Samenvatting collegeaantekeningen deel 2

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


Collegeaantekeningen bij Thema II: Monogenetische ziekten en overervingspatronen

 

 

HC Monogenetische ziekten en overervingspatronen 1 (6 december 2013)

Er zijn 3 soorten afwijkingen:

  1. Single gene afwijking: er is een mutatie in 1 gen
  2. Chromosomale afwijking: er is een kwalitatieve of een kwantitatieve afwijking van een chromosoom.
  3. Multifactoriële afwijkingen: hierbij zijn meerdere genen betrokken.

 

Een genetische eigenschap kan dominant (sterk/puur dominant, co-dominant en incompleet /semidominant) of recessief zijn. Dominant wordt met een hoofdletter aangegeven en recessief met een kleine letter. Homozygoot betekend dat je 2 dezelfde genen hebt bijvoorbeeld RR of rr en heterozygoot is dan Rr.

 

Begrippen

De specifieke plek van een gen is een locus. Een locus ligt dus op een chromosoom.
Een allel is een gen variant. Wild type is het allel wat het meeste voorkomt. Een variant/mutant wijkt af van het wild type. Dit kan al oud zijn en met de evolutie zijn ontwikkeld; polymorfisme. Het kan ook nieuw zijn: een mutatie. Het fenotype is datgene wat je ziet, het uiterlijk. Het genotype zie je niet; het genoom. Een afwijking die je al vanaf je geboorte hebt noemt men een congenitale afwijking.

 

Penetrantie/All-or-none betekent dat je óf ziek bent óf gezond. Wat hierbij een probleem kan zijn is dat één gen op verschillende manieren tot expressie kan komen. Dit noemt men pleiotropie: 1 mutatie kan tot variabele expressies leiden.

 

Wanneer mutaties op verschillende genen leiden tot hetzelfde fenotype is er sprake van genetische heterogeniteit. Genetische heterogeniteit kan allelisch zijn of locus. Een ander allel maar dezelfde locus noemt allelisch. Wanneer verschillende genen leiden tot hetzelfde fenotype noemt men locus.

 

Wanneer verschillende mutaties in hetzelfde gen leiden tot een ander fenotype noemt men fenotypische heterogeniteit.

 

Sommige ziektes of aandoeningen kunnen overgeërfd zijn. Een ziekte of aandoening kan autosomaal overgeërfd worden of via de geslachtschromosomen (X-linked). Een ziekte die X-linked overgeërfd wordt, komt vaker tot expressie bij mannen dan bij vrouwen. Dit komt door het feit dat vrouwen twee X-chromosomen hebben en een man slechts 1. Wanneer het recessieve allel zich bevindt op het X-chromosoom komt deze dus tot uiting bij de man (XrY), terwijl de vrouw dan draagster van deze ziekte kan zijn (XRXr). Bij een X-linked aandoening zijn er bij een vrouw 3 genotypes mogelijk, bij een man 2.

De meeste aandoeningen komen voor bij de combinatie heterozygoot x recessief homozygoot (Rr x rr). Wat minder vaak voorkomt is de kruising heterozygoot x heterozygoot (Rr x Rr). De kruising homozygoot dominant x heterozygoot (DD x Dd) komt het minst vaak voor. De meeste mutaties bevinden zich dus in dragers.

Bij een horizontale transmissie komt een ziekte/aandoening tot uiting in 1 generatie. Bij een verticale transmissie komt een ziekte/aandoening tot uiting bij meer dan 1 generatie. Bij een diagonale transmissie is er een ongelijke verdeling in de verhouding van de ziekte/aandoening tussen mannen en vrouwen. 

 

HC Monogenetische ziekten en overervingspatronen 2 (6 december 2013)

Wanneer niet in elke lichaamscel een mutatie in de genen heeft plaatsgevonden is er sprake van mozaïek. Mutaties zijn niet altijd stabiel, dit noemt men onstabiele repeat expansions. Wanneer een allel steeds langer wordt generatie op generatie is er sprake van anticipatie. Het fenotype zal dus ook in de loop der generaties sterker tot uiting komen.

Bij uniparentale disomie, komen beide genen van 1 ouder tot uiting. Dit is een afwijking van het normale overervingspatroon. Uniparentale disomie heeft twee vormen; isodisomie en heterodisomie. Bij isodisomie heeft er een fout plaatsgevonden tijdens de meiose 2. Bij heterodisomie heeft er een fout plaatsgevonden tijdens de meiose 1.

