale arteriën verdeeld in anterieure en laterale spieren. De anterieure spieren zorgen voor flexie van hoofd en nek. De laterale spieren zorgen voor laterale flexie van de nek en dragen bij aan rotatie.
Ondanks dat ze uit verschillende embryonale structuren zijn ontstaan, zijn de glandula thyroïdea en parathyroïdea nauw verwant. De thyroïd heeft een H-vorm, met linker- en rechter lobben aan elkaar vastgehouden door een dunne, centrale isthmus. Hij vouwt om de anterieure en laterale aspecten van de trachea heen, ter hoogte van de tweede tot vierde tracheale ring. De isthmus ligt anterieur van de tweede en derde ring. Meestal zijn er twee superieure en twee inferieure parathyroïden die in het kapsel van het thyroïd liggen. Deze klieren hebben een grote bloedvoorziening, essentieel voor de endocriene functie, welke mogelijk gemaakt wordt door 4 anastomosen tussen de thyroïde arteriën. De klieren reageren meer op hormonale regulatie dan door zenuwprikkels.
De larynx is het superieure gedeelte van de lagere luchtwegen. Deze verandert de uitgang in vorm om klanken te kunnen produceren. Samen met het diafragma reguleert het de intra-abdominale druk en de kracht waarmee de lucht naar buiten komt. De larynx bestaat uit een skelet van kraakbeen en gewrichten die ondersteund worden door pezen, banden, membranen en spieren. Alle laryngeale spieren, behalve de m. cricoarytenoïdeus posterior, helpen bij het sluiten van de rima glottidis. Het actief openhouden van de rima is alleen nodig bij diepe inademing. Extrinsieke spieren kunnen ook de hele larynx bewegen en van plek laten veranderen, zoals bij slikken.
De farynx wordt meestal gezien als onderdeel van de tractus digestivus, maar speelt ook een rol bij de tractus respiratorius. Het superieure deel, de nasopharynx, is zelfs uitsluitend respiratoir. De oropharynx en hypopharynx spelen een rol bij beide tracti. Het zachte gehemelte dient als klep om de naso- en oropharynx af te kunnen sluiten tijdens het slikken. De farynx wordt geïnnerveerd door de faryngeale plexus, waar de sensorische vezels afkomstig zijn van de n. glossopharyngeus en de motorische vezels van de n. vagus (CN X).
 

Clinical Medicine, hoofdstuk 15: Respiratory Disease

Pagina 817
Bij COPD-patiënten kan door middel van oefeningen en training de algehele gezondheid verbeteren. Ademhalingsoefeningen zijn daarentegen minder nuttig. De kwaliteit van leven kan het beste worden verbeterd door een combinatie van fysiotherapie, lichaamsbeweging en educatie. Dit zorgt er echter niet voor dat de longfunctie of levensverwachting verbetert. Eventuele zuurstoftherapie kan de zuurstofdruk optimaliseren.


Histology, hoofdstuk 19: Respiratory System

Pagina 670-687
De farynx verbindt de neus- en mondholtes met de larynx en oesophagus. Hij is verdeeld in de naso- en oropharynx. De nasopharynx staat via de buizen van Eustachius in verbinding met de oren. Er komt lucht en voedsel doorheen. De wanden van de pharynx bevatten veel lymfeknopen, de grootste concentratie bevindt zich in de pharyngeale amandel. Tussen de oropharynx en de trachea zit de larynx. Deze bestaat uit hyaliene- en elastische kraakbeenplaten. De larynx laat lucht door en zorgt voor de productie van geluid.
De stembanden zijn twee slijmvliesvouwen. Ze geven de opening van de larynx aan, de rima glottidis, en worden door ligament en spier, de musculus vocalis, versterkt. De mate waarin de vouwen geopend worden heeft invloed op het geluid dat geproduceerd wordt. Andere delen van het ademhalingssysteem, zoals delen van de farynx en mond, passen de klank aan. Intrinsieke larynxspieren zorgen voor spanning en het openen en sluiten van de glottidis. De extrinsieke spieren zorgen voor de bewegingen in de larynx bij het slikken. Boven de stembanden ligt een ventrikel, hierin liggen de ventrikelvouwen of valse stembanden. Zij zijn niet belangrijk voor het creëren van geluid, maar wel voor de resonantie. De stembanden zijn bedekt met meerlagig plaveiselepitheel, net als het grootste gedeelte van de epiglottis. Dit beschermt het slijmvlies tegen de luchtstroom. Het grootste deel van het ademhalingsstelsel, waaronder de rest van de larynx, is bedekt met pseudomeerlagig cilinderepitheel.
De trachea heeft een diameter van 2,5 cm en een lengte van 10 cm. Het geleidt de lucht van de larynx naar de twee hoofdbronchi. De trachea wordt door kraakbeenringen opengehouden. De wand van de trachea bestaat uit mucosa (pseudomeerlagig cilinderepitheel en een elastische, vezelrijke lamina propria), submucosa (bindweefsel), kraakbeen en adventitia (bindweefsel). De C-vormige kraakbeenringen zijn kenmerkend voor de trachea. In de openingen, die zich aan de kant van de oesophagus bevinden, zit elastisch spierweefsel.
Het epitheel van de trachea bestaat vooral uit cilindrisch epitheel, maar er bevinden zich ook goblet-, basaal-, borstelcellen en granulocyten. De cilindercellen hebben cilia, die een zwiepende beweging maken. Gobletcellen maken slijm en hebben geen cilia. Borstelcellen zijn cilindercellen die in verbinding staan met een zenuw. De granulocyten bevinden zich in de long omdat de long uit de darm ontstaat. Ze zijn moeilijk te herkennen, soms zijn de granules zichtbaar. Sommige granulocyten maken hormonen. Basaalcellen zorgen voor de productie van nieuwe cellen en liggen in een rij op de lamina propria.
Het epitheel van de trachea wordt gekenmerkt door een dik (25 tot 40 micrometer) basaalmembraan, bestaande uit collageenvezels. Bij chronische beschadiging, zoals bij chronische bronchitis en roken, is dit vaak dikker. Ook vindt er dan metaplasie plaats: het cilinderepitheel verandert in plaveiselepitheel. Hierdoor maken de cilia geen synchrone beweging meer. Om dit te compenseren gaat de patiënt hoesten, waardoor er nog meer cilindercellen kapot gaan. Veel soorten kanker worden door metaplasie veroorzaakt.
De lamina propria bestaat uit losmazig bindweefsel en bevat veel lymfocyten. Het lymfeweefsel in het ademhalingsstelsel heet BALT (bronchus-associated lymphatic tissue). Tussen de collageenvezels liggen veel elastische vezels, aan het einde van de lamina propria bevinden zich zoveel elastische vezels dat we van een elastisch membraan spreken. Dit is de overgang van mucosa naar submucosa. De submucosa bestaat uit losmazig bindweefsel, het lijkt hierin op de lamina propria. Het bevat veel lymfecellen en de bloed- en lymfevaten van de trachea. Ook bevinden zich slijmklieren in de submucosa, deze hebben enkellagig kubusepitheel. In de opening van de kraakbeenring bevinden zich de meeste slijmklieren, deze liggen daar ook in de adventitia.
De kraakbeenringen scheiden de submucosa van de adventitia. Ze zorgen voor flexibiliteit en zorgen dat de trachea niet inklapt. Het hyaliene kraakbeen wordt op den duur vervangen door bot, waardoor de trachea minder flexibel wordt. De adventitia ligt perifeer van de spieren en kraakbeenringen. Het verbindt de trachea met de omliggende structuren in de nek en het mediastinum. De grootste zenuwen en bloed- en lymfevaten van de trachea liggen in de adventitia.
De trachea splitst in de twee hoofdbronchi. De rechter is korter en breder dan de linker. De hoofdbronchi splitsen beide in lobaire bronchi. De linkerlong heeft twee lobaire bronchi en de rechterlong heeft er drie. Er ontspringen acht of negen segmentale bronchi uit de linker lobaire bronchi, en tien segmentale bronchi uit de rechter lobaire bronchi. De segmenten staan in principe niet in verbinding met elkaar. De bronchi hebben dezelfde histologische opbouw als de trachea, alleen zijn de kraakbeenringen intrapulmonair minder regelmatig. Intrapulmonair is er ook meer glad spierweefsel, dit vormt nu een complete ring.
De wand van een bronchus bestaat dus uit mucosa (vergelijkbaar met dat van de trachea), muscularis (een laag glad spierweefsel), submucosa (losmazig bindweefsel met klieren en vetcellen), kraakbeen en adventitia (straf bindweefsel met onder andere bloedvaten en parenchym van de long). Door de splitsingen worden de bronchi steeds kleiner en op een gegeven punt zijn er geen kraakbeenringen meer. Op dat punt wordt ook het gladde spierweefsel wat onregelmatiger. We spreken dan van bronchioli.
De segmenten zijn verdeeld in lobules, elke lobule heeft zijn eigen bronchiolus. Deze hebben pseudomeerlaging cilinder epitheel dat bij de dunnere bronchioli enkellagig wordt. In de grote bronchioli bevinden zich gobletcellen, in de terminale niet meer. De terminale brionchioli zijn de kleinste geleidende eenheden. Ze bevatten claracellen, borstelcellen en granulocyten.
Om het epitheel bevindt zich een laagje bindweefsel met daaromheen een dunne laag glad spierweesel. Claracellen zijn ronde cellen die eiwitten secreteren. Deze eiwitten voorkomen dat het lumen dichtklapt en dichtblijft. Bij COPD zijn onder andere de claracellen aangetast. De respiratoire bronchioli zijn de eerste onderdelen van het ademhalingsstelsel waar gaswisseling plaatsvindt. Het epitheel bestaat uit cilindrische cellen en claracellen. De gaswisseling vindt plaats in uitstulpingen van het lumen: de alveoli.
Alveoli zijn de kleinste eenheden van de long. Ze zijn omgeven door een netwerk van capillairen. Elke long bevat 150-250 miljoen alveoli, de totale oppervlakte is ongeveer 75 m2. De diameter is ongeveer 0,2 millimeter. Alveolaire kanalen hebben alveoli als wanden, met glad spierweefsel tussen de alveoli in. Alveolaire zakjes zijn ruimtes met alveoli eromheen, de alveoli monden in de ruimte uit. Het epitheel van de alveoli met het dunne, tussenliggende laagje bindweefsel heet het alveolaire septum. Het epitheel bestaat uit type I en II alveolaire cellen en borstelcellen. Type I cellen (type I pneumocyten) beslaan 95% van de oppervlakte van de alveolus, en 40% van de gehele alveolus. Ze staan via junctions in verbinding en dragen daarmee bij aan de lucht-bloedbarrière. Type I cellen kunnen niet delen. Type II cellen zijn secretoir.  Ze beslaan 60% van de alveoli maar door hun vorm slechts 5% van het oppervlak. Ze bevatten lamelaire lichaampjes. Type II cellen produceren surfactant en vormen nieuwe type I cellen. Bij longaandoeningen zorgen type II cellen voor het herstel.
Surfactant vormt een laag om de alveoli die de oppervlaktespanning vermindert. Hierbij is de phospholipide DPPC betrokken. Pas vanaf de 35e week van de zwangerschap wordt surfactant in grote hoeveelheden aangemaakt. Zonder surfactant klappen de alveoli dicht, dit is het geval bij RDS (Respiratory Distress Syndrome). Surfactant zorgt voor de aanleg van de surfactantlaag en zorgt voor de immuunreacties van de alveoli. Voor de werking van surfactans zijn naast phospholipiden ook hydrofobische eiwitten nodig. Dit zijn surfactant A, B, C en D. Surfactant-A zorgt voor homeostase en de immuunreacties. Surfactant-B zorgt voor de organisatie van de lamellaire lichaampjes en de surfactantlaag. Hierdoor is adsorptie en spreiding op het oppervlak mogelijk. Surfactant-C komt weinig voor en helpt bij de organisatie van de laag. Surfactant-D helpt bij het afweersysteem.
Het alveolaire septum vormt de lucht-bloedbarrière. Dit is de laag waar de gassen doorheen diffusseren. Bindweefsel en vezels zorgen dat er dikke en dunne gedeeltes van de barrière zijn. Het dunste deel van de barrière bestaat uit een type I epitheelcel, gefuseerde lamina van een alveolus en een capillair en een endotheelcel. In het dikke deel bevindt zich soms weefselvloeistof, daar is diffussie moeilijker dan in het dunne deel. Alveolaire macrofagen zitten zowel in het bindweefsel als in het gedeelte van de alveolus waar lucht zit. Ze verwijderen stof en verkeerde rode bloedcellen. Zij verlaten het lichaam via de farynx of blijven in het bindweefsel zitten. In de interalveolaire septa zitten gaten, de alveolaire poriën, die luchtstroom tussen de alveoli mogelijk maken. Deze zorgen voor een goede ventilatie bij obstructies.
Cystic fibrosis (CF) is een autosomale recessieve ziekte. Hierbij wordt een Cl--kanaal aangetast waardoor Cl- de cel niet uitkan en de viscositeit van de producten van de exocriene cellen hoger wordt. Er wordt namelijk meer water geresorbeerd, vanwege een verandering in osmolaliteit. Door de verhoogde viscositeit werkt de zwiepende beweging naar boven minder goed en komen er obstructies in de bronchioli. Daarbij zorgt het vocht in de longen voor vele infectes.
Bij longemfyseem zijn de wanden van de alveoli aangetast door chronische obstructies. Hierdoor zijn de alveoli met elkaar verbonden en is er een vergroting van de luchtgevulde ruimtes. Hierdoor is het moeilijker om uit te ademen. De meest voorkomende oorzaak is roken. Door α1-antitrypsine deficiëntie worden de wanden van alveoli ook aangetast, wat tot longemfyseem en/of COPD lijdt.
In de longen bevindt zich de pulmonaire en de bronchiale circulatie. De pulmonaire circulatie komt van het rechterventrikel en verzamelt zuurstof in de alveoli. Het komt terug in het linkeratrium via de vier pulmonaire venen. De bronchiale circulatie komt van het linkerventrikel en voorziet al het longweefsel behalve de alveoli van zuurstof. Het grootste gedeelte van de bronchiale arteriën komt uit in de pulmonaire venen, alleen de hylus wordt gedraineerd door de bronchiale venen. Naast de bloedvaten lopen de lymfevaten. Het parenchym en de luchtwegen tot de hylus hebben een eigen lymfevatensysteem. Een ander systeem zorgt voor de drainage van de viscerale pleura. Sympatische en parasympatische zenuwen in de longen zorgen voor de vernauwing/verwijding van de luchtwegen en bloedvaten.


