Notes bij Academische Wetenschappelijke Vorming - Jaar 2 - Geneeskunde - UL - Aanvulling (2013-2014)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Statistiek HC4 – Overlevingsdata

Het 95% betrouwbaarheidsinterval geeft aan hoe nauwkeurig de regressielijn geschat is. Het 95% predictie interval geeft aan tussen welke grenzen ongeveer 95% van alle observaties valt.

 

Bij veel onderzoeken wordt survival data (overlevingsdata) of time to event data (tijd tot gebeurtenis data) gebruikt. Enkele voorbeelden zijn:

  • Dieronderzoek waarbij het beginpunt blootstelling aan een carcinogeen is en het eindpunt de ontwikkeling van een tumor.

  • Kankeronderzoek waarbij het startpunt is bij het stellen van de diagnose en waarbij het eindpunt overlijden is.

  • Een eindpunt kan ook iets positiefs zijn, zoals bij vruchtbaarheidsonderzoek. Het startpunt is dan het begin van de behandeling en het eindpunt is zwangerschap.

  • Transplantatie onderzoek waarbij het beginpunt de transplantatie is en het eindpunt afstoting van het transplantaat.

  • Bij een trial met twee anticoagulanten is het beginpunt het tijdstip van randomisatie en het eindpunt overlijden/bloeding/trombose.

Hierbij zijn enkele vragen, zoals: hoe zijn de overlevingstijden verdeeld? Is er een verschil in verwachte overleving als iemand op een andere manier behandeld wordt? Wat is de snelste manier om zwanger te worden? Welke factoren voorspellen de 5-jaars overleving?

 

Hoe worden overlevingskansen vergeleken? Hoe worden overlevingstijden vergeleken? Dit laatste gebeurt met een T-toets of een Chi square test. Hierbij zijn een aantal problemen, want niet alle patiënten overlijden, niet alle patiënten hebben dezelfde follow-up tijd en soms raken patiënten ‘kwijt’ (door verhuizing of migratie). We nemen een voorbeeld: er worden 6 patiënten gevolgd en de follow-up is 24 maanden. Het eindpunt bij deze studie is overlijden. Patiënt 1 overlijdt na 14 maanden. Patiënt 2 is aan het einde nog in leven. Persoon 3 is kwijt geraakt. Patiënt 4 is na 13 maanden overleden. Patiënt 15 wordt nog gevolgd. Patiënt 16 was aan het einde nog in leven. Dit maakt het gecompliceerd om de gegevens te analyseren, want men weet niet van iedereen wat nodig is. Dit noemt men gecensureerde gegevens. Redenen zijn dat een individu het eindpunt niet bereikt (in dit geval: de patiënt overlijdt niet), er is lost-to-follow-up (door verhuizing of het niet nakomen van afspraken) of een patiënt overlijdt aan een andere oorzaak.

 

Stel dat er in een dialyse studie 653 mensen peritoneale dialyse krijgen. 207 van deze patiënten overlijden en 446 patiënten zijn nog in leven. De patiënten zijn voor het laatst gezien tussen de 0,8 en 5 jaar na de start van de dialyse. De 446 niet overleden personen mogen niet uit de studie verwijderd worden. Dit zou ook niet slim zijn, want dat deze personen na 5 jaar nog lezen, is juist heel informatief.

 

Men wil een overlevingsfunctie S(t) schatten. S(t) is de kans dat iemand op tijdstip t nog in leven is. De grafiek heeft op de x-as de tijd en op de y-as de overlevingswaarschijnlijkheid en dit is een afnemende functie. Het schatten van de overlevingswaarschijnlijkheid kan via de Kaplan-Meier methode. Hier wordt informatie van elke patiënt gebruikt tot dood/censurering. Een voorbeeld van 10 personen: 3, 4, 7+, 9, 10, 11+, 12, 20, 20, 25+. Een + betekent dat deze persoon gecensureerd is. Verticaal worden alle tijdstippen neergezet waarop er iets gebeurt. De tabel is hieronder te vinden.