Een mitochondrische mutatie komt alleen tot expressie wanneer er veel mutaties zijn in dit DNA en deze mutaties boven een bepaalde drempelwaarde uitkomen. Mitochondrische mutaties worden vaak overgedragen via de moeder. Dit komt doordat de eicel veel groter is dan een zaadcel en een eicel meer bijdraagt aan de mitochondriën van het kind.

 

Hardy Weinberg

Onder bepaalde voorwaarde blijft de genfrequentie binnen een bepaalde generatie constant. Wanneer er in een populatie willekeurige paring plaatsvindt, geen mutaties optreden en de populatie groot genoeg is kan het Hardy Weinberg evenwicht optreden.

Allelfrequentie: p + q = 1

Genotypes: AA + Aa + aa

Genotype frequentie: p2 + 2pq + q2 = 1

Aan de hand van deze formules kan men berekenen hoe groot de kans is dat je een ziekte wel/niet hebt en of je drager bent van deze ziekte.

 

Bayes theorie

Deze theorie gaat uit van 2 regels:

  1. Addition law – wanneer het de ene niet is, dan is het de ander. Wanneer je bijvoorbeeld zwanger bent en het geen jongetje is, dan is het een meisje. 1 + 1 = 2
  2. Muliplication law is een vermenigvuldiging. De kans op bijvoorbeeld een recessieve ziekte tot uiting komt bij een kind met 2 heterozygote ouders (Rr x Rr) is dan ½ x ½ = ¼

Hierbij spelen de vooraf kans en de achteraf kans ook een belangrijke rol.

Bij een monogenetische ziekte kan men dus informatie over de diagnose en de wijze van overerving bekijken aan de hand van stambomen. Aan de hand van deze stambomen kan men dus de risico’s op een ziekte berekenen. Ook kun je berekenen hoe groot de kans is dat je drager bent. Toch kun je niet altijd aan de hand van deze stambomen een beslissing maken, aangezien er altijd spontane mutaties of uniparentale disomie kan ontstaan en je dit niet aan de stambomen kunt aflezen.

 

PD Monogenetische ziekten 1 (6 december 2013)

Hemofilie is een stollingsstoornis. Het is een X-gebonden recessieve aandoening. Bij hemofilie is er sprake van een puntmutatie. De prevalentie is ongeveer 8,5:100.000. Er zijn twee soorten hemofilie. Hemofilie type A, wat in 85% van de gevallen voorkomt, en hemofilie B wat 15% voorkomt. Hemofilie heeft een ernstige, matige en milde variant. In 50% is de hemofilie sporadisch, dat wilt zeggen dat diegene de enige is in de familie die hemofilie heeft.

Hemofilie heeft de volgende ziektebeelden:

  • Spontane bloedingen
  • Geen stolling van het bloed/het bloed stopt niet met bloeden
  • Onderhuidse bloedingen (met name op de knie)
  • Gewrichtsbloedingen wat leidt tot schade van de gewrichten en veel pijn

De behandeling voor hemofilie is het toedienen van stollingsfactoren. Deze behandeling draagt ook risico’s met zich mee, er kunnen namelijk allergische reacties plaatsvinden, infecties kunnen ontstaan of het lichaam gaat antistoffen produceren.

Type A en B

Bij hemofilie type A heeft de patiënt onvoldoende stollingsfactor 8. Bij type B stollingsfactor 9. De reden dat type A veel vaker voorkomt, is het feit dat bij factor 8 26 exonen zijn betrokken en bij factor 9 slechts 8. Factor 9 is dus veel kleiner en zal minder vaak muteren dan factor 8.

Hemofilie kan al in een vroeg stadium van de zwangerschap aangetoond worden door middel van prenatale diagnostiek (vruchtwaterpunctie of vlokkentest).

 

PD Monogenetische ziekten 2 (6 december 2013)

X-linked adrenoleukodystrofie is een stofwisselingsziekte waarbij de myelineschede in de hersenen en ruggenmerg wordt afgebroken. Ook worden de bijnieren aangetast door deze ziekte. De bijnier is vaak beschadigd voordat de neurologische bijwerkingen gaan optreden, hierdoor is de patiënt vaak ziek. Dit komt doordat de bijnier immuunreacties dempt.