Medical physiology, hoofdstuk 27: Mechanics of Ventilation

Pagina 635-651
Watermoleculen in een vloeistof ondervinden evenveel kracht in iedere richting, aangezien in iedere richting meer watermoleculen zijn. De nettokracht is daarom 0. Watermoleculen aan de oppervlakte ondervinden ook krachten van de andere watermoleculen, behalve in de richting waar de lucht is. Daardoor is er een nettokracht richting de andere watermoleculen. Dit veroorzaakt de oppervlaktespanning. Om de oppervlakte te vergroten, moeten moleculen uit het cluster verspreid worden over het oppervlak. Dit kost kracht, hoe groter de radius hoe minder kracht er nodig is, volgens de wet van Laplace.
Als er twee waterbellen zijn waarvan de één een grotere radius heeft, zal de inhoud van de kleinere bel in de grotere bel vloeien, omdat een kleinere radius resulteert in een grotere oppervlaktespanning. Hoe meer er uit de kleine vloeit, hoe kleiner de bel wordt en dus hoe groter de oppervlaktespanning. Dit gebeurt ook in de longen, maar gehele implosie wordt voorkomen doordat de alveoli elkaar openhouden. Ook surfactant helpt hierbij.
Surfactant heeft hydrofiele en -fobe regio's, waardoor het de watermoleculen over het oppervlak kan verdelen en clustering kan voorkomen. Surfactant bestaat uit vetten en eiwitten en wordt geproduceerd door type II cellen. Claracellen produceren enkele componenten van surfactant. De meest voorkomende component van surfactant is de phospholipide DPPC. 10% van surfactant wordt gevormd door proteïnes. SP-A (surfactant proteïne A) en SP-D zijn wateroplosbaar, zij dragen ook bij aan het afweersysteem. SP-B en SP-C zijn hydrofoob en zorgen voor de organisatie van watermoleculen op het oppervlak. In de waterige laag die surfactant creëert neemt surfactant de vorm van een tubulaire myeline aan, met de hydrofobe staarten naar het lumen (zie ook figuur 27-8 op blz. 636). Secretie van surfactant gaat via exocytose en komt pas vlak voor de geboorte op gang.
Surfactant heeft drie hoofdeffecten:
Door de oppervlaktespanning te verminderen verhoogt surfactant de compliantie. Hierdoor is het makkelijker om de longen te vullen.
Door vermindering van oppervlaktespanning, minimaliseert de vloeistofophoping in de alveoli. Hierdoor wordt het samenvallen van de alveolus voorkomen.
Door surfactant blijven alle alveoli ongeveer even groot, zodat ze niet in elkaar leeglopen en de diffussie overal even groot is.
Als het vloeistofgehalte teveel toeneemt, helpt ook surfactant niet meer en neemt de oppervlaktespanning toe. Surfactant zorgt er dan voor dat de toe- en afname in volume geleidelijk gaat, waardoor de oppervlaktespanning minder snel toeneemt en het evenwicht snel hersteld kan worden.
Luchtstroom is evenredig met het verschil tussen de alveolaire en atmosferische druk, en omgekeerd evenredig met de luchtwegweerstand. Het volume van de long is te berekenen door het drukverschil te delen door de totale luchtwegweerstand. Het drukverschil is het verschil tussen alveolaire druk en barometrische druk. Als luchtstroom laminair is, is de wet van Poiseuille redelijk toepasbaar.
De luchtstroom is dus erg afhankelijk van de radius, als deze een klein beetje afneemt neemt de weerstand al flink toe. Om de weerstand te berekenen deel je het drukverschil door het volume. Het volume bereken je met een flowmeter, het drukverschil met de wet van Boyle en een plethysmograaf. Er ontstaat ook weerstand doordat de weefsels van de longen langs elkaar schuiven bij expansie, dit veroorzaakt 20% van de longweerstand.
De luchtstroom wordt turbulent boven een bepaalde snelheid, er ontstaan dan meerdere stromen. Een stroom is laminair als het getal van Reynolds (Re) kleiner dan 2000 is. Boven de 3000 is de stroom turbulent. De luchtwegen zijn niet perfect geschikt om het getal van Reynolds te berekenen, ze zijn kort, gekromd, ruw en vertakt. Door de vertakkingen is de luchtstroom transitioneel.
De gemiddelde luchtwegweerstand is 1,5 cm H2O. Slechts 0,3 cm H2O komt door de kleine luchtwegen. Dit komt doordat deze parallel liggen. Noradrenaline van het sympathische zenuwstelsel verlaagt de weerstand. Epinephrine uit de medulla doet dit ook. Het parasympatische zenuwstelsel verhoogt de weerstand met acetylcholine. Histamine doet dit ook door de bronchioli te vernauwen. De weerstand is ook afhankelijk van het volume, hoe groter het volume hoe kleiner de weerstand, dit komt doordat de radii van de luchtwegen groter worden. Bij COPD is de weerstand verhoogd, vooral in de kleine luchtwegen.
Ziektes van de luchtwegen zijn restrictief (heeft invloed op de ventilatie) of obstructief (heeft invloed op de weerstand). De ziekte kan acuut zijn (obstructie in de longen, slijmophoping, astma-aanval) of chronisch. COPD is de stijging van de weerstand door chronische bronchitis en/of longemfyseem. Astma is voornamelijk een ontsteking met spasmes als resultaat. De behandeling is met een inhaler waardoor bepaalde receptoren worden geblokkeerd. Als er veel aanvallen zijn, is een behandeling met corticosteroïden aangeraden.
Intrapleurale druk (PIP) heeft een statische component die het longvolume bepaald (PTP)  en een dynamische component die de luchtstroom bepaald (PA). Deze twee optellen geeft de PIP. PTP is de kracht die nodig is om de elastische terugslag tegen te gaan. Een daling in de compliantie kan tot restrictieve longziektes leiden. Dit is voornamelijk in de geleidende delen van het ademhalingsstelsel. Een toename in de weerstand kan tot obstructieve longziektes leiden.
In een rustige ademhalingscyclus wordt de PA eerst negatief en dan positief. Als het volume van de long toeneemt, neemt ook de PTP toe. Voor de in- en uitademing is PIP gelijk aan PTP, tijdens de inademing is hij negatiever en tijdens de uitademing positiever. Bij inademing daalt PA snel, tijdens uitademing stijgt deze juist. Eerst gaat er veel energie naar het negatief maken van de PA zodat er veel volume bij kan, daarna gaat de energie naar de PTP zodat het volume tijdelijk vastgehouden wordt. De volumevergroting neemt exponentieel af, na 0,2 seconde is al 63% bereikt, na 0,4 seconden 86% en na 0,6 seconden 95%. Dit interval van 0,2 noemen we de tijdsconstante. Hoe sneller de ademhaling, hoe minder het volume per ademhaling. Omdat dit exponentieel afneemt, zijn er veel frequenties waarbij deze volumeverandering nauwelijks merkbaar is. Als de weerstand toeneemt, neemt de tijdsconstante met dezelfde grootte toe. Sommige alveoli hebben een langere tijdsconstante dan andere. De volumeverandering in de cyclus is aan te duiden met de cyclische compliantie.
Het zenuwstelsel, de hormonen en het volume hebben invloed op de weerstand in de luchtwegen. Luchtstroom zorgt voor verandering in de transmurale druk (PTM), waardoor de luchtweg uitzet of inklapt. Als er geen luchtstroom is, is de druk in de luchtwegen 0. In dit geval zorgt de transmurale druk ervoor dat de thoracale luchtwegen uitzetten zover hun compliantie dit toelaat (want PIP is negatief). Bij inademing is de PTM groter hoe verder het van de alveoli afzit, waardoor hier veel neiging tot uitzetten is. Dit wordt in de hoofdbronchi en trachea tegengegaan door het kraakbeen. Omdat de PIP bij uitademing lager blijft dan de PA klappen de alveoli niet in. PTM gaat van positief (inflatie) naar negatief (deflatie) waardoor de weerstand toeneemt. Gelukkig hebben de delen van de luchtweg waar de PTM zo negatief is dat deze in een zouden klappen, kraakbeenringen.
Bij longemfyseem zijn de longen meer compliant waardoor uitademing moeilijker gaat. Dit wordt makkelijker door langzamer uit te ademen, met een hoger volume te ademen en door met getuite lippen uit te ademen. Dit laatste zorgt voor meer weerstand en dus een hogere druk.