Tijd

Aantal met risico

Aantal overledenen

Proportie overledenen

Proportie overlevenden

Overlevings-waarschijnlijkheid

0

10

 

 

 

1

3

10

1

1/10

9/10

9/10=0,9

4

9

1

1/9

8/9

0,9x8/9=0,8

7

8

0

0

1

0,8

9

7

1

1/7

6/7

0,8x6/7=0,69

10

6

1

1/6

5/6

0,69x5/6=0,57

11

5

0

 

1

0,57

12

4

1

¼

¾

0,57x3/4=0,43

20

3

2

2/3

1/3

0,14

25

1

 

 

 

0,14

 

Van deze tabel kan een Kaplan-Meier curve gemaakt worden. Op de x-as staat de tijd en op de y-as de overlevingswaarschijnlijkheid. Een verticaal streepje in de curve zegt dat iemand gecensureerd is. In ons voorbeeld stopt de curve na 25 maanden, hoewel er nog wel mensen in leven zijn. Men weet namelijk niet wat er met deze personen gebeurd is na de 25 maanden. Er waren hier slechts 10 observaties gedaan, waardoor het heel onnauwkeurig is. Er kunnen standaardfouten van de schattingen door SPSS berekend worden. Hiermee kan een 95% betrouwbaarheidsinterval gemaakt worden van de overlevingswaarschijnlijk: (S(t)-1,96xse, S(t)+1,96xse), met S(t) is de overlevingswaarschijnlijkheid op tijdstip t.

 

De mediane overlevingstijd is het tijdstip waarop 50% van de patiënten nog in leven is en 50% niet. Kaplan-Meier is nauwkeurig, als de overlevingswaarschijnlijkheden hetzelfde zijn voor personen die vroeg of laat in de studie gerekruteerd zijn, als de gecensureerde patiënten op elk tijdstip dezelfde overlevingsprognose hebben als de patiënten in de studie (onafhankelijke censurering) en als het tijdstip van de gebeurtenissen exact bekend zijn.

 

Met behulp van de log rank test kunnen overlevingscurves vergeleken worden. De nulhypothese zegt dat de twee curves gelijk zijn en de H1 zegt dat de curves verschillend zijn. De geobserveerde curves worden vergeleken met dat wat men zou verwachten als de nulhypothese waar is. Dan verwacht men twee krommes die over elkaar heen variëren. Een maat hiervoor is de statistische toets X2. Deze berekend de afstanden van de punten tot de lijn in het kwadraat. Er wordt kansrekening gebruikt om te bedenken wat er met X2 zou gebeuren als de nulhypothese waar is. Dit heeft een chi-kwadraat verdeling met één vrijheidsgraad, onder H0. Dit wordt gebruikt om de p-waarde te berekenen. Als X2 groot is en de bijbehorende p-waarde klein, dan kan de nulhypothese verworpen worden, want er is dan een significant verschil. Men moet niet slechts naar de p-waardes kijken, want bij grote groepen is deze bijna altijd significant. Men moet ook kijken naar de effectmaten en de precisie. Bij overlevingsdata is de effectmaat de hazard ratio.

 

De hazard functie is de waarschijnlijkheid dat een individu, levend net voor tijdstip t, overlijdt op tijdstip t. Een voorbeeld is dat S(12) = 0,40 en S(13) = 0,20. De Hazard is dan h(12) = ((S(12)-S(13))/S(12) = 0,5. Een hazard functie kan omgezet worden in een overlevingsfunctie en andersom. De algemene definitie van de hazard functie is: h(t) = lim (((S(t)-S(t+Δ))/ Δ)/ S(t) = (-S(t))/S(t). Als de overleving exponentieel daalt, dan zal de hazard constant zijn.

