What is a random sample?

In statistics, a random sample is a type of probability sample where every individual in a population has an equal chance of being selected for the sample. This ensures that the chosen sample is unbiased and representative of the entire population, allowing researchers to draw generalizable conclusions about the whole group.

Here are some key aspects of random samples:

  • Selection method: The key principle is randomness. Techniques like random number generation or drawing names from a well-mixed hat are employed to ensure every individual has the same probability of being chosen.
  • Avoiding bias: Random selection minimizes the risk of bias. Unlike methods like convenience sampling (selecting readily available individuals), random sampling doesn't favor specific subgroups within the population, leading to a fairer representation.
  • Generalizability: By drawing a representative sample, researchers can generalize their findings from the sample to the entire population with greater confidence. They can be more assured that the observed patterns or relationships in the sample likely reflect the characteristics of the whole group.

Here's an analogy: Imagine a bowl filled with colored balls representing the population. To get a random sample, you would blindly pick balls from the bowl, ensuring each ball has an equal chance of being chosen, regardless of its color.

Examples of random sampling:

  • Selecting a random sample of 1000 voters from a national voter registry to understand voting preferences.
  • Choosing a random sample of 50 patients from a hospital database to study the effects of a new treatment.
  • Conducting a survey on customer satisfaction by randomly selecting email addresses from a company's customer list.

Benefits of random sampling:

  • Reduces bias: Minimizes the influence of factors that might skew the results towards specific subgroups.
  • Increases generalizability: Allows researchers to confidently apply their findings to the broader population.
  • Enhances the reliability and validity of research: By reducing bias and improving generalizability, random samples contribute to more trustworthy research findings.

However, it's important to note that random sampling is not always practical or feasible. Sometimes, researchers might need to use other types of probability sampling techniques like stratified sampling or cluster sampling when faced with practical constraints or specific study designs.

Image

Tip category: 
Studies & Exams
Supporting content or organization page:
Statistics samples: best definitions, descriptions and lists of terms
Statistics Magazine: Understanding statistical samples
Tip: type
Tip: date of posting

Image

Image

Help other WorldSupporters with additions, improvements and tips

Image

Related activities, jobs, skills, suggestions or topics
Content access
Content access: 
Public
Statistics