Medical physiology, hoofdstuk 30: Gas Exchange in the Lungs

De longen hebben twee hoofddoelen: O2 van de alveoli in de pulmonale capillairen laten en CO2 in omgekeerde richting laten diffunderen. Bij diffusie verplaatst een gas van een hogere concentratie naar een lagere concentratie. De grootte van deze stroom is afhankelijk van de diffusiecapaciteit (DL) en de concentratiegradiënt. Voor de diffusie zelf is geen energie nodig, voor de ventilatie en circulatie wel. De grootte van diffusie is de partiële druk in het ene compartiment min de partiële druk in het andere compartiment, dus P1-P2. De flow geeft de gasstroom weer in mol/seconde. De flux betrekt hier ook de oppervlakte bij: mol/(cm2*s).
De DL is afhankelijk van twee eigenschappen van het gas: het moleculaire gewicht en de oplosbaarheid in water. Als het gewicht toeneemt, neemt de beweeglijkheid af. Volgens de wet van Graham is de diffusie omgekeerd evenredig met de wortel van het moleculaire gewicht (MW). Volgens de wet van Henry is de concentratiegradiënt voor oplosbaarheid in water (s) evenredig met de diffusie. DL is evenredig met het oppervlak (A) en omgekeerd evenredig met de dikte van de barrière (a). Bij de dikte wordt de waterlaag meegerekend. Een constante, k, geeft de interactie tussen de barrière en het gas weer. Dit geeft uiteindelijk de formule: .
Er zijn verschillende oorzaken waardoor de diffusie niet overal en altijd hetzelfde is. In de longen neemt het oppervlak bij inspiratie toe, waardoor DLO2 maximaal is aan het eind van de inspiratie. Dit heet een temporeel verschil. De dikte verschilt in verschillende delen van de long, dit heet een ruimtelijk verschil. Door de zwaartekracht is PaO2 groter in de apex en de diffusie daar dus minder. Dit is een ruimtelijk verschil, net als onderlinge verschillen in vaatvernauwing. In het capillair zelf zitten ook verschillen: aan het begin is er meer diffusie van zowel CO2 als O2 dan aan het eind. Door deze verschillen kunnen we de wet van Fick niet op de gehele longen toepassen, maar op een stukje alveolaire wand op een gegeven tijdstip. Door dit voor alle stukken alveolaire wand en alle tijdstippen uit te rekenen, is de totale flow te berekenen. Wel moet rekening gehouden worden met het feit dat het bloed dat naar de longen gaat nog zuurstof bevat. De flow is dus de hoeveelheid zuurstof die door het bloed wordt opgenomen min de hoeveelheid zuurstof die door het bloed wordt afgestaan. Dus, de totale VO2 = Q. Dit laatste heet het principe van Fick, zowel deze als de wet van Fick zijn geschikt om de flow uit te rekenen.
De barrière bestaat echter niet uit 1 laag, maar bestaat uit drie structuren: alveolaire wand, capillaire wand en tussenliggend bindweefsel. Het heeft een groot oppervlak, is erg dun en erg sterk. Dit laatste komt doordat het bindweefsel veel type-IV collageen bevat. Van alveolaire lucht naar hemoglobine in een erytrocyt worden 12 membranen gepasseerd, elk met een eigen diffusiecapaciteit. Deze dragen bij aan de gezamenlijke diffusiecapaciteit (DM). De weerstand hierbij bereken je als bij een parallelschakeling. De ratio in hoeverre O2 door hemoglobine wordt opgenomen is (θ*VC)PO2. Θ is een constante die zegt hoeveel ml O2 per minuut en per mmHg aan Hb bindt in 1 ml bloed. Je berekent de DL met deze formule:  . CO2 bindt beter aan Hb maar langzamer, daarbij speelt θ*VC dus een grotere rol. De oplosbaarheid van CO2 in water is veel hoger (23 keer) dan die van O2, maar de diffusie is slechts 3 tot 5 keer zo snel. Dit komt door de hechte binding tussen Hb en CO2. Naast diffusie is de interactie met Hb dus ook belangrijk voor de afgifte van CO2.
De opname van CO is diffusie-gelimiteerd. Dit komt doordat CO erg sterk hecht aan hemoglobine en de vrije CO in het bloed nauwelijks toeneemt, waardoor het verschil in pCO2 tussen de alveoli en het bloed altijd groot blijft. Doordat er weinig CO in de lucht zit, is PCCO laag en daardoor de flux ook.
De totale flow bereken je door de CO te vermenigvuldigen met CO-inhoud van bloed aan het eind van de capillairen min de CO-inhoud van het bloed aan het begin van de capillairen, oftewel Flow=Q * (CCCO – CVCO). Ook dit is ook uit te rekenen met de wet van Fick, waarbij we de uitwisseling voor elk stukje alveolaire wand apart bekijken op verschillende tijden in de ademhaling. De diffusiecapaciteit is evenredig met de flow van CO in het bloed. Wordt deze echter te groot, dan neemt uiteindelijk de pCO van het bloed hoger wordt dan die van de alveoli en de diffusie de andere kant op gaat. De flow van het bloed loopt omgekeerd evenredig met flow van CO, hoe langzamer het bloed stroomt, hoe meer tijd voor diffusie. Maar, omdat het volume afneemt, zal VCO gelijk blijven. De opname van CO is dus onafhankelijk van de bloed flow. Omdat de opname van CO alleen van de DL afhankelijk is, noemen we dit diffusie-gelimiteerd. Deze gassen zijn te herkennen aan een nauwelijks toegenomen partiële druk aan het einde van de pulmonale capillairen.
Gassen die niet aan Hb binden, hebben al snel na het begin van de pulmonale capillair dezelfde druk in de capillair en in de alveolus. Dit noemen we een diffusie equilibrium, oftewel een evenwicht in de diffusie die plaats vindt. Als we de diffusiecapaciteit vergroten, zal de diffusiesnelheid toenemen. Omdat het equilibrium al bereikt werd bij een lagere diffusiecapaciteit, zal er niet meer diffusie plaatsvinden. De enige verandering is dat het equilibrium eerder bereikt wordt. Als de flow afneemt, zal het equilibrium ook eerder bereikt worden. Maar omdat het volume ook van de flow afhankelijk is, zal dit afnemen. Daarom zijn gassen die niet aan Hb binden perfusie-gelimiteerd.
Diffusie-gelimiteerde gassen kunnen perfusie-gelimiteerd worden en andersom. Als een diffusie-gelimiteerd gas een DL heeft die hoog genoeg is, wordt het toch afhankelijk van de perfusie, omdat er anders niet genoeg Hb is om het gas in op te slaan. En als een perfusie-gelimiteerd gas een hoge flow heeft maar niet genoeg diffusie, dan wordt het bloed niet genoeg gevuld.
Zowel O2 als CO2 zijn onder normale omstandigheden perfusie gelimiteerd. Na ongeveer 1/3 van een pulmonale capillair bereikt O2 het diffusie equilibrium. Dit is later dan CO, hiervoor zijn drie redenen. Ten eerste is veel van het Hb in het veneuze bloed nog gebonden aan O2, waardoor CO beter bindt. Ten tweede is de partiële druk van CO in de alveolus veel kleiner en wordt hierdoor het equilibrium al bij een lagere druk bereikt. Ten derde is de DL van O2 groter dan die van CO waardoor de diffusie moeilijker gaat. Omdat O2 zo snel het equilibrium bereikt, kan de DL vele waarden aannemen zonder dat de pO2 van het bloed daalt. Dit noemen we een DL-reserve. Deze is erg belangrijk tijdens inspanning. De flow kan met een factor 3 toenemen. Als de flow meer toeneemt of door ziekte de DL afneemt, wordt de O2 diffusie-gelimiteerd.
Grote hoogte doet de pO2 afnemen. Dit zorgt ervoor dat het absolute O2 transport afneemt, de pO2 van de lucht in de alveoli is immers lager. Daarnaast is ook de pO2 van het bloed lager, waardoor het Hb minder O2 opneemt.
De DL van CO2 is 3 tot 5 keer hoger dan die van O2. Twee factoren vertragen de diffusie van CO2. Zo is de diffusiegradiënt in het begin van een pulmonale capillair slechts 10% van de initiële gradiënt. Daarnaast is de grafiek van pCO2 en CO2 veel steiler, waardoor een afname van CO2 een relatief kleine afname van de pCO2 veroorzaakt. Hierdoor is het equilibrium van CO2 even snel of zelfs langzamer bereikt dan dat van O2. Door verschillende ziektes neemt de DL van CO2 af en wordt dit gas diffusie gelimiteerd.
Bij pulmonale fibrose worden de wanden tussen de alveoli en capillairen dikker en raken delen van capillairen beschadigd, waardoor de DL van gassen toeneemt. Bij COPD wordt de weerstand van de geleidende luchtwegen groter waardoor de vaatbedden beschadigd kunnen raken. Hierdoor nemen zowel het diffusieoppervlak als het totale aantal Hb af (DL neemt dus ook af). Hetzelfde gebeurt als er (door een operatie) longoppervlak verloren gaat. Bij anemie neemt de hoeveelheid Hb af, waardoor θ*VC afneemt en daarmee de DL.
Niet altijd wordt hypoxemie door een afname in de DL veroorzaakt, dit kan ook door verstoring van ventilatie en/of perfusie komen. Door de DL reserve zou de DL tot een derde moeten afnemen om een verschil in O2 transport te lijden, maar een afgenomen DL in combinatie met andere oorzaken kan wel tot hypoxemie lijden, de echte oorzaak is vaak moeilijk te vinden.

 