Adrenoleukodystrofie heeft de volgende ziektebeelden:

  • Blindheid
  • Doofheid
  • Slikstoornis (hier overlijden de meeste patiënten aan)
  • Hemochromatose (ijzer opstapeling)

Bij adrenoleukodystrofie kan dezelfde mutatie zich op verschillende manieren uiten. Wat het meest voorkomt is dat het aminozuur cystine wordt vervangen door trypsine. Hierdoor wordt het eiwit dat codeert voor het membraan peroxisoom, wat nodig is voor de afbraak van vetzuren niet aangemaakt. Hierdoor worden vetzuren niet/nauwelijks afgebroken.

 

X-linked adrenoleukodystrofie komt vaker voor bij mannen dan bij vrouwen. Dit komt doordat het een X-linked aandoening is. Bij vrouwen is namelijk 1 X chromosoom voor het grootste deel inactief (lyonisatie).

 

Vaak wordt bij adrenoleukodystrofie patiënten een beenmerg getransplanteerd. Hierbij moet eerst de beenmerg van de patiënt leeg worden gemaakt, dit gebeurt met een chemo. Een probleem wat bij een beenmergtransplantatie kan optreden is dat het immuunsysteem van de donor het lichaam van de patiënt aanvalt. Een oplossing voor dit probleem is van te voren te onderzoeken of de donor en de patiënt hetzelfde HLA hebben. HLA zit geclusterd in genen op chromosoom 6. De kans dat je als broer en zus hetzelfde HLA hebt is 25%.

Genetische associatie kan een positieve of een negatieve associatie hebben. Bij een positieve associatie komt de genetische marker frequenter voor bij patiënten. Bij een negatieve associatie komt de genetische marker minder vaak voor bij een patiënt.

 

HC Kansberekeningen (6 december 2013)

Als arts heb je later vaak met kansrekeningen te maken: hoe groot is de kans dat een ex-kanker patiënt over 5 jaar nog steeds gezond is? Hoe waarschijnlijk is de kans iemand met een positieve testuitslag echt ziek is?

Een proportie in een populatie noemt men een kans (P). Het begrip populatie kan heel divers zijn; de hele samenleving, kinderen van 5-6 jaar, 65+ etc. De relevante populatie moet daarom duidelijk zijn in de context.

Het is (meestal) onmogelijk om een hele populatie te bestuderen, daarom wordt er vaak gebruik gemaakt van een steekproef. Een steekproef is een willekeurige trekking uit de populatie. Bij een steekproef geldt de ‘Wet van grote aantallen’. Een grote steekproef geeft een meer reëel beeld van de werkelijke populatie dan een kleinere steekproef. Vervolgens wordt de uitslag van een steekproef met behulp van statistiek vergeleken met de populatie.

Een voorwaardelijke kans is de proportie in een deelpopulatie. Men kijkt hier bijvoorbeeld alleen naar patiënten met een positieve test uitslag die daadwerkelijk ziek was. Je berekent de voorwaardelijke kans doormiddel van de formule:

P(A/B) = aantal (A & B) / aantal (B)

Een andere notatie voor deze formule is:

P(A/B) = P(AB) / P(B)

Je moet goed opletten met deze formule, wanneer je namelijk A en B omwisselt krijg je een hele andere uitkomst, bijvoorbeeld: P(messi | voetballers) is heel klein, de kans is namelijk heel klein dat je Messi bent. De kant P(voetballers | messi) is heel groot namelijk 1, aangezien hij een voetballer is.

 

De regel van Bayes

Doormiddel van Bayes kan je uit P(A|B) P(B|A) berekenen. Volgens deze formule:

P(A|B) = P(B|A) P(A)   /    P(B|A) P(A) + P(B|niet A)P(niet A)

Wanneer je met een diagnostische test werkt kunnen er 2 fouten voorkomen: fout positieve en fout negatieve.

Hierbij wordt gekeken naar de specificiteit (terecht negatieve) en de sensitiviteit (terecht positieve). Wanneer beide waarden hoog zijn, heb je een goede test. Daarnaast wordt er gekeken naar de positief voorspellende waarde (de kans dat je met een positieve uitslag echt ziek bent) en de negatief voorspellende waarde (De kans dat je met een negatieve uitslag niet ziek bent). De positief en negatief voorspellende waarden zijn niet test gebonden, maar verschillen bij populaties. Hierdoor kan een test met een hoge specificiteit en een hoge sensitiviteit toch zorgen voor een lage positief voorspellende waarde.