 

De hazard ratio kan gebruikt worden om een verschil in overleving te meten. We nemen als voorbeeld het onderzoek met hemodialyse patiënten en peritoneale dialyse patiënten. Hemodialyse heeft hazard functie h0(t) en peritoneale dialyse h1(t). Men neemt aan dat h1(t)/h0(t) constant is. Deze verhouding is de hazard ratio. Dus HR = h1(t) / h0(t). Er is ook een Cox proportioneel hazard model met h1(t)=h0(t) x HR. Dit is in feite de vorige formule, maar dan anders geschreven. Uit de HR kunnen een aantal getallen komen:

  • HR > 1 – dan is de overleving in de h1(t) groep hoger dan in de h0(t) groep.

  • HR < 1 – dan is de overleving in de h1(t) groep lager dan in de h0(t) groep.

  • HR = 1 – dan is de overleving in beide groepen gelijk.

Bij ons voorbeeld is HR = 0,58 (peritoneaal/hemodialyse). Dit betekent dat de overleving in de groep met peritoneale dialyse beter is. Het 95% betrouwbaarheidsinterval is hierbij (0.48, 0.66) en dus valt de 1 hier niet in. Hierdoor is het statistisch significant. Als de 1 wel in het 95% betrouwbaarheidsinterval valt, dan is HR=1 en dus is er geen significant verschil tussen de beide groepen. Nu is de vraag: is deze vergelijking (peritoneaal tegen hemodialyse) wel eerlijk? In de groep met hemodialyse patiënten is de gemiddelde leeftijd hoger. Hiervoor is een oplossing, want men kan ook gecorrigeerde hazard ratio’s berekenen, wat in dit geval nodig is vanwege confounders. Dit kan gedaan worden met behulp van SPSS.

 

Het Cox model geeft proportionele hazards. Hierbij gold de formule h1(t) = h0(t) x HR. Op de logaritmische schaal wordt dit: ln(h1(t)) = ln(h0(t)) + ln(HR). Ln is het natuurlijke logaritme. De formule kan ook geschreven worden als ln(h1(t)) = ln(h0(t)) + β1X1 + … + βpXp. β1 is de verhoging in ln-hazard wanneer X1 met één eenheid omhoog gaat en X2, …, Xp hetzelfde blijven. De hazard ratio wordt exp(β1) keer groter.

 

Hazards zijn niet altijd proportioneel, dus de hazards over de tijd zijn niet altijd proportioneel. De tumorgrootte is bijvoorbeeld heel prognostisch voor de eerste jaren van kanker overleving, maar later minder. Bij een operatie in een gastrische kanker trial wordt gelimiteerde lymfeknoop dissectie (D1) vergeleken met uitgebreide lymfeknoop dissectie (D2). De overleving in de eerste twee jaar was beter voor D1, maar op de langere termijn was de overleving van D2 beter. Bij D2 zijn de tumorcellen namelijk beter weggehaald. Een oplossing is het berekenen van hazard ratio’s per jaar.

 

Overlevingsdata vereisen dus speciale statistische technieken. De overlevingswaarschijnlijkheid kan geschat worden door het gebruiken van de Kaplan-Meier methode. Dit veronderstelt dat censurering onafhankelijk is van de prognose. Hazard ratio’s zijn heel gewoon in medische papers. Het Cox model veronderstelt proportionele Hazards.

 

HC 10 – Interpretatie van studieresultaten

Een vergelijking van risico kan gedaan worden door een ratio. Er zijn meerdere soorten ratio’s, zoals risico ratio, rate ratio, odds ratio en hazard ratio. De context kan bij een ratio echter verloren gaan. Het absolute risico verschil gaat bijvoorbeeld verloren bij het berekenen van een ratio. Het absolute risico verschil speelt een rol bij een RCT. Ook is er de attributieve factor.