Medical physiology, hoofdstuk 31: Ventilation and Perfusion of the Lungs
 

Niet pagina 701-704
Ventilatie is de beweging van de lucht tussen de atmosfeer en de alveoli. Perfusie is de beweging van het bloed. De totale ventilatie is het volume dat de longen per tijdseenheid uitstoten. Het is de lucht die de longen verlaat na een serie van uitademingen. Het is dus het resultaat van het ademvolume en de ademfrequentie. We drukken dit uit in liter per minuut: de minuutventilatie. Ongeveer 30% van de ventilatie gaat naar anatomische 'dode ruimte', hier is geen perfusie en vindt dus geen gaswisseling plaats. Dit komt doordat van de 500 ml lucht die wordt ingeademd, slechts 350 ml de alveoli bereikt. Omdat ook bij uitademing niet alle lucht uit de alveoli verdwijnt, blijft hier ook 150 ml achter. Er is dus 150 ml frisse lucht tussen de atmosfeer en de luchtwegen die telkens heen en weer gaat, en 150 ml “muffe” lucht tussen de luchtwegen en alveoli. Dit noemen we het doderuimtevolume. De alveolaire ventilatie is de frisse lucht die in de alveoli komt, of de muffe lucht die in de atmosfeer komt. Bij elke inademing mengt er verse lucht met de lucht die nog in de longen zit.
Door het ademvolume min de dode ruimte te doen, weten we het alveolaire volume. We kunnen dit ook uitrekenen met behulp van de pCO2. De productie van CO2 en de uitstoot moet gelijk zijn. Als we de partiële druk en het volume van de CO2 weten, weten we ook de gehele alveolaire ventilatie. Hierbij moet wel rekening worden gehouden met de lichaamstemperatuur en -druk (BTPS) en de standaard temperatuur en druk (ATPS).
De alveolaire pCO2 is omgekeerd evenredig met de alveolaire ventilatie. Immers, hoe groter het ingeademde volume, hoe meer verse lucht en hoe minder CO2 in de alveoli. Omdat alveolaire en arteriële pCO2 virtueel gelijk zijn, heeft VA ook invloed op de arteriële pCO2. De alveolaire pCO2 bereken je door de geproduceerde lucht van een tijdseenheid te delen door de ingeademde lucht in een tijdseenheid. Dit doe je maal 0,863 door het temperatuur verschil binnen en buiten het lichaam.
Hyperventilatie ontstaat doordat er meer CO2 het lichaam uitgaat dan dat er aangemaakt wordt, hierbij daalt het CO2 niveau van het bloed. Doordat de alveolaire pCO2 aan die van het bloed gekoppeld is, daalt deze ook en ontstaat er respiratoire alkalose. Hypoventilatie is het omgekeerde van hyperventilatie, nu wordt er meer geproduceerd per tijdseenheid dan dat er uitgestoten wordt. Dit lijdt tot een respiratoire acidose.
De alveolaire pO2 is afhankelijk van VA, hoe meer lucht wordt ingeademd, hoe hoger de pO2 is. De pO2 is ook afhankelijk van andere partiële drukken, waaronder die van H2O, N2 en CO2. Samen vormen deze de barometrische druk (PB). N2 wordt niet gemetaboliseerd en dient om de barometrische druk op 760 mmHg te houden, meestal is het 78% van de druk zonder H2O. De pH2O is 47, waardoor O2 en CO2 als variabelen overblijven. De CO2 die het lichaam produceert is afhankelijk van de hoeveelheid verbranding, maar ook van de brandstof die verbrand wordt. Elke brandstof heeft een respiratoire quotiënt, Vco2/Vo2. Dit zegt hoeveel CO2 geproduceerd wordt bij de verbranding van 1 O2. Als deze 1 is, bereken je de PAO2 door de PIO2 min de PACO2 te doen. Vet heeft een quotiënt van 0,8 waardoor het totale volume van de lucht afneemt en de hoeveelheid O2 wordt verdund.
De ventilatie in de apex van de long is bij een rechtopstaand persoon minder dan die in de basis. De intrapleurale druk bij de apex is groter dan die bij de basis. Hierdoor zijn de alveoli in de apex al meer uitgerekt dan die in de basis, en is er dus meer statische compliantie in de basis. Hierdoor kan er bij inspiratie meer verse lucht in de alveoli van de basis. En juist deze volumeverandering bepaalt de ventilatie. Dit komt door de zwaartekracht, dus als een persoon op de kop hangt of op de zij ligt, geldt hetzelfde: de zijde van de long die het dichtst bij de grond is, heeft de meeste ventilatie.
Ook zonder zwaartekracht is de ventilatie in de long niet uniform. Dit komt door kleine verschillen in compliantie en luchtwegweerstand, dit heeft grotere invloed op de verschillen dan de zwaartekracht. Restrictieve en obstructieve aandoeningen beïnvloeden resp. de compliantie en de luchtwegweerstand.
De pulmonale circulatie heeft deze output als de systematische circulatie, maar heeft een veel minder hoge druk. Dit komt doordat de systematische circulatie een grote afstand met veel weerstand moet overbruggen, terwijl de longcirculatie een veel kleinere afstand aflegt en een hoge druk hier voor longoedeem zou zorgen. De weerstand is aan te geven als ΔP/Q, dit geeft PRU's (perifere weerstand units). De systematische circulatie heeft een PRU van 1,1 en de pulmonale van 0,08. De weerstand in de longen is dus veel lager, waardoor een lage druk voldoende is. In de longen daalt de lucht het meest in de arteriën en de eindes van de capillairen. Er zijn 280 miljard capillairen voor 300 miljoen alveoli, waardoor het vaatbed rond de alveoli continu in beweging is. Daarnaast zijn de pulmonale vaten wijder en korter dan de systemische. Ook zijn de wanden erg dun, waardoor ze een grote compliantie hebben. Hierdoor veroorzaken grote volumeverschillen, zoals wanneer een staand persoon gaat liggen, geen grote toename in weerstand. Bovendien is er hierdoor een lage pulse pressure.
De compliantie brengt wel met zich mee dat de vaten extreem beïnvloedbaar zijn door de omgeving. Alveolaire vaten hebben een transmurale druk die veroorzaakt wordt door het verschil in druk tussen het lumen van het vat en de omringende alveoli. Het eerste is afhankelijk van de hartcyclus, het tweede van de positie van de alveolus in de long en de respiratoire cyclus. Als VL toeneemt, worden de alveolaire vaten uitgerekt en samengedrukt. Beide verhogen de weerstand.
De extra-alveolaire vaten zijn niet omringd door alveoli en dus afhankelijk van de interpleurale druk. Voor een hoger VL neemt ook de PIP toe, waardoor de transmurale druk toeneemt en de extra-alveolaire vaten groter worden. Doordat toename in VL de weerstand alveolaire vaten doet toenemen maar in de extra-alveolaire vaten doet toenemen, en afname in VL het omgekeerde doet, is het netto effect bifasisch.
Tijdens inspanning wordt de pulmonale weerstand nog lager, waardoor het vergrote CO de druk nauwelijks doet toenemen. Dit komt door passieve mechanismes. In rust hebben sommige openstaande capillairen geen perfusie. Dit komt door kleine verschillen in druk en weerstand, die bij een lage druk al snel zorgen dat sommige vaten nauwelijks gebruikt worden. Sommige capillairen zijn in rust gesloten, dit kan bijvoorbeeld doordat alveoli het vat dichtdrukken. Als de bloedflow toeneemt, gaan sommige gesloten capillairen open en krijgen de niet gebruikte capillairen ook stroom. Doordat er nu meer wegen zijn, blijft de weerstand laag. Als de druk van het bloed toeneemt, verhoogt de PTM en dilateert het vat, waardoor de weerstand lager wordt en de druk ook.
Veranderingen in de pO2, pCO2 en pH veroorzaken in de pulmonale circulatie het omgekeerde als in de systemische circulatie. Hypoxemie rond het vat veroorzaakt bijvoorbeeld vasoconstrictie, zodat daar minder bloed naartoe gaat en er meer perfusie in goed geventileerde delen van de long plaatsvindt. Een hoge pCO2 en een lage pH rond het vat zorgen om dezelfde reden ook voor vasoconstrictie. De invloed van het zenuwstelsel op de pulmonale circulatie is veel kleiner dan op de systematische circulatie. Sympathisch zorgt voor meer stijfheid van de arteriën zonder toename van weerstand, parasympatische voor vasodilatatie. Zie ook tabel 31-2 op blz. 712.
Ook bij perfusie geldt dat er verschillen tussen de alveoli zijn. Dit komt door kleine verschillen in de compliantie en weerstand, maar ook door de zwaartekracht. De werkt hetzelfde als bij de ventilatie: de perfusie in de basis van de long is groter dan die in de apex bij een rechtopstaand persoon. Verandering van houding levert ook verandering van perfusie. Bij inspanning wordt het verschil kleiner.
Er zijn vier verschillende drukverhoudingen in de long:
Zone 1: PA>PPA>PPV. Dit kan in de apex voorkomen. De druk in de vaten daalt bij de toename in hoogte, waardoor de druk in de alveoli groot genoeg is om de vaten te verdrukken en voor een grote afname in flow zorgt. Bij gezonde personen komt dit niet voor.
Zone 2: PPA>PA>PPV. Dit komt normaal gesproken van de apex tot in het midden van de long voor. Deze vaten zijn geschikt voor de vergroting van het stroomoppervlak bij toenemende inspanning, ze zijn in rust niet allemaal open omdat de alveolaire druk de capillairen aan het veneuze eind samendrukt.
Zone 3: PPA>PPV>PA. Dit komt voor vanaf het midden tot lager in de long. Hier is de transmurale druk groot genoeg om het vat open te houden. Hoe lager in de long, hoe meer de vaten gedilateerd zijn. In hoeverre de transmurale druk de flow beïnvloedt is een Starling weerstand.
Zone 4: PPA>PPV>PA. Onderin de base zijn de alveolaire vaten hetzelfde als in zone 3, maar zijn de extra-alveolaire vaten anders. Onderin is de interpleurale druk lager, waardoor de weerstand van de extra-alveolaire vaten toeneemt. Hierdoor neemt de flow af aan de uiterste onderkant van de long.
De grenzen van deze zones zijn fysiologisch, ze zijn niet gefixeerd. Positieve drukventilatie (waardoor PA omhoog gaat) laat de grenzen naar beneden zakken, inspanning verhoogt PPA en laat de grenzen omhoog gaan. Daarbij veranderen de drukken gedurende de circulaire en pulmonale cyclus.
Hoe groter de ventilatie, hoe meer de PAO2 en PACO2 op de waardes in de lucht lijken. Dit gaat om de gehele long, want zoals gezegd verschillen de alveoli onderling. Hoe groter de ventilatie in een groep alveoli, hoe meer de alveolaire lucht op de atmosferische lucht lijkt, en hoe groter de perfusie in een groep alveoli, hoe meer de compositie van de alveolaire lucht op die van het gemixte veneuze bloed lijkt. De ventilatie/perfusie verhouding (V/Q) bepaalt dus de lokale PAO2 en PACO2. Door de zwaartekracht is deze verhouding in de apex groter dan in de base. Dit komt doordat de perfusie sneller afneemt naarmate de hoogte toeneemt dan de ventilatie. Ter hoogte van de derde rib is de V/Q verhouding 1 en dus ideaal. Omdat O2 en CO2 perfusieafhankelijk zijn, zullen deze drukken dezelfde waarde als in de ingeademde lucht bereiken. Dit lijdt tot een respiratoire alkalose in de apex. In de base is dit omgekeerd, door de lagere verhouding neigen de alveolaire pO2 en pCO2 meer naar de waardes in het bloed. Omdat er meer perfusie in de base is, is de bijdrage aan de bloedcompositie van de base groter dan die van de apex. De V/Q verhouding van ingeademde lucht is oneindig, omdat het nog geen perfusie heeft gehad. De V/Q verhouding van gemixt veneus bloed is 0 omdat het nog niet in contact is geweest met lucht.
Door de zwaartekracht zijn er grote verschillen in de V/Q verhouding in een gezonde long. Als de verhouding niet ideaal, dus niet 1 is, noemen we het een V/Q-mismatch. In een extreem geval is er totaal geen perfusie, V/Q is dan oneindig. Dit noemen we dode ruimte ventilatie, dit maakt deel uit van de fysiologische dode ruimte. Een oorzaak hiervan kan longembolie zijn, waarbij er een obstructie in een longvat zit. De lucht bij dode ruimte ventilatie gaat naarmate de tijd toeneemt op atmosferische lucht lijken. De lage pCO2 die hierbij ontstaat, zorgt voor bronchiale constrictie, waardoor er meer lucht naar andere gebieden gaat, waar wel perfusie is.
Als een hele long geen bloed krijgt, dan is de helft van het ventilatieoppervlak dode-ruimte-ventilatie. De andere long kan nog steeds alle CO2 uitstoten, maar de pCO2 is wel verdubbeld, waardoor respiratoire acidose ontstaat. Ook kan de long genoeg O2 opnemen, maar is de pO2 wel gehalveerd. Het lichaam heeft allerlei manieren om deze problemen op te lossen en te zorgen dat de drukken in het bloed weer normaal worden. Het probleem met longembolie is dan ook niet per se dat er niet genoeg gaswisseling is, maar dat er hartfalen optreedt doordat de vaatweerstand omhoog schiet.
Een shunt is het omgekeerde van dode ruimte ventilatie: er is wel perfusie maar geen ventilatie. Dit kan door een obstructie van de luchtweg, bijvoorbeeld een door een “vreemd” object of een tumor. Het dichtklappen van alveoli (atelectase) veroorzaakt ook een shunt. Hierdoor blijft de pO2 van het bloed laag en ontstaat hypoxemie. Door de obstructie wordt de lucht naar andere gebieden van de long geleid, waardoor het verschil in V/Q nog groter wordt. Een voorbeeld van een shunt is astma, hierbij is de weerstand in de luchtwegen vergroot waardoor ventilatie lastiger plaatsvindt. In het geval van een shunt neemt het vat waar dat de pO2 en pH van de omgeving dalen en de pCO2 stijgt, waardoor hypoxische pulmonale vasoconstrictie optreedt. Hierdoor gaat er meer flow naar andere bloedvaten en wordt de V/Q verhouding op zowel de plaats van de shunt als in andere gebieden van de long verbeterd. De vaatvernauwing kan in extreme gevallen tot verhoging van de algehele longweerstand leiden.
Als een hele long geen lucht krijgt, heeft de andere long wel normale gaswisseling, maar vindt slechts bij de helft van het bloed gaswisseling plaats. Het mengen van geventileerd en niet geventileerd bloed heet veneuze bijmenging. Dit is ook bij een gezond persoon het geval via de anatomische shunts. De long kan dus zijn werk goed uitvoeren maar de pCO2 neemt toe. Hetzelfde geldt voor de O2, slechts de helft van het bloed krijgt genoeg O2 en dus neemt de pO2 af, terwijl er wel genoeg O2 voor het lichaam is. Het lichaam kan de hoge pCO2 verhelpen met vasoconstrictie in de niet geperfuseerde long, maar doordat de HbO2 dissociatie curve slechts weinig toename in pO2 toelaat bij verhoging van de hoeveelheid O2, kan de hypoxemie niet worden voorkomen.
De anatomische shunts zijn de venen (van sommige hartspieren en de helft van de bronchiale) die op de pulmonale venen uitkomen en dus zuurstofarm bloed aan de pulmonale venen toevoegen. Pathologische shunts ontstaan als bij de geboorte de luchtweg inklapt, de foramen ovale of ductus arteriosus blijft dan open.
Door de V/Q-mismatches en de veneuze bijmenging krijgt het linker ventrikel een mix van bloed, de V/Q verhouding in de longen is nooit ideaal. Als dit niet gecompenseerd wordt, ontstaat altijd acidose en hypoxemie. Non-uniformiteit is te diagnosticeren door andere mogelijkheden uit te sluiten. Dit kan door de waardes van het bloed en de functie van de ademhaling te testen. Karakteristiek voor V/Q-mismatches is een vergrote alveolaire-arteriële (A-a) gradiënt voor pO2. Deze gradiënt is een mate van ernst van de V/Q-mismatch. Hierbij worden de drukken in het bloed gemeten en de drukken voor de alveoli hiermee uitgerekend. Het nadeel is dat V/Q-mismatch ook tot een A-a verschil in pCO2 geeft en je er bij de berekeningen vanuit gaat dat deze bij A en a gelijk is. Met het geven van zuurstof kan gekeken worden of de longen elkaar in balans houden (één gehyperventileerd, de ander gehypoventileerd) of dat een long in het geheel niet wordt geventileerd. In het eerste geval zal de zuurstofsaturatie bij het geven van pure zuurstof hoog zijn, in het tweede geval niet omdat één hele long niet geventileerd wordt en dus een grote veneuze bijmenging geeft.
The Developing Human, hoofdstuk 8: Body Cavities and Diaphragm
Aan het begin van de vierde week ziet de intraembryonale coeloomholte eruit als een hoefijzer. De buiging van de holte aan de craniale kant van het embryo wordt de toekomstige pericardholte en de laterale uiteinden worden later de pleurale holte en de peritoneale holte. Deze uiteinden staan in verbinding met de extraembryonale coeloomholte aan de laterale kant van de embryonale schijf. Tijdens de horizontale kromming van het embryo komen de twee laterale uiteinden ventraal samen en vormen dan één grote, peritoneale holte.