De volgende formule ontstaat:

Positief voorspellende waarde = sensitiviteit x prevalentie / (sensitiviteit x prevalentie + (1-specitifiteit) x (1-prevalentie)

Wanneer je moeite hebt met het rekenen aan de hand van formules kun je ook een tabel maken.

Bij een numerieke waarneming ga je uit van een normaal verdeling. Veel gegevens bevatten een gemiddelde waarde en maxima en minima. De gemiddelde (μ) bepaalt het centrum van de grafiek  en de standaarddeviatie (sd) (σ) de spreiding. De kans op een bepaalde waarde is dan de oppervlakte onder de grafiek. Hiermee kan je oefenen in de e-learning (blackboard).

In een normaal verdeelde populatie ligt altijd 95% van de populatie tussen:  μ-2σ en   μ+2σ. Dit wordt de normaalwaarde/referentie waarde genoemd.

A en B zijn onafhankelijk van elkaar wanneer het voorkomen van A niet leidt tot een ander voorkomen van B. Wanneer A en B onafhankelijk zijn van elkaar mag je A en B met elkaar vermenigvuldigen. Dit zie je bijvoorbeeld terug in de Hardy Weinberg, waarbij de genen onafhankelijk zijn van elkaar en in families waarbij de allelen onafhankelijk zijn.

Sommige kansen gaan via tellingen, hoe groot is de kans op een blond kind in een gezien met 4 kinderen? Dit noem je dan een binomiale verdeling.

 

 

Collegeaantekeningen bij Thema III: DNA-replicatie, -transcriptie, -repair en –recombinatie

 

Hoorcollege DNA Replicatie en Transcriptie (11 december 2013)

 

DNA wordt omgezet in mRNA wordt omgezet in Eiwit

Het centrale dogma houdt in dat ons erfelijk materiaal gecodeerd wordt door het DNA, maar dat in onze cellen de meeste functies worden uitgevoerd door eiwitten en door RNA. Om van het DNA tot eiwitten te komen, wordt het DNA, waar de boodschap in gecodeerd ligt, afgelezen. Het mRNA zorgt er vervolgens voor dat er eiwitsynthese plaats kan vinden. Het omzetten van DNA naar RNA gebeurd door transcriptie (=overschrijving van nucleotiden) en de eiwitsynthese vindt plaats door translatie (=vertaling in aminozuren).

 

Nucleotiden
De bouwstenen van DNA en RNA zijn nucleotiden. Nucleotiden zijn opgebouwd uit drie componenten: een base, een ribose-molecuul en een fosfaatgroep. DNA en RNA verschillen in de hydroxylgroep die bij het RNA (ribonucleic acid) op het 2de C-atoom van het ribose-molecuul zit. Bij DNA (deoxyribonucleic acid) zit daar alleen een waterstofatoom. Het tweede verschil is dat bij RNA op elke plek van een Thymine een Uracil is ingebouwd. De basen zijn opgesplitst in twee soorten: purinen (adenine en guanine) en pyrimidinen (thymine, cytosine en uracil). De basen paren met de ‘andere soort’ A met T of U en G met C. Purines zijn opgebouwd uit twee ringen en zijn wat groter dan de pyrimidines die opgebouwd zijn uit een enkele ring.

 

Replicatie
DNA replicatie is het polymeriseren van de nucleotiden waardoor er een lange keten wordt aangemaakt. DNA wordt gesynthetiseerd in de 5` naar de 3` richting en gebeurd semiconservatief (de dubbele helix in de dochtercellen bestaat uit een oude en een nieuwe enkele helix). De 5’ naar een 3’ richting wordt zo genoemd omdat DNA wordt gesynthetiseerd vanaf de fosfaatgroepkant naar de hydroxylgroepkant van het 5de C-atoom naar het 3de C-atoom op het ribose molecuul.