 

Populatie attributieve fractie (PAF). We kijken naar een rode balk: de hele onderzoekspopulatie. In deze populatie zijn er mensen die niet ziek worden (D-; lichtrood) en mensen die wel ziek worden (D+; rood). Dit is het risico dat heerst om ziek te worden. Van de mensen die ziek zijn, is een aantal mensen wel blootgesteld aan de expositie van interesse (E+; donkerblauw) en een deel niet blootgesteld (E-; lichtblauw). De PAF zegt hoeveel mensen er in het rode vakje zitten en ook in het donkerblauwe vakje. Oftewel: de proportie van ziekte in een populatie die toegeschreven kan worden aan de expositie van interesse. Hierbij hoort een formule, namelijk: PAF = ((Rtotaal-Rniet-blootgesteld)/Rtotaal)). De PAF is van belang, want als de expositie weggehaald zou kunnen worden, dan zou de groep mensen dus niet meer ziek worden.

Een voorbeeld:

 

Ziek +

Ziek -

Totaal

Risico

Expositie A

30

1970

2000

30/2000=0,015

Niet expositie A

80

7920

8000

80/8000=0,010

Het totale risico is (30+80)/(2000+8000)=110/10.000= 0,011. Men deelt dus het aantal zieke patiënten door het totale aantal mensen. Het relatieve risico is dan 0,015/0,010=1,5. De PAF zou in dit geval zijn: (0,011-0,010)/0,011=9%. Dit betekent dat 9% van alle zieke patiënten blootgesteld was aan expositie A. Stel dat we nu naar een voorbeeld zouden kijken met een relatief risico van 1,75 (bijna hetzelfde als in het eerste voorbeeld), dan kan het zo zijn dat de PAF toch veel hoger is (27%). Dit komt door een verschillende prevalentie van expositie. Een derde voorbeeld heeft een hoog RR (11), een lage prevalentie van expositie en expositie C is bijna een noodzakelijke component oorzaak doordat de PAF 99% is. De som van deze 3 PAF’s is >100%, maar dat is niet raar omdat we het over totaal andere exposities hebben.

 

Het absolute risico verschil wordt vaak vergeten, maar het is nodig. Dit is het geval bij:

  • Het absolute risico van de patiënt.

  • Bedoelde effecten/bijwerking ratio.

  • Het berekenen van het risicoverschil.

Risk difference (RD) = risico blootgesteld – risico niet blootgesteld. NTT = 1/RD.

 

Een punt schatting is belangrijk voor hoe men vervolgens in een onderzoek aan de slag gaat. Stel dat er een relatief risico is van 1,5 en een NNT van 200. Bij 200 mensen in de onderzoekspopulatie moet dan de risicofactor weggehaald worden, om één casus van ziekte te voorkomen. Het NNT geeft meer inzicht dan het RR, want als er andere basis risico’s zijn dan kan er wel eenzelfde RR zijn, maar dan is dit te zien aan het NNT. De basisrisico’s mogen zeker niet vergeten worden als men moet besluiten of er wel of niet behandeld gaat worden. Onderzoeksvragen worden altijd gegeven vanuit een puntschatting; een verschil. De puntschattingen beantwoorden de onderzoeksvraag door middel van vergelijken. Er is één getal dat de onderzoeksvraag beantwoordt, maar hiermee gaat de context soms verloren. Hierdoor kunnen puntschattingen, gebaseerd op ratio’s, niet direct gebruikt worden maar moeten ze in context geplaatst worden. De context kan gegeven worden door middel van het absolute risico of NNT. Vooral binnen cohort studies is het NNT een van de meest inzichtgevende maten. Soms is er extra data nodig voor absolute risico’s, zoals bij case-control studies.

P-waardes helpen bij het schatten hoe zeker men is van berekeningen. Hierbij zijn ook betrouwbaarheidsintervallen van belang. De grens van 0,05 is willekeurig gekozen. De grens zorgt voor een tweedeling in denken: ja/nee? De P-waarde is gebaseerd op het effect, maar ook op de studie grootte. We nemen een voorbeeld, waarin 5 nieuwe medicijnen getest worden. Medicijn A heeft een P-waarde van <0,01. Medicijn B en C een P-waarde van <0,05. Medicijn D en E een P-waarde van >0,05. Hieruit kan echter nog niks geconcludeerd worden, want men weet nog niks over de effecten. Betrouwbaarheidsintervallen geven de grenzen waartussen het echte effect 95% van de keren ligt als de studie steeds opnieuw gedaan wordt. De waarschijnlijkheid over het bereik is niet uniform en de grenswaardes zijn onwaarschijnlijke waardes. De beste schatting is de punt schatting. Het betrouwbaarheidsinterval leidt niet tot dichotoom denken, want er wordt meer informatie gegeven.