Aan het einde van de vierde week is de intraembryonale coeloomholte verdeeld in drie holtes:
De pericardiale holte
Twee pericardioperitoneale kanalen
Een peritoneale holte
Deze holtes hebben een pariëtale en viscerale wand die beide bekleed zijn met mesotheel. Tijdens de 10e week verdwijnt de verbinding van de peritoneale holte met de chorionholte, wanneer de ingewanden gevormd worden. Tijdens de craniale kromming van het embryo verplaatsen het hart en de pericardholte naar ventraal, anterior ten opzichte van de voordarm, met als gevolg dat de pericardholte in verbinding komt met de pericardioperitoneale kanalen, die dorsaal richting de voordarm lopen.
Na de kromming van het embryo worden de caudale delen van de voor-, midden- en achterdarm opgehangen aan het dorsale mesenterium in de peritoneale holte. Een mesenterium is een dubbele laag peritoneum en verbindt het orgaan met de wand van het lichaam. Daarnaast bevat het de vaten en zenuwen naar het orgaan toe. De dorsale en ventrale mesenteria splitsen de peritoneale holte in een linker- en rechterhelft. De bloedvaten die de primordiale darm van bloed voorzien, liggen tussen de lagen van het dorsale mesenterium.
De pericardioperitoneale kanalen liggen lateraal ten opzichte van het proximale deel van de voordarm (toekomstige oesophagus) en dorsaal ten opzichte van het septum transversum. Het septum transversum is de voorloper van het bindweefselige gedeelte van het diafragma. Het vormt tussenschotten in ieder pericardioperitoneale kanaal zodat de pleurale holtes gescheiden worden van de pericardholte en de peritoneale holte. Door de groei van de bronchiale knoppen ontstaan er twee membraneuze kammen in de laterale wand van elk kanaal:
Superieur bevinden zich de craniale kammen (pleuropericardiale plooien)
Inferieur bevinden zich de caudale kammen (pleuroperitoneale plooien)
Bij het uitgroeien van de pleuropericardiale plooien worden tussenschotten gevormd die de pericardruimte scheiden van de pleurale ruimte. Deze tussenschotten worden pleuropericardiale membranen genoemd. Ze bevatten de vena cardinalis communis, welke het veneuze systeem draineert in de sinus venosus van het hart. De primordiale pleurale ruimtes breiden zich ventraal uit rond het hart. Hier wordt het mesenchym gesplitst in de toekomstige thoraxwand en het toekomstige fibreuze pericard. In de zevende week groeien de pleuropericardiale membranen naar elkaar toe en versmelten hierbij met het mesenchym onder de oesophagus. Zo ontstaat het primordiale mediastinum en worden de longen gescheiden.
De tussenschotten die gevormd worden bij het uitgroeien van de pleuroperitoneale ruimte, worden pleuroperitoneale membranen genoemd. Ze zitten dorsolateraal vast aan de abdominale wand. In de zesde week fuseren de membranen met het dorsale mesenterium van de oesophagus en het septum transversum. Hierdoor worden de pleurale holtes gescheiden van de peritoneale holte.
Het diafragma scheidt de thorax van het abdomen. Het ontstaat uit vier embryonale componenten:
Septum transversum
Pleuroperitoneale membranen
Dorsale mesenterium van de oesophagus
Ingroei van spiercellen van de laterale lichaamswanden
Septum transversum
Mesodermaal weefsel groeit dorsaal van de ventrolaterale wand en vormt de centrale pees van het diafragma. Het fuseert met het dorsale mesenterium van de oesophagus en de pleuroperitoneale membranen. Een groot deel van de lever ontstaat in het septum transversum.
Pleuroperitoneale membranen
Deze membranen fuseren met het dorsale mesenterium van de oesophagus en het septum transversum. Dit zorgt voor voltooiing van de scheiding tussen de thoracale en de abdominale ruimtes. Dit wordt het primordiale diafragma.
Dorsale mesenterium van de oesophagus
Een bundel spieren, lopend van anterieur naar de aorta, ontstaat uit myoblasten die in het dorsale mesenterium groeien. Deze bundel wordt de crura van het diafragma genoemd.
Ingroei van spiercellen van de latere lichaamswanden
Tijdens de negende tot de twaalfde week groeien de longen en pleurale holtes tegen de laterale wanden aan. De wand wordt opgedeeld in een buitenlaag (abdominale wand) en een binnenlaag (perifere delen van het diafragma). Er ontstaan costodiafragmatische nissen die zorgen voor de typische vorm van het diafragma.
Gedurende de vijfde week migreren myoblasten met bijbehorende zenuwvezels naar het ontwikkelende diafragma. Hierdoor kan de nervus phrenicus voor de motorische en sensorische innervatie zorgen. Deze zenuw ontspringt uit de derde, vierde en vijfde cervicale spinaalzenuw.
 

The Developing Human, hoofdstuk 10: Respiratory System

De ontwikkeling van de lagere luchtwegorganen (het strottenhoofd, de luchtpijp, de bronchiën en de longen) begint in de vierde week van de ontwikkeling van het embryo. Het ademhalingsstelsel groeit uit vanuit het caudale einde van de primordiale farynx (het meest superieure deel van de slokdarm). Deze uitgroei heet de laryngotracheale groeve. Het endoderm van de groeve zal uitgroeien tot de klieren van de larynx, de trachea en bronchi. Het bindweefsel, kraakbeen en glad spierweefsel ontstaat uit het splanchisch mesoderm van de voordarm.
De laryngotracheale groeve groeit uit tot het zakachtige laryngotracheale diverticulum, ventraal ten opzichte van het caudale deel van de voordarm. Tegen het einde van de vijfde week ontstaat het tracheoesophageale septum. Dit septum splitst het craniale deel van de voordarm in twee delen:
een ventraal deel, laryngotracheale buis; voorloper van de larynx, trachea, bronchiën en longen
een dorsaal deel; voorloper van de orofarynx en oesophagus
Larynx
Laryngeaal kraakbeen ontwikkelt zich uit mesenchym dat afgeleid is van neurale kamcellen, uit de vierde en zesde kieuwboog. Het mesenchym prolifereert en veroorzaakt arytenoïde zwellingen. Door deze zwellingen ontstaat mediaal een T-vormige gleuf die de primitieve glottis vormt. De epiglottis wordt gevormd uit het caudale gedeelte van de hypopharyngeale uitstulping. Het rostrale gedeelte van deze uitstulping vormt het achterste gedeelte van de tong. De spieren van de larynx worden geïnnerveerd door takken van de nervus vagus (CN X) die bij de vierde en zesde kieuwboog horen. De groei van de larynx en epiglottis loopt door tot drie jaar na de geboorte.
Trachea
Het laryngotracheale diverticulum vormt de trachea en twee laterale zakjes (voorlopers van de bronchiën). Het endoderm groeit uit tot klieren en het splanchisch mesoderm groeit uit tot het kraakbeen, bind- en spierweefsel van de laryngotracheale buis.
Bronchi en longen
De ademhalingsknoppen ontstaan tijdens de vierde week en delen al snel in twee primaire bronchieknoppen; dit worden de pericardioperitoneale kanalen (primitieve pleurale holtes). Samen met het splanchisch mesenchym differentiëren ze in de bronchiën en hun vertakkingen. Aan de rechterkant ontstaan drie lobben en aan de linkerkant twee. In de 24e week zijn de meeste takken en de bronchioli gevormd. Uit het mesenchym ontstaat kraakbeen, spierweefsel en capillairen. Ook de viscerale pleura komt uit het mesenchym. Pariëtale pleura ontstaat uit het somatische mesoderm. De ruimte tussen de viscerale en de pariëtale pleura is de pleuraholte.
Hoorcolleges


HC-27: Macro- en microanatomie ademhalingsstelsel (21-02-2014)

De thorax bestaat uit een benig deel en een spier gedeelte. Het benige deel bestaat uit de ribben en het sternum. Het spier gedeelte bestaat uit de intercostaal spieren, die een belangrijke bijdrage leveren aan het ademhalingsstelsel. De thorax wordt gescheiden van de abdomen door het diafragma. Dit is echter geen volledige scheiding, aangezien de aorta, vena cava inferior (VCI) en de oesophagus door het diafragma in contact staan met zowel de abdomen als de thorax.
In de pleuraholten bevinden twee belangrijke vliezen; de pariëtale pleura en de viscerale pleura. De pariëtale pleura is het vlies die aan de lichaamswand grenst. De viscerale pleura grenst aan een orgaan zelf, bijvoorbeeld aan een long. Er bevindt zich een kleine ruimte tussen deze twee vliezen; de pleurale ruimte. Deze ruimte wordt opgevuld door pleuravocht.
Embryonale ontwikkeling van het ademhalingssysteem:
In de intraembryonale coeloomholte bevinden zich 3 verschillende holten: een pericardiaal holte, twee pericard-peritoneel kanalen en een peritoneaal holte. Deze verschillende holten gaan met elkaar fuseren. De fusie tussen de pleuropericardiale membranen en het mediaan mesenchym scheidt de pleuraholten van de pericard holte. De fusie tussen de pleuropericardiale membranen met het mesenchym wat voor de oesophagus ligt, wordt het mediastinum en scheidt daarnaast de pleuraholten van elkaar. De fusie van de pleuroperitoneale membranen met het dorsale mesenteria van de oesophagus en het septum transversum scheidt de pleura holten van de peritoneaal holten. Wanneer het diafragma niet goed is aangelegd, kan er een opening ontstaan tussen de thoraxholte en de abdomen. Hierdoor kan er bijvoorbeeld een stuk darm in de thorax holte bevinden. Dit noemt men een congenitale diafragmatische hernia.
Het ‘lagere’ ademhalingsstelsel (de larynx, de trachea, bronchi en longen) wordt vanaf week 4 van het embryo ontwikkeld. Aanvankelijk staan de trachea en de oesophagus met elkaar in verbinding. Het trachea-oesofagiale septum moet deze verbinding gaan scheiden. Wanneer deze verbinding tussen de trachea en oesophagus blijft bestaan, is er sprake van een trachea-oesofagiale fistula; een verbinding tussen de luchtpijp en de slokdarm. Mensen met een fistula hebben vaak last van een longontsteking.
Uit de laryngotracheale buis ontstaan verschillende elementen van het ademhalingsstelsel. Uit het endoderm van deze buis ontstaan het epitheel en de klieren van de trachea. Daarnaast ontwikkelt uit het endoderm het epitheel van de longen. Het splanchisch mesoderm vormt het kraakbeen, bindweefsel en de spieren van de trachea. De laryngotracheale diverticulum vormt uiteindelijk de trachea en de longen. De bronchi vertakken zich in steeds kleinere eenheden. Na de hoofdbronchi komen de secundaire bronchi, de lobaire takken, de segmentale takken en de intrasegementale takken. De ontwikkeling van de bronchi vindt zowel voor als na de geboorte plaats. Ongeveer 95 procent van de alveoli ontwikkelt zich na de geboorte. Rond 3-jarige leeftijd zijn de meeste alveoli aangelegd, echter kunnen er nog alveoli gevormd worden tot een jaar of 8. Wanneer een kind (onder de 8) rookt of meerookt heeft dit dus negatieve gevolgen op de ontwikkeling van de alveoli.
Macroscopie trachea
De functie van de trachea is om lucht van en naar de longen te brengen. De trachea is een fibrocartilageneuse buis. De trachea bestaat dus uit kraakbeen. Deze kraakbenige ring is niet helemaal dicht het heeft een soort 'C' vorm. Aan de achterkant van de trachea bevindt zich geen kraakbeen, daar bevindt zich de tracheale spier.
De wand van de trachea bestaat uit 4 verschillende lagen.
Mucosa: bestaande uit epitheel, een basaal membraan en een lamina propria. De lamina propria bestaat uit losmazig bindweefsel. In het epitheel bevinden zich verschillende cellen. 30% van de cellen zijn trilhaarcellen, 30% van de cellen zijn gobletcellen (deze cellen bevatten geen trilharen), 30% uit basale cellen (zorgen voor nieuw cel-aanmaak), 2% uit brush cellen en 8% uit kleine granule cellen.
Submucosa; bestaande uit losmazig bindweefsel. Dit is een soort voedende laag voor de mucosa en bevat bloedvaten, lymfe, zenuwen en klieren.
Kraakbenige laag: bestaande uit kraakbeen.
Adventitia: bestaande uit bindweefsel en zorgt voor de verbinding van de trachea met verschillende structuren.
De longhilus bevat de bloedvaten naar de long toe. De arteria pulmonalis bevindt zich boven de hilus, de vena pulmonalis bevindt zich voor de hilus en de primaire bronchus bevindt zich achter de hilus. Naast deze vaten zijn er verschillende zenuwen in de hilus aanwezig.
In het lichaam zijn twee longen aanwezig; de rechter en de linker long. De linker long bestaat uit 2 kwabben en de rechter long bestaat uit 3 kwabben. De rechterlong heeft een fissura obliquus en een fissura horizontalis. De linker long heeft alleen de fissura obliquus. Beide longen hebben 10 segmenten. Deze segmenten zijn volledig gescheiden van elkaar door septa. De bloedtoevoer naar de long bestaat uit de arteria bronchialis (een aftakking van de aorta) en uit de arteria pulmonalis.
De luchtstroom in het menselijk lichaam gaat als volgt: mond/neus → trachea → hoofd bronchus → lobaire bronchus → segmentale bronchus → terminale bronchus → terminale bronchiolus → respiratoire bronchiolus → alveolaire ductus → alveolaire zak → alveolus.
De bronchi hebben in tegen stelling tot de trachea een volledige kraakbeenring. De bronchuswand bestaat uit verschillende onderdelen:
Mucosa
Muscularis
Submucosa
Kraakbenige laag
Adventitia
Bronchioli voorzien de longen van zuurstof. Bronchioli bevatten geen kraakbeen. De kleinste eenheden zijn pulmonaire acini. Elke acini bestaat uit twee delen: de terminale bronchiolus en de respiratoire bronchiolus. In de terminale bronchiolus vindt geen gaswisseling plaats en in de respiratoire vindt wel gaswisseling plaats. De terminale bronchiolus bevatten claracellen. De respiratoire bronchioli bestaat uit kubisch epitheel.
De alveoli zijn de structuren waarin werkelijk de gaswisseling plaatsvindt. De alveolaire ductus bestaat uit openingen, hierdoor vindt er dus gaswisseling plaats. Alveoli zijn omgeven door haarvaten. Een dunne laag bindweefsel is aanwezig daar waar de alveoli aan de haarvaten grenzen. De plek waar de alveoli aan haarvaten grenzen heet het alveolaire septum. Dit septum bestaat uit dikke en dunne elementen. Onder de dunne elementen vallen: alveolaire cellen en het basale lamina. De dikke elementen zijn het bindweefsel, elastische vezels, macrofagen en fibroblasten. Het epitheel van de alveoli bestaat voor 95% uit type 1 cellen. Deze type 1 cellen zijn plat en delen niet. 5% van de cellen aan het oppervlak bestaat uit type 2 cellen. Deze type 2 cellen zijn bol en kubisch. Deze type 2 cellen zijn secretoire cellen.