Aan elke oude strand (enkele DNA streng) wordt een nieuwe strand gekoppeld die complementair is. Elke keer wordt de hydroxylgroep van de bestaande keten gekoppeld aan de (tri)fosfaatgroep van de nieuwe geïndiceerde nucleotide. De energie die nodig is om te polymeriseren zit in die trifosfaatgroep. De verbinding (3 waterstofbruggen) tussen het G-C basenpaar is sterker dan de verbinding (2 waterstofbruggen) tussen het A-T basenpaar. Er is dus meer energie nodig om het G-C basenparen te verbreken. Ons genoom is voornamelijk A-T rijk, dat heeft er waarschijnlijk te maken met dat het DNA dan gemakkelijker opengemaakt kan worden voor de replicatie.

Als het DNA wordt gerepliceerd door DNA polymerase wordt het door dat eiwit ook meteen gecontroleerd, dit heet proofreading. Dit zou niet mogelijk zijn als het DNA van 3’ naar 5’ werd gesynthetiseerd, omdat dan geen energie meer in de fosfaatgroep zit bij herstel.

DNA replicatie begint bij de ‘origin of replication’. Er is een veelvoud van deze ‘origins of replication’ verspreid over het genoom. Initiator eiwitten binden aan deze ‘origins of replication’ en openen de helix (helicase). Het single strand DNA kan vervolgens gebruikt worden voor DNA synthese. In het begin van de S-fase vind deze opening van de helix plaats. Dit gebeurt op ongeveer 10.000 plekken in het menselijk genoom. Bij het begin van de synthese wordt door primase een RNA primer geplaatst waaraan polymerase kan hechten en zo de streng kan verdubbelen. De leading strand heeft een continue doorlopende synthese terwijl de lagging strand in stukjes (okazaki fragmenten) gesynthetiseerd wordt. Hiervoor wordt steeds een RNA primer geplaatst waaraan vervolgens een stukje DNA wordt aangebouwd tot het de vorige RNA primer tegenkomt. Deze primer wordt dan verwijdert door een nulease (RNAse). Daarna wordt deze ruimte weer opgevuld door repair polymerase (wat bind aan het einde van het vorige okazaki fragment) tot het begin van het volgende okazaki fragment. Ligase lijmt de twee stukken vervolgens aan elkaar.

Topoisomerase is een eiwit dat ervoor zorgt dat de stress die ontstaat bij het ontwinden van het DNA tijdens replicatie weer wordt weggehaald. Topoisomerase maakt breuken in een DNA streng zodat de spanning eraf kan. Deze breuk wordt vervolgens weer aan elkaar gelijmd.

De sliding clamp is een ringvormige co-factor van DNA polymerase. De sliding clamp zit als ringstructuur om het DNA heen en houdt het DNA polymerase vast bij het DNA.

 

DNA polymertisatie in vitro = Polymerase chain reaction (PCR)

Het principe van PCR is van een klein specifiek stukje DNA heel veel maken. Het dubbelstrengs DNA wordt eerst ontwonden (94 graden). Vervolgens worden er specifieke DNA primers toegevoegd, die complementair zijn aan gebied waarin je geïnteresseerd bent. Vervolgens wordt de temperatuur optimaal gemaakt (55 graden) gemaakt, zodat alleen de primers kunnen binden aan het substraat (nucleotiden) en er geen andere bindingen ontstaan. Vervolgens worden er polymerases en nucleotiden toegevoegd en wordt de temperatuur op 72 graden gebracht. Nu kan het specifieke stukje dat je wilt bekijken gepolymeriseerd worden. Deze reactie kan worden herhaald en zo ontstaat er een exponentiele curve per cyclus van het aantal gepolymeriseerde fragmenten van het genoom.

 

Toepassing van PCR:

  • Forensisch onderzoek
  • Scheiden op grootte door middel van gelelectroforese (DNA – fingerprinting)
  • Sequencing, de basenpaarvolgorde bepalen
  • Prenatale diagnostiek (Klinefelter, syndroom van Bloom etc.)
  • Detectie pathogenen
  • Biomedisch onderzoek

 

Transcriptie
Transcriptie is de synthese van RNA door RNA polymerase. Het proces lijkt erg op replicatie alleen zijn de basen anders. Bij prokaryoten zijn er specifieke DNA volgordes die het RNA polymerase ‘vertellen’ waar de transcriptie moet beginnen (promotor) en stoppen (terminator). De sigma factor herkent deze plekken. Bij Eukaryoten zijn er ook factoren die aangeven waar transcriptie moet beginnen. De TATA box zorgt ervoor dat de transcriptiefactoren kunnen binden. Er zijn ook nog andere activatoreiwitten die de binding bevorderen of bemoeilijken. chromatine ‘remodeling’ complexes en histon modifying enzymes zorgen dat het DNA zo is opgerold dat het gen juist wel of niet kan worden afgelezen. Het DNA kan ook gemodificeerd worden door methylering van cytosine hierdoor worden grotere delen van het DNA geïnactiveerd en dit wordt ook doorgegeven na de deling.

