Article summary of Hierarchical models of object recognition in cortex by Riesenhuber & Poggio - Chapter
Recognition of visual objects
The recognition of visual objects is fundamental. Research often takes place with a repeated cognitive task with two essential requirements: invariance and specificity. Cells from the inferotemporal cortex (IT, the highest visual area in the ventral visual pathway) appear to play a key role in object recognition. The cells respond to what one sees with complex objects such as faces. Certain neurons respond specifically to certain faces and not to other faces. The question remains: how can they respond to different faces while the stimulus offer is practically the same in the retina?
This is also reflected in the striate cortex in cats. Both simple and complex cells respond to a presented bar. For example, it appears that the small simple cells have narrow receptive fields that are strongly position-dependent and that the complex cells have large receptive fields and are not position-dependent. Hubel and Wiesel have made a model in which the simple cells respond as if they are neighbor cells. Where cells that sit next to each other also see the world next to each other. So you often see a group of cells firing together. A direct follow-up of this model leads to a higher-order-complex cells scheme.
Cells in the V4 can control their attention and they can respond to an adaptation in their receptive field. There is little evidence that this mechanism is used to translate invariant object recognition. Invariance of each transformation can be built up by converting afferent cells with different variations of the same stimulus. Evidence has now been found that groups of cells that respond to whole or partial vision are learned through a learning process. The vision invariance problem can then be presented by a small number of neurons. This idea gives us two problems.
Problem 1
In monkeys, it is that learning (for them) unknown stimuli (such as faces) is possible because they learn a part of the invariant via just one view of the object. If this object is presented with a lot of distractor objects around it, it can be learned in combination with these objects. The cells thus become invariant at other positions.
Problem 2
The model does indicate how view tuned units (VTU, groups that fire at a specific object) are built, but not how they arise.
Results
The model is based on a simple hierarchical feedforward architecture. It is assumed that the structure reflects the invariance and that characteristic specificity must be built up from different mechanisms. The pooling mechanism should provide robust feature detectors. This means that it must allow detection on specific characteristics without getting confused by clutter or context in the receptive field.
There are two alternatives to a pooling mechanism.
Linear addition = SUM.
Equal weights are hereby weighed. Responses to a complex cell are invariant as long as the stimulus remains in the receptive field of the cell. However, there is no response as to whether there actually is a bar in the receptive field. The output signal is the sum of the afferent cells and so there is no characteristic specificity.
Non-linear maximum operation = MAX.
The strongest afferent cell determines the postsynaptic response. With MAX, the response is determined by determining the most active afferent cell and this signal is seen as the best match for a portion of the stimulus. This makes MAX respond better.
In both cases, the response of a complex cell is invariant to the bar on the receptive field. A non-linear MAX function is a good way that correctly describes the pool when invariant. This includes implicit scanning of afferent cells of the same type. The strongest is then selected from the cells that respond and this is the most consistent with the invariance. Pooling combinations of afferent cells provides a mixed signal caused by different stimuli.
MAX systems are comparable in some respects to neurophysiological data. For example, if two stimuli are offered in the receptive field of an IT neuron, then the neuron's response is dominated by the stimulus that receives the most responses separately. This corresponds to how the MAX model predicts when it comes to afferent neurons. A number of studies provide support for the MAX model. These studies often find a high non-linear tuning of IT cells. This corresponds to the MAX response function. A linear model cannot make such strong changes with a small change in input.
In some cases, clutter can cause the value to change from the MAX function. The quality of the match in the final phase has then changed, so that the power of the VTU response is also different. A solution for this is to add more specific characteristics. Simulations have shown that this model is able to recognize objects in a context.
The MAX model can be used well to describe brain processes. MAX responses are probably from cortical microcircuits in lateral inhibition between neurons in the cortical layer. In addition, the MAX response is important for object recognition.
Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>
Contributions: posts
Spotlight: topics
Online access to all summaries, study notes en practice exams
- Check out: Register with JoHo WorldSupporter: starting page (EN)
- Check out: Aanmelden bij JoHo WorldSupporter - startpagina (NL)
How and why use WorldSupporter.org for your summaries and study assistance?
- For free use of many of the summaries and study aids provided or collected by your fellow students.
- For free use of many of the lecture and study group notes, exam questions and practice questions.
- For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
- For compiling your own materials and contributions with relevant study help
- For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.
Using and finding summaries, notes and practice exams on JoHo WorldSupporter
There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.
- Use the summaries home pages for your study or field of study
- Use the check and search pages for summaries and study aids by field of study, subject or faculty
- Use and follow your (study) organization
- by using your own student organization as a starting point, and continuing to follow it, easily discover which study materials are relevant to you
- this option is only available through partner organizations
- Check or follow authors or other WorldSupporters
- Use the menu above each page to go to the main theme pages for summaries
- Theme pages can be found for international studies as well as Dutch studies
Do you want to share your summaries with JoHo WorldSupporter and its visitors?
- Check out: Why and how to add a WorldSupporter contributions
- JoHo members: JoHo WorldSupporter members can share content directly and have access to all content: Join JoHo and become a JoHo member
- Non-members: When you are not a member you do not have full access, but if you want to share your own content with others you can fill out the contact form
Quicklinks to fields of study for summaries and study assistance
Main summaries home pages:
- Business organization and economics - Communication and marketing -International relations and international organizations - IT, logistics and technology - Law and administration - Leisure, sports and tourism - Medicine and healthcare - Pedagogy and educational science - Psychology and behavioral sciences - Society, culture and arts - Statistics and research
- Summaries: the best textbooks summarized per field of study
- Summaries: the best scientific articles summarized per field of study
- Summaries: the best definitions, descriptions and lists of terms per field of study
- Exams: home page for exams, exam tips and study tips
Main study fields:
Business organization and economics, Communication & Marketing, Education & Pedagogic Sciences, International Relations and Politics, IT and Technology, Law & Administration, Medicine & Health Care, Nature & Environmental Sciences, Psychology and behavioral sciences, Science and academic Research, Society & Culture, Tourisme & Sports
Main study fields NL:
- Studies: Bedrijfskunde en economie, communicatie en marketing, geneeskunde en gezondheidszorg, internationale studies en betrekkingen, IT, Logistiek en technologie, maatschappij, cultuur en sociale studies, pedagogiek en onderwijskunde, rechten en bestuurskunde, statistiek, onderzoeksmethoden en SPSS
- Studie instellingen: Maatschappij: ISW in Utrecht - Pedagogiek: Groningen, Leiden , Utrecht - Psychologie: Amsterdam, Leiden, Nijmegen, Twente, Utrecht - Recht: Arresten en jurisprudentie, Groningen, Leiden
JoHo can really use your help! Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world
1065 |
Add new contribution