HC-28: Bouw ademstelsel, klinische aspecten (21-02-2014)

De longen zijn niet goed weer te geven op een echo. Dit komt doordat een long (in normale omstandigheden) vooral lucht bevat. Wel zijn de contouren van de long op een echo zichtbaar. Een thoraxfoto wordt gemaakt alsof de patiënt jou aankijkt. Bij een pneumonie is er meer wit aanwezig op de thoraxfoto of op een echo. Dit komt doordat er meer slijm aanwezig is in de longen.
Het is van klinisch belang om de longen te kunnen lokaliseren. Dit is bijvoorbeeld handig voor lichamelijk onderzoek. Ventraal liggen voornamelijk de bovenkwab en middenkwab. Dorsaal ligt vooral de onderkwab. De ondergrens van de long is ongeveer de 6e rib. De pleura ligt hier nog onder.
Bij inademing beweegt het diafragma naar beneden, zodat de longen zich kunnen vullen en dus groter worden. Daarnaast kan, naast het bewegen van het diafragma, bij inademing de ribben zich omhoog bewegen, waardoor de longen zich kunnen vullen. De externe tussenribspieren zorgen voor de inspiratie. De interne tussenribspieren zorgen voor de expiratie. Expiratie gebeurt meestal passief.
Bij een pneumothorax is de elasticiteit van de long en de thorax waar te nemen. Bij een pneumothorax bevinden zowel de long als de thorax zich in de rustpositie. Hierdoor is de thorax uiteengezet (dus breder geworden) en de long kleiner geworden. Het rustvolume van de thorax is dus groot en het rustvolume van de long is klein.
De long bestaat uit kwabben. Deze kwabben zijn gescheiden van elkaar door fissuren. De verschillende longsegmenten zijn gescheiden van elkaar door septa. Door deze septa is er geen lucht en bloeduitwisseling tussen de segmenten mogelijk. Een acinus is een functionele eenheid. De acinus opereert dus zelfstandig, er vindt nauwelijks communicatie plaats. Bij een shunt is er een vernauwing ontstaan, er vindt dan geen gasuitwisseling meer plaats.
De arteria bronchialis voorziet de bloedvoorziening van de grotere luchtwegen. Deze arteria bronchialis fuseert samen met de vena pulmonalis. Hierdoor ontstaat er een mening van zuurstofrijk met zuurstofarm bloed. De functie hiervan is nog onbekend.
Er zijn verschillende manieren om de longen in beeld te krijgen. Het maken van een echo, en het maken van een thoraxfoto worden erg vaak gebruikt. Een MRI wordt vooral gemaakt bij verschillende vormen van longkanker. Bij een bronchoscopie wordt er met een camera, vanuit 'binnen' naar het lichaam gekeken. Deze camera gaat via de mond-trachea- naar de bronchi. Een endo-echoscopie is eigenlijk dezelfde techniek als de bronchoscopie, maar de endo-echoscopie kan ook informatie over de omgeving van de camera verkrijgen. Dit wordt vooral gebruikt bij longkanker.


HC-29: Longmechanica – 1 (24-02-2014)

De long en de thoraxwand zijn elastisch. In de alveoli vindt perfusie en ventilatie plaats. Perfusie is doorbloeding, ventilatie is de luchtdoorstroming. Hierdoor komt er O2 uit de lucht in het bloed en CO2 uit het bloed weer in de lucht. Het diafragma en de thoraxwand (met de ribben) bepalen het volume van de longen. De longen zijn dan ook vergelijkbaar met een ballon.
Elasticiteit (EL) of stijfheid is het vermogen om terug te keren naar de rusttoestand. Compliantie (C) is het omgekeerde van elasticiteit, het vermogen om mee te geven met een kracht. EL = 1/C
De long is van de trachea tot aan de pleura één groot elastisch netwerk, vol elastische vezels. Bij een rustige ademhaling gebruik je voor de inademing alleen je diafragma, de uitademing is passief omdat de longen uit zichzelf terugveren. Bij een klaplong wordt deze elasticiteit niet meer beperkt, en valt de long helemaal samen. Hij bereikt zijn rustvolume, wat heel klein is. Het mediastinum valt deels naar de gezonde long omdat ook deze zo iets kleiner kan worden. Het rustvolume van de thoraxwand wordt ook bereikt, maar deze is groter dan het normale volume. Door deze verschillen in rustvolume is er in de normale situatie een constant evenwicht tussen deze twee krachten. Dit zorgt voor een negatieve druk in de interpleurale ruimte.
De krachten van de long en de thoraxwand kan je ook in een grafiek zetten. Je zet dan de druk tegen de vulling van de long in procenten van de TLC (total long capacity) uit. Dit wordt de compliantiecurve genoemd. (zie de diapresentatie Longmechanica 1 en 2 vanaf dia 11) De druk van de thoraxwand (aangegeven in rood) wil bij een klein volume de long groter maken, en is daardoor negatief. De druk van de long (aangegeven in blauw) zelf wil zelfs bij een klein volume kleiner worden en daarom is de druk positief. De systeemcurve (aangegeven in geel) is deze twee drukken bij elkaar opgeteld en geeft de druk van het hele systeem. Het punt waarop de druk gelijk is aan 0 is het rustpunt. Bij de thoraxwand is dit punt bij een groot volume en bij de long bij een minimaal volume. Bij de systeemcurve is het punt bij ongeveer de helft van het volume. Dit is het FRC (Functioneel Residual Capacity), het volume wat in de long achterblijft na een rustige uitademing. Hier is de kracht die nodig is om in en uit te ademen even groot. De horizontale afstand tot beide curves is gelijk.
De longcurve is niet lineair. Een inademing van 70 naar 90% TLC kost meer arbeid dan van 50 naar 70% TLC. De arbeid die het kost kan je zien in de systeemcurve. Dit is de oppervlakte van de curve tot de lijn waarbij de druk 0 is. Deze is verdeeld in de longcurve en thoraxcurve (opp van de long en thoraxwand bij elkaar opgeteld). Bij de thoraxcurve begint de lijn met een negatieve druk, het levert dan arbeid op. Bij een extreme inademing kost het energie en de curve loopt dan ook aan de positieve kant.
Echter is er ook nog weerstand doordat de lucht door de bronchiën moet bewegen. Dit zorgt voor een extra arbeid die nog als boogje erbij getekend moet worden.
Een probleem met ademarbeid veroorzaakt kortademigheid. Dit kan op twee manieren.
1. De compliantie van de long neemt af. Er is dan meer stijfheid. Dit zorgt ervoor dat het meer moeite kost om de longen op te blazen. Op de thoraxfoto is meer wit weefsel te zien. Bij de inademing hoor je een krakend geluid ‘tok- tok- tok- tok’ van het openspringen van groepjes weefsel. De compliantiecurve van de long wordt dan vlakker/schuift naar rechts. Ook de systeemcurve wordt daarmee samenhangend vlakker. Er is dus meer arbeid nodig om hetzelfde volume te bereiken. Ook het FRC punt wordt minder, dit noemt men FRC adipositas
2. De compliantie van de thoraxwand neemt af. Dit gebeurt bij overgewicht, of wanneer iemand extra gewicht op zijn longen heeft. Ook kan een vergroeiing van de ruggengraat dit tot gevolg hebben. De compliantiecurve van de thoraxwand verplaatst naar rechts/wordt vlakker. Ook hierdoor verschuift de systeemcurve naar rechts/wordt vlakker. Er is wederom sprake van FRC adipositas.


HC-30: Longmechanica – 2 (24-02-2014)

Weerstand, R= 8nl/πr4 (n = viscositeit, l = lengte, r = radius)
De weerstand in de longen is omgekeerd evenredig met de diameter van de bronchi. Dit wordt ook wel het omgekeerde trompetmodel genoemd. De flow en de weerstand veranderen als de diameter veranderd. De bronchioli hebben individueel weliswaar een kleinere oppervlak dan de grote bronchi, maar omdat het aantal zo veel groter is, is het totale stroomgebied is groter. Hierdoor is de weerstand in de bronchioli lager dan in de iets grotere bronchi. De grootste weerstand is bij een gezonde long in de middelgrote bronchi.
Een luchtwegobstructie zorgt voor een nauwere doorgang met dus meer weerstand. Wanneer zo’n obstructie reversibel is, is er sprake van astma. Wanneer de obstructie permanent is, is er sprake van COPD. Bij een obstructie (astma aanval/COPD) hoor je een piepende ademhaling. Door de grotere weerstand is er meer arbeid nodig om adem te halen. Dit komt doordat de lucht moeilijker in de kleine vaten kan komen.
Drukken
De intrapleurale druk is de druk in de pleuraholte tussen de longen en de thoraxwand. De alveolaire druk is de druk van de lucht in de longen. De intrapleurale druk is bij een rustige inademing altijd negatief. Dit komt omdat de thoraxwand en de longen de andere kant op trekken. Bij de inademing is de druk lager dan bij de uitademing. Bij een krachtige uitademing wordt de druk wel positief. De alveolaire druk is altijd hoger dan de intrapleurale druk. Hierdoor kan diffusie plaatsvinden.
Stel er worden twee gelijkwaardige blazen met elkaar verbonden afgesloten van de luchtaanvoer. Dan wordt de grootste blaas iets groter en de kleinste blaas wordt kleiner. Het kost dus meer moeite om de kleine blaas te vergroten dan de grote blaas. P= 2T/r  (P is druk, T de wandspanning en r de radius) Bij een (ongeveer) gelijke wandspanning is de druk in de grote blaas lager. Lucht stroomt van hoge naar lage druk, dus de kleinste blaas wordt kleiner, en de grote blaas iets groter.
Surfactans
Surfactans is een oppervlaktespanningsverlagende stof. Het is een zeepachtige substantie die door type 2 alveolaire cellen wordt geproduceerd. In de alveoli is wandspanning waardoor het blaasje wil inklappen. Deze kracht is namelijk naar centraal gericht. Het vocht in de alveoli vergroot deze wandspanning. De surfactans doet dit effect teniet. Surfactans stabiliseert dus en voorkomt daarmee een collaps. Ook vergroot het de compliantie, waardoor de blaasjes makkelijker open gaan, en houdt het de alveoli droog.
Regionale compliantieverschillen
In de long zijn door de zwaartekracht drukverschillen. Boven in de long (apicaal) is intrapleurale druk lager dan onderin de long (basaal). Het volume is daardoor apicaal ook groter dan basaal. De apicale long zit daardoor in een vlakker deel van de compliantiecurve en daardoor veranderd daar het volume minder makkelijk. De ventilatie neemt af van basaal naar lateraal.