 

Het ontstane pre-RNA moet nog afgemaakt worden. Aan een het 5’ uiteinde wordt een cap toegevoegd (additie 7-methylguanosine). De functie van de 5’ cap is bescherming en transport van het mRNA. RNA splicing zorgt ervoor dat de niet-coderdende gedeeltes (intronen) eruit worden geknipt en er alleen exonen overblijven. Tot slot treedt er polyadenilatie op aan het 3’ uiteinde (poly A-staart).

 

Alternatieve splicing (hierbij worden ook coderende exonen gespliced) zorgt ervoor dat er een variatie van eiwitten per gen kunnen worden gemaakt. Specifieke sequenties in introns geven aan waar er gespliced moet worden. Wanneer het RNA is afgemaakt kan het uit de celkern worden getransporteerd.

 

 

Hoorcollege Repair I en II (11 december 2013)

 

Het menselijk lichaam heeft 1014 cellen en er worden 1016 cellen omgezet in een leven. Het menselijk genoom heeft 6x109 basenparen en dus 6x1025 basenparen worden gekopieerd. Een celdeling kost 5 uur en er wordt minder dan 1 fout gemaakt. Zonder fouten in de deling is er geen evolutie. Dat is positief voor een soort, maar niet altijd voor een individu.

 

Mutatie: permanente verandering in het DNA die wordt doorgegeven aan dochterscellen of nageslacht.

 

Genoommutatie: het verliezen of verkrijgen van chromosomen.

 

Chromosoom mutatie: een translocatie (verplaatsing) of een inversie (omkering).

 

Genmutatie: een substitutie (verkeerd base paar), een insertie (extra base paren) of een deletie (verlies van base paren).

 

Stille mutatie: veroorzaakt geen verandering van aminozuur.

 

Missense mutatie: verandert aminozuur, dit kan positieve of negatieve of geen effect hebben op het eiwit.

 

Nonsense mutatie: een stopcodon wordt geplaatst, dit heeft meestal negatieve gevolgen op het eiwit.

 

Frameshift mutatie: een insertie of deletie verschuift het ‘frame’ alle aminozuren worden anders dit resulteert meestal in een voortijdig stopcodon en een niet functioneel eiwit.

 

Mutaties in niet coderend DNA kunnen ook ziektes veroorzaken, een fout in:

  • promotor: meer of minder transcriptie van een eiwit
  • regulator element: verstoort regulatie
  • 5’UTR/3’UTR: beïnvloed de stabiliteit van het mRNA of de translatie
  • splice recognition sequence: geen correcte splicing

 

Als de mutatie germ-line is geeft de persoon deze door aan zijn nageslacht hij heeft dan deze mutatie in alle cellen. Somatische mutaties treden pas na de bevruchting op, deze bevinden zich in een deel van de cellen en worden niet doorgegeven aan het nageslacht.

 

Oorzaken:

Tijdens replicatie worden de fouten in het DNA worden door proofreading verminderd van 1 op 105 naar 1 op 107. De mismatch repair haalt hier nog eens 99% van de fouten weg wat minder dan 1 op 109 fouten maakt. Als mismatchrepair niet werkt krijg je sneller kanker, dit uit zich in de darmen omdat dat weefsel snel delend is. Dit is het Lynch syndroom.

 

De fouten kunnen ook worden veroorzaakt door beschadigingen: levensstijl, milieu, medische handelingen en voedsel hebben hier invloed op. UV-licht kan een binding tussen pyrimidines veroorzaken, waardoor deze niet meer goed herkend worden, Translesion synthesis polymerase (TLS) zet hier dan een willekeurige base tegenover.

 

Door chemische schade verlies je 10.000 basen per dag door:

  • depurinatie: een purine (G of A) reageert met water en gaat daardoor los van de deoxyribose, je verliest deze base.
  • deaminatie: C reageert met water en daardoor splitst een methylgroep af en veranderd de cytosine in uracil. Hierna wordt de verkeerde base ingebouwd.

