Wat is het tweeweg ANOVA model?

ANOVA met meerdere factoren

In de praktijk wordt gedrag beïnvloed door verschillende factoren die interactie vertonen. Om deze complexe effecten uit te zoeken, ontwerpen onderzoekers vaak onderzoeken met meer dan één onafhankelijke variabele. Kortom: onderzoekers manipuleren twee of meer variabelen om het effect op gedrag te observeren. Een design met meer dan één factor wordt een factorieel design genoemd. De ANOVA met twee factoren combineert meerdere hypothesen. Er moeten daarom ook meerdere hypothesetesten gedaan worden. Weer wordt er gewerkt met de F-ratio: verschillen tussen de steekproefgemiddelden/verschillen verwacht door toeval of de steekproeffout.

Voorbeeld

Je kunt geïnteresseerd zijn in de mate waarin licht en temperatuur invloed hebben op de snelheid van leren. Je kunt voor licht twee condities creëren: geen licht en normaal licht. Voor temperatuur kun je drie soorten temperaturen gebruiken: 10, 20 en 30 graden. Deze condities van de twee factoren moeten vervolgens gecombineerd worden. In totaal zijn er dan zes condities. Dit worden ook wel cellen genoemd, omdat de gecombineerde factoren in een matrix worden weergegeven. Iedere cel staat voor één van de combinaties van de twee factoren. Er is bijvoorbeeld een conditie van 20 graden en geen licht, maar ook van 30 graden en normaal licht. De onderzoeker is geïnteresseerd in drie dingen:

  1. De verschillen in gemiddelden tussen de lichtniveaus.
  2. De verschillen in gemiddelden tussen de temperatuurniveaus.
  3. Verschillen in gemiddelden die ontstaan door een unieke combinatie van een specifieke temperatuur en een specifiek lichtniveau. Een voorbeeld is dat leren heel erg bevorderd wordt wanneer mensen onder normaal licht en in een ruimte met 20 graden moeten leren.

Hoofdeffecten

Factoren krijgen een letter - de factor licht krijgt bijvoorbeeld de letter A en de factor temperatuur krijgt de letter B. Het doel van een experiment is nagaan of deze factoren onafhankelijk of samen zorgen voor verschillen in gemiddelden.
Het gemiddelde van de conditie ‘normaal licht’ wordt gevonden door alle gemiddelde scores op te tellen van de drie temperatuurniveaus die gecombineerd zijn met de conditie ‘normaal licht’. Er zijn dus in totaal drie rijgemiddelden waar het gemiddelde van berekend moet worden. Het gemiddelde van de conditie ‘geen licht’ wordt gevonden door alle gemiddelde scores op te tellen van de drie temperatuurniveaus die gecombineerd zijn met de conditie ‘geen licht’. Er zijn ook in dit geval drie rijgemiddelden waarmee gerekend moet worden. Het verschil tussen deze twee gemiddelden wordt het hoofdeffect voor factor A genoemd.
Daarnaast zijn er drie kolomgemiddelden (van de drie temperatuurniveaus). Het gemiddelde voor de conditie ’10 graden’ wordt gevonden door de het gemiddelde te nemen van de combinatie van ’10 graden met ‘geen licht’ en ‘normaal ‘licht. Dit wordt vervolgens ook gedaan voor de andere twee temperatuurniveaus. De verschillen in gemiddelden tussen deze drie temperatuurniveaus vormen het hoofdeffect van factor B.

Hypothesen

Bij ANOVA met twee factoren moet getoetst worden of de hoofdeffecten A en B significant zijn. Hier zijn dus twee hypothesen aan verbonden.

  1. Voor de factor A is de nulhypothese: µA1 = µA2. Deze hypothese stelt dat er geen significant verschil bestaat tussen de conditie ‘geen licht’ en ‘normaal licht’. De alternatieve hypothese stelt dat er wel een significant verschil bestaat: µA1 ≠ µA2.
  2. Voor factor B is er een vergelijking tussen drie temperatuurniveaus. De nulhypothese stelt: µB1 = µB2 = µB3. De alternatieve hypothese stelt dat ten minste één gemiddelde verschilt van de rest.

Interactie

Met ANOVA voor twee factoren is het ook mogelijk om het unieke effect van combinaties van factorniveaus te bekijken. Een interactie tussen twee factoren ontstaat wanneer de verschillen in gemiddelden tussen individuele niveaus (of cellen) anders zijn dan wat verwacht zou worden op basis van alleen de hoofdeffecten van de factoren. Een voorbeeld is dat mensen heel goed leren onder normaal licht én een temperatuur van 10 graden, terwijl dit effect niet bestaat wanneer er onder normaal licht of een temperatuur van 10 graden wordt geleerd. Ook voor het interactie-effect is er een hypothese bedacht.

  1. De nulhypothese stelt dat er geen interactie is tussen factor A en B. Alle verschillen in gemiddelden tussen condities worden volgens de nulhypothese verklaard door de hoofdeffecten van de twee factoren.
  2. De alternatieve hypothese stelt dat er een interactie tussen de twee factoren bestaat. De verschillen in gemiddelden tussen condities zijn volgens deze hypothese niet (alleen) het gevolg van de hoofdeffecten van de twee factoren.
  3. De bijbehorende F-ratio is: verschillen in gemiddelden die niet verklaard worden door de hoofdeffecten/ verschillen die verwacht worden op basis van toeval of error.