 

Op het moment dat voor het eerst een medicament gegeven wordt aan een persoon, dan is er fase 1. Dit moet heel gecontroleerd gebeuren en het wordt meestal niet gedaan bij patiënten, maar bij gezonde mensen. Wat men tot dan toe weet komt uit dierstudies. Hierop is de ‘veilige dosis’ gebaseerd. Er zijn dus gezonde mensen, er is een gecontroleerde omgeving en er zijn strakke regels. In fase 2 wordt het medicijn voor de eerste keer gegeven aan patiënten. Welk type patiënt er wordt gebruikt, is afhankelijk van onderzoeksvraag. Bij fase 2 wordt er gekeken naar hoe hoog de dosering moet zijn voor een biologisch effect. Het belangrijkste is: werkt het medicijn? Er wordt gekeken op de korte termijn naar de effecten en bijwerkingen. Ook hier is een gecontroleerde omgeving en er zijn strikte inclusie en exclusie criteria. Vaak is er ook een controlegroep. Bij een fase 3 onderzoek wordt er voor de eerste keer randomisatie gebruikt. Er wordt een controle groep gebruikt en er is een intention-to-treat analyse. Men kijkt nu naar hoe groot het effect is en wat de effecten en bijwerkingen zijn op de lange termijn. Fase 4 onderzoek gebeurt pas nadat het medicijn op de markt gekomen is. Er kan een post marketing trial gedaan worden, maar dit is niet altijd nodig. Er kan wel een survaillance gedaan worden, in plaats van een trial, en dit is een observationele studie. Men kijkt dan op de langere termijn naar het effect in de klinische praktijk en naar de bijwerkingen.

 

De scheiding tussen de verschillende fases is bij onderzoeken niet altijd duidelijk. Er kan ook een trial zijn die en een fase 1 en een fase 2 trial is. Wat er in een trial onderzocht wordt, hangt af van de onderzoeksvraag.

 

In het voorbeeld dat in het begin te vinden is, wisten we nog niet wat de effecten van de medicijnen waren: de context. Als we kijken naar de effecten, dan zien we dat alleen medicijn A en D een goed effect hebben. Medicijn D heeft het beste effect. In dit geval zou er dus voor dit medicijn gekozen worden, zelfs al is de P-waarde 0,052. Hier gaat het dus om statistisch significant versus klinisch relevant: het grootste effect telt.

 

Er kan geconcludeerd worden dat betrouwbaarheidsintervallen informatiever zijn dan P-waardes. Betrouwbaarheidsintervallen geven in feite dezelfde informatie, maar ook meer informatie over de sterkte van het ware effect. Waarom worden er dan toch P-waardes gebruikt? Dit is eigenlijk voor ‘drukke doktoren’. Statistici en epidemiologen gebruiken de P-waardes niet, maar doktoren willen vaak een ja/nee antwoord. Dit wordt gegeven door de p-waarde. Een uitzondering is wanneer een ja/nee antwoord echt nodig is.

 

Dus als men kijkt naar onderzoeksresultaten, dan moet er ook gekeken worden naar de context van de puntschatting. Het gaat er dan om wat de onderzoeksvraag is en wat men eigenlijk wil weten. Geeft de puntschatting het juiste antwoord? Soms kan er extra informatie gegeven worden, door de NNT of PAF. Deze waardes kan men gebruiken voor het schatten van de balans klinisch relevant versus statistisch significant. Ten slotte is het dus zo dat de P-waarde slechts een ja/nee antwoord geeft, dat meestal niet voldoende is. In plaats daarvan moeten een betrouwbaarheidsinterval en een puntschatting gebruikt worden.

