How does multiple regression with both quantitative and categorical predictors work? – Chapter 13

13.1 What do models with both quantitative and categorical predictors look like?

Multiple regression is also feasible for a combination of quantitative and categorical predictors. In a lot of research it makes sense to control for a quantitative variable. A quantitative control variable is called a covariate and it is studied using analysis of covariance (ANCOVA).

A graph helps to research the effect of quantitative predictor x on the response y, while controlling for the categorical predictor z. For two categories, z can be the dummy variable, else more dummy variables are required (like z1 and z2). The values of z can be 1 ('agree') or 0 ('don't agree'). If there is no interaction, the lines that fit the data best are parallel and the slopes are the same. It's even possible that the regression lines are exactly the same. But if they aren't parallel, there is interaction.

The predictor can be quantitative and the control variable can be categorial, but this can also be the other way around. Software compares the means. A regression model with three categories is:: E(y) = α + βx + β1z1 + β2z2, in which β is the effect of x on y for all groups z. For every additional quantitative variable a βx is added. For every additional categorical variable a dummy variable is added (or several, depending on the number of categories). Cross-product terms are added in case of interaction.

13.2 Which inferential methods are available for regression with quantitative and categorical predictors?

The first step to making predictions is testing whether a model needs to include interaction. A F-test compares a model with cross-product terms to a model without. For this the F-test uses the partial sum of squares; the variability in y that is explained by a certain variable when the other aspects are already accounted for. The null hypothesis says that the slopes of the cross-product terms are 0, the alternative hypothesis says that there is interaction. In a graph, interaction looks like this:

Another F-test checks whether a complete or a reduced model is better. To compare a complete model (E(y) = α + βx + β1z1 + β2z2) with a reduced model (E(y) = α + βx), the null hypothesis is that the slopes β1 and β2 both are 0. The complete model consists of three parallel lines, the reduced model only has one line. When P is small, then there is much evidence against the null hypothesis and then the complete model fits the data significantly better. The multiple coefficient of determination R2 indicates how well the possible regression lines predict y and helps compare the complete with the reduced model. In a graph:

13.3 In what kind of case studies is multiple regression analysis required?

Case studies often start with the desire to research the effect of an explanatory variable on a response variable. Throughout the research, predictors are added, sometimes confounding predictors, sometimes mediating predictors.

13.4 How do you use adjusted means?

An adjusted mean or least squares mean is the mean of y for a group while controlling for the other variables in the model. The other variables are kept at a mean, so the value of the adjusted mean can be researched. When an outlier has too big of an influence on the mean, this outlier can be left out and the adjusted mean can be calculated.

The adjusted mean is indicated with an accent. The adjusted sample mean of group i is:

The coefficients equal the differences between the adjusted means. Due to the adjusted mean, the regression line of the sample mean shifts upward or downward. The Bonferroni method allows multiple comparisons of adjusted means using confidence intervals with a shared error rate.

Adjusted means are less appropriate if the means for x are very different. Using adjusted means only should be done if it makes sense that certain groups would be distributed in a certain way and if the linear shape is unchanged.

13.5 What does a linear mixed model look like?

Factors with a limited number of outcomes (like vegetarians, vegans and meat eaters) are fixed effects. Random effects on the other hand are factors of which the outcomes happen randomly (like the characteristics of research subjects). Linear mixed models have explanatory variable with both fixed effects and random effects.

A regular regression model can express the equation per subject, for instance with the value xi1 of variable x for subject i: yi = α + β1xi1 + β2xi2 + … + βpxip + ϵi. The error term ϵ is the variability of the responses of subjects for certain values of the explanatory variables. The sample value of this is the residual for subject i. Because the error term is expected to be 0, it is removed from the equation of E(yi).

A linear mixed model can handle multiple correlated observations per subject: yij = α + β1xij1 + β2xij2 + … + βpxijk + si + ϵ ij. In this yij is observation j (at a certain time) of subject i. For variable x1 the observation j of subject i is written as xij1 and a random effect of subject i is si. A subject with a high positive si has relatively high responses for each j. The fixed effects are the parameters (β1 etc).

The structure gives information about the character of the correlation in the model. When the correlations between all possible pairs of observations of the explanatory variables are equal, there is compound symmetry. When in longitudinal research the observations are more correlated around the start, it's an autoregressive structure. When assumptions about the pattern of correlation are best avoided, it's called unstructured. An intraclass correlation means that subjects within a group are alike. The random effects aren't just subjects, they can also be clusters of similar subjects.

The advantages of linear mixed models compared to repeated measures ANOVA is that they make less assumptions and that the consequences of missing data are less severe. When data is missing randomly, bias doesn't need to happen. Linear mixed models can be extended and twisted in all sorts of ways, even for special kinds of correlation.

 

Image

Access: 
Public

Image

Join WorldSupporter!
Search a summary

Image

 

 

Contributions: posts

Help other WorldSupporters with additions, improvements and tips

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.

Image

Spotlight: topics

Check the related and most recent topics and summaries:
Institutions, jobs and organizations:
Activity abroad, study field of working area:

Image

Check how to use summaries on WorldSupporter.org

Online access to all summaries, study notes en practice exams

How and why use WorldSupporter.org for your summaries and study assistance?

  • For free use of many of the summaries and study aids provided or collected by your fellow students.
  • For free use of many of the lecture and study group notes, exam questions and practice questions.
  • For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
  • For compiling your own materials and contributions with relevant study help
  • For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.

Using and finding summaries, notes and practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Use the summaries home pages for your study or field of study
  2. Use the check and search pages for summaries and study aids by field of study, subject or faculty
  3. Use and follow your (study) organization
    • by using your own student organization as a starting point, and continuing to follow it, easily discover which study materials are relevant to you
    • this option is only available through partner organizations
  4. Check or follow authors or other WorldSupporters
  5. Use the menu above each page to go to the main theme pages for summaries
    • Theme pages can be found for international studies as well as Dutch studies

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study for summaries and study assistance

Main summaries home pages:

Main study fields:

Main study fields NL:

Follow the author: Annemarie JoHo
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Statistics
2111