In een grafiek kan een interactie-effect gezien worden. Op de X-as staan bijvoorbeeld drie temperatuurniveaus (10,20 en 30 graden). Op de Y-as staan de gemiddelde scores voor de afhankelijke variabele. Er ontstaan twee lijnen in de grafiek: één voor de temperatuurgemiddelden in combinatie met geen licht en één voor de temperatuurgemiddelden in combinatie met normaal licht. Als er geen interactie is, lopen de lijnen ongeveer op dezelfde manier. Er is in dat geval dus parallelliteit aanwezig. Als de lijnen niet parallel zijn is er juist sprake van interactie.

Toetsing

ANOVA met twee factoren bevat dus drie verschillende hypothesetesten. Allereerst wordt gekeken naar het hoofdeffect van A. Ook wordt gekeken naar het hoofdeffect van factor B. Ten slotte wordt onderzocht of er een interactie-effect bestaat tussen factor A en factor B.

  1. Allereerst wordt de totale variantie opgedeeld in tussengroepsvariantie en binnengroepsvariantie.
  2. Vervolgens wordt de tussengroepsvariantie opgedeeld in variantie van factor A, variantie van factor B en de variantie van de interactie.

Binnen elke conditie worden alle deelnemers hetzelfde behandeld. Verschillen binnen condities kunnen dus niet veroorzaakt worden door effecten van de conditie. De binnengroepsvariantie kan daarom alleen veroorzaakt worden door toeval of error. We hebben daarom drie soorten tussengroepsvariantie nodig (voor factor A, B en de interactie tussen beide) en we hebben een binnen- groepen variantie nodig. Elke van deze varianties wordt bepaald door een SS- waarde en een df- waarde. MS (mean square) = SS/df.

Formules

Het berekenen van de F-waarde voor het hoofdeffect van treatment A en het hoofdeffect van treatment B gaat op precies dezelfde manier als de berekeningen die uitgevoerd worden bij een one-way anova. Het verschil is dus dat je deze berekeningen nu voor twee verschillende treatments uitvoert. Als dit gedaan is, kun je aan de gang met de interactie tussen factor A en B: SSAXB= SSA - SSB. De bijbehorende vrijheidsgraden zijn: dfAXB= df between treatments - dfA – dfB. De MS voor de interactie vinden we als volgt: MSAxB = SSAXB/ dfAXB. De drie F-ratio´s zijn: FA = MSA/ MS within treatments. FB = MSB/ MS within treatments. Tot slot de F-ratio voor de interactie: FAXB = MSAXB/ MS within treatments.

Effectgrootte voor ANOVA met twee factoren

Voor ANOVA gebruiken we de η² (eta-squared) om de proportie verklaarde variantie te berekenen.

  1. Voor factor A is dat: η² = SSA/( SStotal - SSB - SSAXB). Dit is hetzelfde als: SSA/ (SSA + SSwithin treatments).
  2. Voor factor B kan de proportie verklaarde variantie ook gevonden worden: η² = SSB/( SStotal – SSA - SSAXB). Dit is ook hetzelfde als SSB/ (SSB + SSwithin treatments).
  3. Tot slot kan nog de proportie verklaarde variantie voor het interactie-effect berekend worden: η² = SSAxB/(SStotal – SSA - SSB). Natuurlijk is de volgende formule ook goed: SSAXB/ (SSAXB + SSwithin treatments).

De tabel voor een two-way anova

Bron

Vrijheidsgraden

SS

MS

F

A

I-1

SSA

SSA/DFA

MSA/MSE

B

J-1

SSB

SSB/DFB

MSB/MSE

AB

(I-1)(j-1)

SSAB

SSAB/DFAB

MSAB/MSE

Error

N-IJ

SSE

SSE/DFE

 

Totaal

N-1

SST

 

 

Het gebruik van meer dan twee factoren

Het is mogelijk om meer dan twee factoren te gebruiken voor een onderzoek. Als er meer dan drie factoren worden gebruikt worden de resultaten echter onbegrijpelijk en zijn ze lastig te interpreteren. Het is daarom het beste om maximaal drie factoren te gebruiken.

Image

Access: 
Public

Image

Join WorldSupporter!
Search a summary

Image

 

 

Contributions: posts

Help other WorldSupporters with additions, improvements and tips

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.

Image

Spotlight: topics

Check the related and most recent topics and summaries:
Activity abroad, study field of working area:

Image

Check how to use summaries on WorldSupporter.org

Online access to all summaries, study notes en practice exams

How and why use WorldSupporter.org for your summaries and study assistance?

  • For free use of many of the summaries and study aids provided or collected by your fellow students.
  • For free use of many of the lecture and study group notes, exam questions and practice questions.
  • For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
  • For compiling your own materials and contributions with relevant study help
  • For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.

Using and finding summaries, notes and practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Use the summaries home pages for your study or field of study
  2. Use the check and search pages for summaries and study aids by field of study, subject or faculty
  3. Use and follow your (study) organization
    • by using your own student organization as a starting point, and continuing to follow it, easily discover which study materials are relevant to you
    • this option is only available through partner organizations
  4. Check or follow authors or other WorldSupporters
  5. Use the menu above each page to go to the main theme pages for summaries
    • Theme pages can be found for international studies as well as Dutch studies

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study for summaries and study assistance

Main summaries home pages:

Main study fields:

Main study fields NL:

Follow the author: Social Science Supporter
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Statistics
1528