HC-31: Gaswisseling en gastransport – 1 (25-02-2014)

 

Gastransport is het transport van met name O2 en CO2 door heel het lichaam. P = druk, A = alveolair, a = arterieel, 1 kPa = 7,5 mmHg, 1mmHg = 1,35 cm H2O
De drijvende kracht voor verplaatsing van gas tussen compartimenten is het drukverschil. Gas diffundeert van hoge naar lage druk. De buitenlucht heeft een zuurstofdruk (PO2) van 20 kPa dat is ongeveer 150 mmHg. In de mitochondriën is de zuurstofdruk bijna ‘nul’. Bij het transport door het lichaam wordt de druk steeds lager. De alveolaire druk PA O2 is lager dan de PO2. Dit komt doordat in de alveoli de concentratie van water en CO2 hoog is. De buitenlucht mengt hiermee, en de concentratie O2 wordt dan minder. De alveolaire zuurstofdruk is te berekenen aan de hand van de arteriële CO2 druk en de inspiratoire O2 druk. PA O2 = PI O2 – 1,25 * Pa CO2 De PA O2 is de hoeveelheid zuurstof in de alveoli, de PI O2 is de hoeveelheid ingeademde zuurstof en de Pa CO2 is de hoeveelheid CO2 in het arterieel bloed.
Bij diffusie in de capillairen vindt O2 afgifte aan het bloed af en CO2 afgifte aan de alveolaire lucht. De O2 gebonden aan de erytrocyten heeft geen invloed op de gasspanning in het bloed. De wet van Fick geeft de diffusiesnelheid aan.
V= D * A * (P1 - P2) / L2     (V = snelheid, D = diffusieconstante, A = oppervlakte, P1 = druk in ene medium, P2 = druk in andere medium, L = afstand). De alveolaire diffusie van O2 moet door een heleboel lagen om bij het hemoglobine (Hb) te komen: (surfactans), water, type 1 epitheelcel (met twee celmembranen), interstitiële ruimte, capillair endotheelcel, bloedplasma en het celmembraan van de erytrocyt. Bij elke stap wordt zuurstofspanning iets lager. De diffusieconstante wordt voor al deze lagen samen bepaald.
Het alveolaire gastransport kan beperkt worden door de diffusie of perfusie. (perfusie = doorbloeding). Wanneer de zuurstof het evenwicht bereikt is er een beperking door de perfusie, een perfusielimitatie. Er kan namelijk meer zuurstof opgenomen worden als het bloed sneller zou stromen. De arteriole heeft een bepaalde tijd waarin het longblaasje contact maakt. Daarin kan zuurstof opgenomen worden. Dit gebeurt door diffusie. De diffundeert van een hoge naar een lage concentratie, van lucht naar de bloedbaan. Wanneer er een evenwicht is, is de concentratie zuurstof in de alveoli en in de arteriole gelijk. Dit gebeurt meestal voor de helft van de tijd. Zo wordt er ook nog maximale zuurstof opgenomen bij het sporten, wanneer het bloed twee keer zo hard stroomt. Dit evenwicht wordt ook bereikt voor CO2 maar dan geeft het bloed de CO2 af aan de lucht.
Bij CO (koolstofmono-oxide) wordt zo’n evenwicht niet bereikt. Hoeveel CO het bloed ook opneemt, de concentratie wordt niet hetzelfde als deze in de alveoli. Er komt geen evenwicht.  Dit komt omdat Hb een veel grotere affiniteit heeft voor CO en dit meteen opneemt. Hier is sprake van een diffusielimitatie. De CO kan niet snel genoeg diffunderen door het membraan om het bloed te verzadigen. Als de perfusie sneller wordt, wordt de contacttijd met de alveoli korter en komt er evenredig minder CO in het bloed. Gaat de perfusie trager wordt dit evenredig meer.
Wanneer de er geen perfusielimitatie is, bepaalt de diffusielimitatie van de membraandoorgang de druk die wordt opgebouwd. Dit kan getest worden met een klein beetje CO. Als dit in de long komt en het verdwijnt allemaal, dan heeft het membraan een goede doorgang. Is er nog veel van aanwezig, dan is de membraan slecht doorlaatbaar, hij is bijvoorbeeld dikker. Bij inspanning kan je hier last van krijgen.


HC-32: Gaswisseling en gastransport – 2 (25-02-2014)

Het zuurstof in het  bloed is grotendeels opgenomen in erytrocyten, gebonden aan hemoglobine. De hoeveelheid die is opgelost in het bloed is heel weinig. De curve van de hoeveelheid zuurstof gebonden aan hemoglobine volgt bijna de curve die het totaal aangeeft. De kleine hoeveelheid opgeloste zuurstof is echter wel belangrijk. Het bepaalt namelijk de saturatie (SaO2) ook wel O2 content genoemd. Hiermee kan je berekenen hoeveel zuurstof er gebonden is aan hemoglobine: SaO2 = [HbO2] / ( [Hb] + [HbO2] )
De relatie tussen SaO2 en PaO2 is de saturatiecurve. Het geeft de relatie tussen de zuurstofconcentratie en de zuurstofdruk in de arteriën.
Hemoglobine is de transporteur van zuurstof, maar het is niet goed in de opslag ervan. Voor het opslaan van 1 gram zuurstof is al meer dan een halve kilo hemoglobine nodig. Het fysiologisch opgeloste zuurstof is belangrijk omdat het de PO2 bepaald en daarmee het transport naar en van andere compartimenten.
De O2-afgifte wordt in weefsels verbeterd door een rechtsverschuiving van de saturatiecurve bij een hoge PCO2. Dit zorgt dat bij spieren en organen meer zuurstof wordt afgegeven door de hemoglobine. Bij een lage PCO2 schuift de curve naar links zodat er meer zuurstof wordt opgenomen door het bloed. De pH heeft ook invloed op de saturatiecurve. Hemoglobine is door deze verschuivende saturatiecurve het ideale transportmiddel.
De CO2 in het bloed wordt op een andere manier vervoerd. In het bloed zit ongeveer 5% opgelost CO2, 90% HCO3, 0% H2CO3- en 5% carbamino-CO2. Carbamino-CO2 is een aan eiwit gebonden CO2. Dit is een open buffer, omdat je de CO2 kan uitademen. Wanneer mensen met diabetes een ontregelde suiker hebben, krijgen ze ketonen en daardoor wordt hun bloed zuurder. Om dit zuur te compenseren gaan ze zuur uitademen, koolzuur.
Ook heeft de hoeveelheid zuurstof invloed op de CO2 transport. Dit is het Haldane effect: O2 en CO2 hebben invloed op elkaar. De ventilatie-perfusieverhouding verschilt in verschillende plekken in je long. Bij een lage druk (boven in de long) zijn de longblaasjes groot en open, bij een hogere druk (onder in de long) kunnen de blaasjes zich met kleinere druk verschillen in grootte aanpassen en zijn ze kleiner. Er is een verschil tussen de alveolaire hoeveelheid zuurstof en de arteriële hoeveelheid zuurstof. Dit A-a verschil kan berekend worden met de alveolaire gasvergelijking en een bloedgasbepaling: PA O2 = PI O2 – 1,25 * Pa CO2. Dit verschil kan voor 1/3 worden verklaard worden door de anatomische shunt. Hierdoor gaat er een beetje zuurstof arm  bloed (vena bronchialis) bij het zuurstofrijke bloed (vena pulmonalis) mee naar de linkerboezem. Ook zijn er afsluitingen in de bronchioli die voor shunts zorgen en afsluitingen in bloedvaten die voor een grotere dode ruimte zorgen.
De V-Q mismatch verklaart de overige 2/3. De V-Q mismatch is de ventilatie-perfusie mismatch die wordt veroorzaakt door de zwaartekracht. Hierdoor is namelijk niet in ieder deel van de long een gelijke druk. In het bovenste deel is de alveolaire druk hoog en de perfusiedruk is relatief te laag. Er gebeurt vrijwel niets omdat het bloed bijna stil staat. Dit is een perfusielimitatie. Onderin de long is de arteriële druk veel hoger en de alveolaire druk relatief te laag. De perfusie gaat daardoor te snel en er kan niet veel zuurstof worden opgenomen door het bloed. Hier is een tekort aan ventilatie. Ergens daartussenin is de ideale verhouding. Het bloed heeft een PO2 van ongeveer 13kPa.
Op de IC wordt veel met de houding van patiënten geëxperimenteerd om een zo optimaal mogelijke houding te vinden om de V-Q mismatch zo klein mogelijk te maken.


HC-33: Hart long interactie (26-02-2014)

Het hart en de longen zijn fysiologisch sterk met elkaar verbonden. Het bloed loopt van de rechterhartzijde naar de longen door naar de linkerhartzijde gaat vervolgens door de capillairen en keert terug naar de rechterhartzijde. Een afwijking in de longen kan invloed hebben op zowel de linker als op de rechterhartzijde. Afwijkingen in de linker of rechterhartzijde kunnen invloed hebben op de longen.
Voorbeeldcasus 1: Vrouw 69 jaar oud. Bekend met een te hoge bloeddruk (hypertensie). Ze heeft nu last van dyspneu. Het ECG laat een verhoogde amplitude zien. De thoraxfoto is witter dan normaal, dit wijst op een long met meer vocht en dus longoedeem. Ook is het hart groter dan normaal. Een echo van het hart toont hypertrofie van de linker kamer en een verstoring van de diastolische functie (diastolische dysfunctie).
In deze casus heeft de linkerhartzijde invloed op de longen. De hypertensie zorgt voor een hoge systolische druk in het LV. Om genoeg kracht op te bouwen om hier tegenin te gaan ontstaat LV hypertrofie. De bestaande myocyten worden groter en dikker. Hierdoor wordt het hart minder compliant en kan dan minder goed gevuld worden (diastolische disfunctie). Om deze vulling wat beter te krijgen wordt de druk in de pulmonaal venen verhoogd. Hierdoor wordt de druk in de longcapillairen ook hoger. Er treedt meer vocht uit en dit veroorzaakt longoedeem. Dit veroorzaakt hypoxemie (te weinig zuurstof in het bloed) en daarmee vasoconstrictie. Vasoconstrictie vindt ook plaats bij een te hoge CO2 spanning. De pulmonale hypertensie veroorzaakt een verhoogde afterload in de rechter ventrikel. De rechterventrikel heeft meer kracht nodig om hiervoor te compenseren.
Voorbeeldcasus 2: Meneer 40 jaar oud. Blanco voorgeschiedenis. Komt nu met klachten over toenemende kortademigheid en duizeligheid na een lange vliegreis terug uit Australië. Hij hoest ook rood bloed op. Het lichamelijk onderzoek wijst een tachycardie, een zachte ruis en een lage tensie, met flauwvallen aan. De ECG wijst op tachycardie, een te breed QRS-complex, wat wijst op een rechterbundeltak blok en een overbelasting van het rechterventrikel. De x-thoraxfoto is normaal. De pH waarde is te hoog, en de PCO2 en de PO2 zijn te laag. Een echo van het hart toont een verwijde rechter ventrikel (wat wijst op overbelasting) en een echo van de vena cava op een gestuwde (verbrede) vena cava. Er is een verdenking op een longembolie (longtrombose). Hiervoor wordt een CT-scan met contrastvloeistof gemaakt. Het contrast loopt door de arteria pulmonalis. Het is een wit contrast, waar de witte kleur ophoudt (uitsparing in contrast) is de blokkade. Ook kan er een ventilatie-perfusie scan worden gedaan. Dit zijn eigenlijk twee scans, één voor de perfusie en één voor de ventilatie. Er wordt een radioactieve stof in de vaten gebracht voor de perfusiescan en in de bronchiën voor de ventilatiescan. Bij een longembolie is de perfusie scan voor een groot deel wit waar deze zwart hoort te zijn. De ventilatie is wel normaal.
Bij deze casus gaat het om een invloed van de longen op beide zijden van het hart. Door het longembolie neemt de dode ruimte in de long toe. De ventilatie is gelijk maar de perfusie verminderd. Door deze vermindering van de gaswisseling ontstaat hypoxemie (zuurstof tekort). Hierdoor ontstaat pulmonale vasoconstrictie en daarmee pulmonale hypertensie. Hierdoor wordt het hart aan beide zijden groter (dilatatie en hypertrofie, vooral rechts). Het effect op de linkerhartzijde is dat de preload minder wordt door deze dilatatie. Ook hier is sprake van een te laag CO2 gehalte (ischemie). Het rechterventrikel krijgt ook hypertrofie en dilatatie en daar is ook sprake van ischemie. De afterload is verhoogd door de hoge pulmonale druk. Dit heeft op lange termijn weer invloed op de longen, want door de veranderingen in het hart, kan er minder druk gegenereerd worden. Hierdoor wordt de perfusiedruk in de longen dus nog minder.