 

Schade kan worden gerepareerd, een mutatie niet meer. Het is dus belangrijk om de schade te herstellen voor replicatie. Base excisie herstel: uracil wordt weggehaald, de suikerfosfaat binding wordt verbroken en ligase bouwt een nieuwe C in (complementair aan de A ertegenover). Zonder dit herstel is er geen leven mogelijk.

 

Nucleotide excisie herstel: C en T aan elkaar gebonden verstoren de helix, worden met een stuk eromheen weggeknipt uit het DNA, dan wordt dat weer aangevuld aan de hand van de informatie op de andere streng. Zonder dit herstel krijg je huidkanker.

Een andere ernstige vorm van schade is een breuk in beide DNA strengen. Dit kan worden gerepareerd door Non-homologous End Joining (NHEJ). Hierbij gaat er informatie verloren en krijg je een deletie en dus zeker mutaties. Een ingewikkeldere manier is: Homologous Recombination (HR). Hierbij wordt gebruikgemaakt van de zusterchromatiden of van homologe chromatiden. De strengen worden dan verlengt aan de hand van deze chromatiden omdat alle informatie dubbel in het DNA zit is dat mogelijk. Hierbij ontstaat er geen schade. Van dit proces wordt ook gebruik gemaakt bij cross-over tijdens de meiose. Er wordt dan een breuk gemaakt en deze wordt dan aan de andere homologe chromatide vast gemaakt, hierdoor wordt informatie uitgewisseld. Als twee stukken echter erg op elkaar lijken kan het worden gerepareerd aan de hand van het verkeerde stuk. Als er dan recombinatie optreedt veroorzaakt dat een inversie en een deletie. Dit is bij grote stukken niet levensvatbaar en bij kleine stukken kan het ziekte veroorzaken.

 

 

PD Familiaire tumoren (11 december 2013)

 

Mevrouw op haar 21 darmkanker geconstateerd en zeer veel poliepen. Eerst is het stuk met de tumor verwijderd, later haar hele dikke darm. Nu moet ze nog regelmatig op controle en moet ze haar eetgedrag aanpassen, licht verteerbaar en overgevoelig voor bepaald voedsel, verder moet ze moeite doen om op gewicht te blijven. Ze heeft het MAP een recessief overerfbare aandoening. Haar ouders zijn beide drager.

 

Het MUTYH-gen is hierbij aangedaan en dit heeft tot gevolg dat het mismatch repair systeem niet meer werkt hierdoor komen er veel meer mutaties in de cellen en dat veroorzaakt kanker in sneldelende weefsels zoals de darmen, de baarmoeder en de eierstokken. Bij deze ziekte krijg je periodieke controles, eens in de 2 jaar een colonoscopie en elke 1 tot 5 jaar een gastroduodenoscopie (maag en twaalfvingerige darm). Als de dikke darm wordt verwijderd kan er een pouch worden gemaakt uit wat lussen van de dunne darm die de endeldarm vervangt. MUTYH-gen is een autosomaal recessieve overerving op chromosoom 1 en het is een fout in het base excision repair. De tumor is slijmrijk en vol ontstekingscellen. Je hebt een betere overlevingskans door aanpassingen dan bij normale kanker.

 

Lynch syndroom (HNPCC) kan naast darmkanker ook kanker in het endometrium, ovarium en de urinewegen geven. Hier is één van de vier mismatch repair eiwitten gemuteerd en werkt het systeem daardoor niet meer. Dit veroorzaakt microsatelliet instabiliteit (MSI) repeterende groepen worden dan niet goed overgeschreven en zo worden het minder of meer herhalingen.

Bij deze ziekte krijg je vanaf 25 jaar elke 2 jaar een colonoscopie. Ook wordt op de baarmoeder gelet. Deze ziekte is dominant.

Access: 
Public
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Image

Comments, Compliments & Kudos:

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Check how to use summaries on WorldSupporter.org


Online access to all summaries, study notes en practice exams

Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Starting Pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
  2. Use the menu above every page to go to one of the main starting pages
  3. Tags & Taxonomy: gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
  4. Follow authors or (study) organizations: by following individual users, authors and your study organizations you are likely to discover more relevant study materials.
  5. Search tool : 'quick & dirty'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject. The search tool is also available at the bottom of most pages

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study (main tags and taxonomy terms)

Field of study

Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
602