 

HC 11 – Mendeliaanse randomisatie

Er zijn drie criteria voor een confounder, namelijk:

  1. Een confounder is geassocieerd met de uitkomst.

  2. Een confounder is geassocieerd met de expositie.

  3. Een confounder mag niet in het causale pad zitten.

 

Stel dat men kijkt naar het risico van het hebben van gips op trombose. Er worden dan mensen met gips en mensen zonder gips gevolgd, waarna men onderzoekt wie er wel en niet veneuze trombose kregen. In de studiepopulatie is er 80% pil gebruik. Van de 1000 mensen met gips krijgen er 20 trombose en van de 1000 mensen zonder gips 10 mensen. Het relatieve risico (RR) is dan (20/1000)/(10/1000)=2. In de populatie was er dus 80% pil gebruik en er is hier geen associatie tussen pilgebruik en heb hebben van gips. Nu kan men er van uitgaan dat er in de groep mensen met gips 80% pilgebruik is en in de groep mensen zonder gips ook. In een andere populatie zijn er weer 1000 mensen met gips en 1000 mensen zonder gips. Hier is het pilgebruik 50%. Van alle mensen met gips krijgen 12 mensen trombose en van de mensen zonder gips 6. Het relatieve risico is hier dan ook 2 en er is weer geen associatie tussen gips en pilgebruik, waardoor er in beide groepen 50% pilgebruik is. Pilgebruik is hier dus geen confounder en het RR klopt in beide populaties. Wel moet men rekening houden met de karakteristieken van de populatie, want het absolute risico op veneuze trombose is in beide populaties anders. Dit kan veroorzaakt worden door minder pilgebruik in de tweede casus. Het RR hoeft niet gecorrigeerd te worden voor pilgebruik.

 

Stel nu dat er wel een associatie is tussen pilgebruik en het hebben van gips, dan krijgen vrouwen die de pil gebruiken vaker gips. Er is dan een hoger percentage pilgebruik in de groep mensen met gips. Er is dan een overschatting van het RR, doordat men niet alleen meer naar het gips kijkt maar ook naar het verschil in pilgebruik. De contrasten van de absolute risico’s zijn dan anders, want er is in de populatie een ander pilgebruik. Dit kan gecorrigeerd worden door bijvoorbeeld stratificatie, want dan wordt het pilgebruik er als het ware tussenuit gehaald. Alleen als er confounding is, dan is er een effect op het RR.

 

Een andere risicofactor heeft geen effect op het RR en dit is in feite wat men telkens doet bij randomiseren. Dan wordt de blootstelling willekeurig toebedeeld. In tabel 1 (meestal zonder p-waardes) wordt er rekening mee gehouden, want er kan bijvoorbeeld een associatie doorbroken worden. Stel dat leeftijd een risicofactor is bij gabapentin gebruik, dan kunnen er twee groepen gemaakt worden met dezelfde gemiddelde leeftijd.

 

Bij de relatie tussen pilgebruik en veneuze trombose is factor V Leiden geen confounder, maar een risicofactor. Als iemand de pil voorschrijft, dan zal er niet worden gescreend op factor V Leiden. Als dit voorbeeld wordt omgedraaid, kunnen we kijken naar het risico op een veneuze trombose voor mensen met een factor V Leiden mutatie. Is pilgebruik hierbij een confounder? Er is geen associatie tussen pilgebruik en een factor V Leiden mutatie, dus het is geen confounder. Dit is het principe van Mendeliaanse randomisatie: als er genetische risicofactoren bestudeerd worden, dan is er bijna nooit een probleem van confounding. Het is nooit zo dat er een pijl is van een bepaalde expositie naar een genetische factor. Natuurlijk zijn hier wel uitzonderingen op.