PD-04: Hart long interactie (26-02-2014)

Patiënt: man, 82 jaar. Hart en longen functioneren niet goed, daardoor is hij snel benauwd. Hij heeft door kanker een longkwab minder (restrictie). Ook is zijn hart in grootte toegenomen. De hilus is goed zichtbaar evenals de bloedvaten. Normaal zijn de bloedvaten aan de bovenkant van de long (apicaal) minder goed te zien dan onderin door het drukverschil. Overal duidelijk zichtbaar wijst op een te veel aan vocht: redistributie. Nierfunctie van meneer is ook niet goed. Er is hartruis te horen. Een echo laat een lekkage van de mitralisklep zien.
Bij deze patiënt beïnvloedt de linkerhartzijde de longen. De linkerventrikel moet namelijk meer druk leveren om het klep defect te compenseren. Ook moet de druk in het linker atrium meer worden en daarvoor de druk in de longen. De druk in de longcapillairen gaat omhoog en er komt pulmonaal oedeem. De longen hebben ook invloed op de rechterhartzijde. Door de hypoxemie en bijkomende vasoconstrictie ontstaat weer pulmonale hypertensie. Hierdoor wordt de afterload verhoogd en moet het rechterventrikel meer druk leveren.
De oorzaak van hartziekten van de linkerzijde zijn onder te verdelen in drie categorieën:
Systolische disfunctie (hartfalen, infarct), diastolische disfunctie en kleplijden (lekkage). Een longresectie, waarbij een stuk van de long uitgenomen wordt, veroorzaakt vaak pulmonale hypertensie, vooral wanneer een hele long afwezig is. Bij gezonde longen functioneert het apicale deel als reservecapaciteit voor bij inspanning. Wanneer een patiënt maar één long heeft wordt deze reserve in rust al gebruikt en vormt zich bij inspanning een probleem. Wanneer iemand een longkwab moet missen, komen de andere hart en longproblemen meer tot uiting.
Algemene boodschap: Let bij een long probleem ook op hartproblemen, en bij een hartprobleem ook op de longen.


RC-07: Bouw ademstelsel, klinische aspecten (26-02-2014)

Bij de embryonale ontwikkeling zorgt de intraembryonale coeloomholte onder andere voor de linker en de rechter pleuraholte. Vroeg in de embryonale ontwikkeling staan deze in verbinding. Wanneer het embryo met zijn kop gaat krommen, sluiten de pleuraholte zich af van de hartholte en pericardholte. De linker en de rechter pleuraholte staan dus niet in verbinding met elkaar bij een volwassene.
De anatomische shunt in de longen zorgt ervoor dat het arteriële bloed niet evenveel zuurstof bevat als het met zuurstof verzadigde bloed in de longen. De arteria bronchialis voorziet de long (de buitenkant, het slijm e.d.) van zuurstof rijk bloed. De afvoer hiervan bevat zuurstof arm bloed omdat het niet langs longblaasjes komt. Dit komt voor een deel uit in de vena cava, maar voor een groot deel komt dit uit op de vena pulmonalis (die zuurstof rijk is). Dit mengt, en daardoor is er een anatomische shunt. Deze anatomische shunt heeft geen duidelijke functie. Het kan wel zijn dat het een soort alternatieve route is.
Een fysiologische shunt is niet de bedoeling. Hierbij komt er bloed langs longblaasjes die geen toegang meer hebben van de buitenlucht door een afsluiting (stof/sputum).
Membraneuze bronchioli of terminale bronchioli bevatten platter epitheel, geen subcutane slijmproducerende cellen en geen kraakbeenringen die wel in bronchi aanwezig zijn. Hoe dieper je de long in gaat, hoe meer alveolair weefsel de bronchioli bevatten.
Respiratoire bronchioli gaan langzaam over in alveolaire bronchioli, die geen bronchiolaire wand heeft. Alveolaire duct (buis vlak voor de alveoliblaasjes) heeft een bronchiolus wand. Een alveolaire sac (longblaasje) bestaat uit alveolair weefsel.
Bij een maximale inspiratie komt de long bij thoracale 12. Bij een maximale expiratie komt de long tot thoracale 7 of 8. Achter de trachea zit de oesophagus. Een overmaat van pleuravocht verzameld zich bij een staande patiënt in de recessus costa diafragmaticus. Bij een pneumothorax (klaplong) blijft er ook vocht achter omdat het niet meer goed kan worden opgenomen door de long. Bij een longontsteking zie je dit vocht ook.
Wanneer er een bloeding in het longweefsel zelf is, blijft het is het altijd binnen de kwab, maar kan soms wel in een ander segment komen. Het komt nooit in de pleuraholte. Wanneer je je verslikt in een pinda komt deze in de rechteronderkwab, omdat de rechteropening groter is en de zwaartekracht werkt naar beneden.
De onderzijde van de long is herkenbaar aan de koepelvorm van het diafragma. De longzijde die tegen de thoraxwand ligt, is glad, de zijde aan de hartkant is onregelmatiger. De rechterlong heeft drie kwabben, en dus twee fissura’ s. De fissura major of obliqua en de fissura minor of horizontalis. De linkerlong heeft twee kwabben en dus maar één fissura, de fissura major (of obliqua). Aan de mediale zijde zie je de hilus duidelijk, wanneer je die niet ziet is het de laterale zijde (achterkant).
In de thoraxfoto zie je de arteriën duidelijker dan de venen van de hilus. De bloedvaten worden wit gekleurd, en daarom zijn ze te zien op de foto. De bronchi zijn bijna niet te zien.
Op de thoraxfoto is aan de linkerzijde half onder het borstbeen de aortaboog te zien.


RC-08: Longmechanica (28-02-2014)

Als je vanaf FRC niveau (rustpunt) wil inademen tot TLC niveau (total lung capacity) verhoogt de elasticiteit van het longweefsel de ademarbeid gedurende de hele manoeuvre. De elasticiteit van de thoraxwand vermindert eerst de ademarbeid. Echter, nadat het rustpunt van de thoraxwand gepasseerd is, verhoogt deze juist de ademarbeid.
Olifanten hebben geen pleuraholte, daardoor kunnen ze snorkelen. De transmurale (over de wand) druk is in deze situatie namelijk verhoogd. De luchtdruk moet in de alveoli lager worden dan die van de lucht om in te ademen. Door het water wordt de transmurale druk meer, mensen hebben de kracht niet om hiertegen in te gaan en kunnen dan niet meer inademen. Verder zouden bij mensen als dit gebeurt de longen kapot scheuren of een pneumothorax ontstaan.
Alveolaire druk: druk in de longblaasjes.
Intrapleurale druk: druk in de pleuraholte.
Transmurale druk: drukverschil tussen de buitenlucht en de druk in de alveoli.
Transpulmonale druk: transmurale druk intra-extra alveolaire druk (verschil tussen druk in alveoli en de in de pleuraholte.
De pleuraholte is niet nodig om te leven, in sommige gevallen wordt deze ook verwijderd bij patiënten. Hij beperkt alleen wat schade tijdens beweging. Surfactans zorgt ervoor dat de alveolus droog blijft. De wandspanning wordt erdoor verlaagd. Het inademen wordt makkelijker, maar de uitademing wordt enigszins vermoeilijkt. Bij een gebrek aan surfactans willen de longen niet ontplooien. Dit is het geval bij te vroeg geboren kinderen (20 weken).  Ook staat er veel vocht in de longen.
Water kan surfactans wegspoelen, bij verdrinking gebeurt dit.
TLC: totale long capaciteit verminderd bij een restrictie.
FEV1 is de 1 seconde waarde, de hoeveelheid lucht die je in één seconde kan uitademen.
VC vitale capaciteit, hoeveelheid lucht die je in en uit kan ademen, (totale hoeveelheid lucht – restvolume) verlaagd ook door een restrictie.
Restrictieve stoornis: een deel van de long is niet bruikbaar.
Obstructieve stoornis: COPD of astma, de luchtwegweerstand is vergroot.
Adipositas (een dikke buik) duwt het diafragma omhoog, dit beperkt de longinhoud. Diafragmaparalyse: het diafragma staat te hoog. Longfibrose: een te stijve long, hierdoor wordt ook een deel van de long onbruikbaar.
Longemfyseem: een te slappe long. De luchtwegen kunnen dan gaan werken als ventiel, een makkelijke inademing maar een moeizame uitademing.
Bij geforceerde uitademingsmaneouvre wordt de intrapleurale druk positief. In de alveoli wordt de druk niet meteen helemaal 0, maar door de luchtwegweerstand wordt dit geleidelijk lager verder naar buiten (proximaal). Druk in de alveoli is altijd hoger dan de druk in de pleuraholte. Het longweefsel (intrapleuraal) heeft een positieve druk die lager is dan in de alveoli maar hoger dan buitenlucht. Deze druk is door heel de pleura gelijk.
Ergens in de longen wordt de druk gelijk tussen het longweefsel en de druk binnen de luchtwegen, dit is het EPP equal pressure point. Dit geeft het begin van de luchtweg collaps. Wanneer de druk van het longweefsel namelijk hoger is dan van de luchtwegen, worden deze deels dicht geduwd (collaps). Het begin hiervan is het EPP, het einde zijn de terminale bronchiën omdat daar de kraakbeenringen beginnen.
De snelheid waarmee de long leeg loopt is deels inspanning onafhankelijk. Het is afhankelijk van de elasticiteit, de elastische retractie capaciteit van de long.
Longemfyseem zorgt dat de druk in de alveolus niet veel hoger is dan de druk van het longweefsel daarbuiten daardoor valt een groter deel van de luchtwegen samen. Het EPP verschuift naar distaal.
Bronchospasme zorgt ervoor dat het EPP naar distaal (dichter bij de alveoli) verschuift. Dichter bij de alveoli komt het EPP al. Proximaal is dichter bij de mond in de buurt.

Access: 
Public
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Image

Comments, Compliments & Kudos:

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Check how to use summaries on WorldSupporter.org


Online access to all summaries, study notes en practice exams

Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Use the menu above every page to go to one of the main starting pages
    • Starting pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
  2. Use the topics and taxonomy terms
    • The topics and taxonomy of the study and working fields gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
  3. Check or follow your (study) organizations:
    • by checking or using your study organizations you are likely to discover all relevant study materials.
    • this option is only available trough partner organizations
  4. Check or follow authors or other WorldSupporters
    • by following individual users, authors  you are likely to discover more relevant study materials.
  5. Use the Search tools
    • 'Quick & Easy'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject.
    • The search tool is also available at the bottom of most pages

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study for summaries and study assistance

Field of study

Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
3233