What is RNA interference?

RNA interference, often abbreviated as RNAi, is a remarkable biological process where small RNA molecules act as cellular volume knobs, regulating gene expression by silencing specific genes. It's a natural defense mechanism found in many organisms, including plants and animals, and has become a powerful tool in molecular biology research.

What are the key features of RNA interference?

  • Double-Stranded RNA (dsRNA): The trigger for RNAi is typically double-stranded RNA. This can be introduced into the cell experimentally or be a product of viral infection or transposon (jumping gene) activity.
  • Dicer Enzyme: An enzyme called Dicer chops the dsRNA into tiny snippets known as small interfering RNAs (siRNAs), typically 21-23 nucleotides long.
  • RISC Complex: These siRNAs are then loaded onto a protein complex called the RNA-induced silencing complex (RISC).
  • Target Recognition: The single-stranded siRNA within RISC guides the complex to a complementary sequence on a messenger RNA (mRNA) molecule.
  • Gene Silencing: Through various mechanisms, RISC facilitates the degradation or translational repression of the targeted mRNA, effectively preventing the production of the protein encoded by that gene.

What is the importance of RNA interference?

  • Gene Regulation: RNAi provides a powerful tool to study gene function by specifically silencing genes and observing the resulting effects on the cell or organism.
  • Therapeutic Potential: RNAi holds immense promise for developing new therapies by targeting genes involved in diseases like cancer, viral infections, and neurodegenerative disorders.
  • Functional Genomics: It facilitates the exploration of gene networks and understanding how genes interact with each other to control various cellular processes.

What are applications of RNA interference in practice?

  • Functional Studies: Researchers use RNAi to silence specific genes and analyze the resulting changes in cell behavior, protein expression, or developmental processes.
  • Drug Discovery: RNAi can be used to identify and validate potential drug targets by silencing genes and assessing the effect on disease phenotypes.
  • Gene Therapy: Scientists are exploring the use of RNAi to silence disease-causing genes directly within patients, offering a potential new approach to treatment.

Practical example

Imagine researchers are studying a specific gene suspected to be involved in uncontrolled cell division in cancer. They can introduce siRNA molecules targeting this gene into cancer cells. If the siRNA effectively silences the gene, the researchers might observe a decrease in cell proliferation, suggesting the targeted gene plays a crucial role in cancer cell growth. This knowledge can be used to develop drugs that target the same gene pathway for cancer treatment.

Critical remarks

  • Off-Target Effects: siRNAs might accidentally bind to unintended mRNA sequences, leading to silencing of non-target genes. Careful design and validation of siRNAs are crucial.
  • Delivery Challenges: Delivering RNAi molecules efficiently and specifically to target tissues or cells remains a challenge, especially for in vivo applications.
  • Limited Efficiency: The effectiveness of RNAi can vary depending on the cell type and target gene. Sometimes, complete silencing might not be achievable.
Access: 
Public
Check more of this topic?
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Image

Click & Go to more related summaries or chapters:

Study guide with flashcards and definitions with Genomics at Utrecht University

Flashcards and definitions with Genomics

Online flashcards with Genomics

  • Centromere
  • Chromatides
  • Chromosomes
  • Sex chromosomes
  • Asexual reproduction
  • Sexual reproduction
  • Mitosis
  • Meiosis
  • Genomics
  • Transcriptomics
  • Proteomics
  • Metabolomics
  • Plasmid
  • Polymerase Chain Reaction
  • Next Generation Sequencing
  • Sanger sequencing
  • RNA-sequencing
  • CRISPR-Cas9
  • Forward genetic screens
  • Reverse genetic screens
  • RNA interference
  • Bioinformatics
  • DNA replication
  • DNA mutation
  • Evolution
  • Horizontal gene transfer (HGT)
  • Virus
  • Microsatellites
  • Basic Local Alignment Search Tool (BLAST)
  • Findable, Accessible, Interoperable, and Reusable data (FAIR data)
  • Phylogenetic tree
  • Insertion
  • Deletion
  • For flashcards and definitions, see the supporting content of this study guide
Access: 
Public

Genomics: The best concepts summarized

Genomics: The best concepts summarized

Table of contents

  • Centromere
  • Chromatides
  • Chromosomes
  • Sex chromosomes
  • Asexual reproduction
  • Sexual reproduction
  • Mitosis
  • Meiosis
  • Genomics
  • Transcriptomics
  • Proteomics
  • Metabolomics
  • Plasmid
  • Polymerase Chain Reaction
  • Next Generation Sequencing
  • Sanger sequencing
  • RNA-sequencing
  • CRISPR-Cas9
  • Forward genetic screens
  • Reverse genetic screens
  • RNA interference
  • Bioinformatics
  • DNA replication
  • DNA mutation
  • Evolution
  • Horizontal gene transfer (HGT)
  • Virus
  • Microsatellites
  • Basic Local Alignment Search Tool (BLAST)
  • Findable, Accessible, Interoperable, and Reusable data (FAIR data)
  • Phylogenetic tree
  • Insertion
  • Deletion
Access: 
Public
This content refers to .....
Summaries and Study Assistance - WorldSupporter Start
Comments, Compliments & Kudos:

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Promotions
vacatures

JoHo kan jouw hulp goed gebruiken! Check hier de diverse studentenbanen die aansluiten bij je studie, je competenties verbeteren, je cv versterken en een bijdrage leveren aan een tolerantere wereld

Check how to use summaries on WorldSupporter.org


Online access to all summaries, study notes en practice exams

Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Starting Pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
  2. Use the menu above every page to go to one of the main starting pages
  3. Tags & Taxonomy: gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
  4. Follow authors or (study) organizations: by following individual users, authors and your study organizations you are likely to discover more relevant study materials.
  5. Search tool : 'quick & dirty'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject. The search tool is also available at the bottom of most pages

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study (main tags and taxonomy terms)

Field of study

Check related topics:
Activities abroad, studies and working fields
Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
930