 

Bij alle studie designs kan er confounding zijn, want de randomisatie kan bijvoorbeeld fout gaan, waardoor er factoren storend werken op de relatie tussen blootstelling en uitkomst. Vooral bij observationele studies is er sprake van confounding. Er wordt dan gekeken naar factoren die kunnen veranderen over de tijd, zoals roken, alcoholgebruik en bloedwaardes. Het probleem dat men dan krijgt, is dat er niet slechts confounding is maar ook reverse causality. Dit laatste is dat er een blootstelling is die men ziet en het lijkt dat deze blootstelling het risico op ziekte verhoogt, maar wat men eigenlijk meet is een soort voorstadium van een ziekte of het is zo dat de ziekte de blootstelling beïnvloedt die men aan het bekijken is (het is dan een gevolg). Een voorbeeld is als men kijkt naar ontstekingsmarkers (IL) in het bloed en het risico op veneuze trombose. Men zal dan een associatie zien, want IL is verhoogd bij een veneuze trombose. Wat men eigenlijk doet is dat men kijkt naar een voorstadium van veneuze trombose, wat een verhoging van IL veroorzaakt. IL is dan geen risicofactor van de uitkomst, maar een gevolg. Een oplossing hiervoor is een Mendeliaanse randomisatie analyse. Dit probeert het probleem van confounding op te lossen en reverse causality wordt helemaal opgelost.

 

De belangrijkste wet bij Mendeliaanse randomisatie is de wet van onafhankelijke verscheidenheid. Welk allel iemand van welke ouder krijgt, wordt random verdeeld over de nakomelingen. Dus de kans op het hebben/krijgen van een bepaald allel van een bepaalde mutatie wordt random verdeeld. Er is in feite een soort natuurlijke randomisatie van genotypes. Eigenlijk is er een soort trial gemaakt als er naar genotypes wordt gekeken, omdat men random wordt ingedeeld naar expositie.

 

Bij Mendeliaanse randomisatie gebruikt men dus een genotype om een bepaald fenotype te kunnen beschrijven. Stel dat men geïnteresseerd is in cholesterol niveaus, dan gaat men niet de niveaus zelf meten, omdat er dan heel veel confounding is. Wat men gaat doen is een genotype meten dat verklarend is voor de blootstelling waarin men geïnteresseerd is. Als er bijvoorbeeld een allel is, waardoor men, als iemand drager is, een hoog niveau van stollingsfactoren heeft, dan wordt dat genotype genomen als expositie, als proxy voor die stollingsfactoren. Dan is er dus natuurlijke randomisatie van die genen. Er is dan geen hoog niveau stollingsfactoren door roken of ouderdom o.i.d. Het is random toebedeeld door de ouders. Genotype is hier een instrument om het fenotype te beschrijven. Dit gebruikt men en het voorkomt confounding en het verlaagt de kans op reverse causality. Wanneer men naar een genetische variant kijkt, die intrinsiek zorgt dat iemand een hoger niveau stollingsfactoren heeft, dan kijkt men niet naar kortdurende fluctuaties door bijvoorbeeld medicijnen. Men kijkt dan naar life-time exposure. Hiermee wordt het effect van reverse causality weggehaald. Het kan ook geschreven worden als een RCT. De random distributie van de allelen is analoog aan de random toebedeling van behandeling of placebo aan patiënten in een RCT.

 

Bij een Mendeliaanse randomisatie wordt men dus random ingedeeld naar risico allel, en daarmee worden confounders gelijk verdeeld. Dit komt doordat er een natuurlijk randomisatie proces is. Dan is er dus in feite een trial.

 

Een voorbeeld: men heeft gezien dat mensen met colonkanker een lager LDL cholesterol hadden dan mensen zonder colonkanker. Dit is gek, want een laag LDL cholesterol is dan misschien een risicofactor voor het krijgen van colonkanker. Men wil hierop het antwoord weten. Statines zijn medicijnen die het LDL cholesterol omlaag krijgen. Er wordt uitgezocht of er een causale associatie is, of dat er sprake is van confounding. De associatie tussen een laag LDL cholesterol en kanker kan verklaard worden door allerlei dingen. Het kan echt een oorzakelijk verband zijn, maar er kan ook sprake zijn van allerlei confounders (geslacht, leeftijd, BMI). Ook kan er sprake zijn van reverse causality. Een voorstadium van kanker kan LDL niveaus beïnvloeden en op dat moment is er nog geen kanker gediagnosticeerd, maar er is al wel effect op het LDL cholesterol. In de studie wordt er mendeliaanse randomisatie gedaan en er wordt een genetische variant (instrument) gezocht wat die LDL cholesterol niveaus beïnvloedt. Er wordt gekeken naar een associatie tussen het instrument en de uitkomst en er is geen last meer van confounding. Alle mogelijke confounders beïnvloeden namelijk niet of iemand wel of geen genetische allel heeft. Een SNP is een single nucleotide polymorfisme. Dit is een variatie van één nucleotide lang en heel vaak is er niet bekend wat dit is, maar heel veel mensen hebben dit. 99% van de genetische variaties zijn SNP’s en meestal zijn ze onschuldig. Ze geven dus geen voor- of nadeel op een bepaald iets Sommige SNP’s hebben wel effect op bepaalde fenotypes, waarin men geïnteresseerd kan zijn bij een onderzoek. Bij de relatie tussen LDL cholesterol en kanker kan het zijn dat er allerlei confounders zijn. Binnen de groepen met LDL cholesterol (hoog of laag) zijn er veel factoren verschillend, zoals hypertensie. Mensen met een laag LDL cholesterol hebben een lagere bloeddruk, dus dit zou een confounder kunnen zijn. Er is een associatie van confounders met LDL en het zijn risicofactoren voor colonkanker. Hiervoor moet men dus corrigeren. Dit kan op verschillende manieren: in het design of tijdens de analyse. In studie design kan er bijvoorbeeld randomisatie (bekende en onbekende confounders), restrictie (bekende confounders) of matching (bekende confounders) gedaan worden. Bij de analyse kan met stratificatie of een multivariaat analyse doen. Dit is beide voor bekende confounders. Dit werd gedaan en er moest randomisatie gedaan worden, zodat de onbekende confounders (hopelijk) gelijk zouden verdelen over de groepen. Er werd toen een genetische variatie gebonden: APOE gen. Als dit als instrument wordt genomen, dan kan de associatie bekeken worden tussen gen en uitkomst, zonder confounders.

 

Mendeliaanse randomisatie heeft voordelen:

  • Geeft correctie voor bekende en onbekende confounders.

  • Reverse causality is onwaarschijnlijk.

  • Geschatte ‘life-time differences’.

Image

Access: 
Public

Image

Join WorldSupporter!
Search a summary

Image

 

 

Contributions: posts

Help other WorldSupporters with additions, improvements and tips

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.

Image

Spotlight: topics

Check the related and most recent topics and summaries:
Institutions, jobs and organizations:
Activity abroad, study field of working area:
This content is also used in .....

Image

Check how to use summaries on WorldSupporter.org

Online access to all summaries, study notes en practice exams

How and why use WorldSupporter.org for your summaries and study assistance?

  • For free use of many of the summaries and study aids provided or collected by your fellow students.
  • For free use of many of the lecture and study group notes, exam questions and practice questions.
  • For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
  • For compiling your own materials and contributions with relevant study help
  • For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.

Using and finding summaries, notes and practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Use the summaries home pages for your study or field of study
  2. Use the check and search pages for summaries and study aids by field of study, subject or faculty
  3. Use and follow your (study) organization
    • by using your own student organization as a starting point, and continuing to follow it, easily discover which study materials are relevant to you
    • this option is only available through partner organizations
  4. Check or follow authors or other WorldSupporters
  5. Use the menu above each page to go to the main theme pages for summaries
    • Theme pages can be found for international studies as well as Dutch studies

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study for summaries and study assistance

Main summaries home pages:

Main study fields:

Main study fields NL:

Follow the author: Medicine Supporter
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Statistics
2314