Mechanisms of Disease 1 HC13: Bacteria

HC13: Bacteria

Complexity

The complexity of an organism is based on its amount of base pairs:

  1. Prion: 103base pairs

    • A single protein
  2. Virus: 104-5base pairs
    • A set of proteins and nucleic acid
    • Uses living cells
    • 0,03-0,3 mm
    • Made visible with an electron microscope
  3. Bacterium: 106base pairs
    • A single cell prokaryote
    • 0,1-10 mm
    • Made visible with a light microscope
  4. Protozoa: 107base pairs
    • A single cell eukaryote
    • 4-10 mm
    • Made visible with a light microscope
  5. Fungi: 108base pairs
    • A multi-cellular eukaryote
    • 4-10 mm
    • Made visible with a light microscope
  6. Helminths: 109base pairs
    • A multi-cellular eukaryote
    • Approximately 40 mm
    • Visible with the unaided human eye

Bacteria are the oldest form of life on earth. Bacteria are called prokaryotes because they don't have a nucleus. Millions can fit into the eye of a needle. Most live by themselves, but some in symbiosis. A bacterium doesn't have a nucleus or cell organelles. Bacteria can adapt to their surroundings very well.

Composition

Eukaryotes:

A eukaryotic cell has a:

  • Membrane
  • Cytoplasm with organelles
  • Nucleus with DNA

Eukaryotic pathogens are protozoa, fungi and helminths.

Prokaryotes:

A prokaryotic cell, like a bacterium lacks a nucleus and cells organelles, but does consist of:

  • DNA and RNA in the form of a ring
  • Plasma membrane
  • Mainly ribosomes are present in the cytoplasm
  • Most (but not all) contain a cell wall
    • Plays a part in the immune response → the target of antibiotics
      • Protects the bacterium from its environment
    • Contains:
      • Capsule
      • Flagella → for movement
      • Pili → for attachment

The cell wall is very important for bacteria:

  • Protects against the environment
  • Has antigenic properties → targeted by the immune response
  • Has a role in pathogenesis
  • Is relevant in diagnostics

Classification of bacteria

Classification based on cell wall composition:

Gram stains can be used to look at the cell walls of bacteria. A bacterium can be gram positive or gram negative:

  • No cell wall → mycoplasma
    • Gram staining cannot be used
  • Gram positive → streptococcus pyogenes
    • Keep their purple staining
  • Gram negative → escherichia coli
    • Lose the purple staining, are counterstained and become pink
  • Acid-fast → mycobacterium tuberculosis
    • The cell wall is so tight it cannot be colored with gram stains

Most bacteria are either gram-positive or negative. Whether a bacterium is gram-positive or negative is based on fundamental differences in their cell wall:

  • Gram-positive bacteria
    • Peptidoglycan on the outside
      • This forms the actual cell wall
    • Plasma membrane on the inside
      • A lipid bilayer
    • Lipoteichoic and teichoic acids sticking out of the cell wall
    • More resistant to environmental conditions
    • More difficult to kill with detergents
  • Gram-negative bacteria
    • Cell wall
      • An outer membrane
          • Many proteins can do this
      • Periplasmic space: between the outer membrane and the peptidoglycan
      • Peptidoglycan
    • A plasma membrane on the inside
      • A lipid bilayer
    • LPS
    • More susceptible to environmental conditions
    • Easier to kill with lipophilic detergentia
    • Sensitive to:
      • Ethanol or propanol 70-95%
      • Chlorhexidine 0,05-0,5%
      • Ammonium, phenol
      • Chlorine and iodine

Peptidoglycan:

Peptidoglycan is part of the cell-wall of gram-positive bacteria. It also is present in gram-negative bacteria, but as a very thin layer. It is composed of long chains of polysaccharides cross-linked by peptides. Peptidoglycans ensure that the purple staining remains in the bacteria. It is a stimulator of immune responses:

  1. TLRs (toll-like receptors) recognize peptidoglycan
  2. Granulocytes and macrophages start to release interleukin and many other cytokines
    • IL-1
    • IL-6
    • TNF
  3. Inflammation, fever and shock follow

Many antibiotics for gram-positive bacteria work by disrupting the peptidoglycan layer.

Lipo-polysaccharides:

Lipo-polysaccharide (LPS) is present in gram-negative bacteria. They are the gram-negative counterparts of the lipoteichoic and teichoic acids in gram-positive bacteria. It also is a stimulator of immune responses:

  1. LPS interacts with Toll-like receptors
  2. Granulocytes and macrophages start to release interleukin and many other cytokines
    • IL-1
    • IL-6
    • TNF
  3. Inflammation, fever and shock follow

Classification based on shape:

A bacterium can roughly have 2 different shapes:

  • Cocci (round)
  • Rod (elongated)

The shape can be distinguished further in:

  • Curved
  • Spirochete

The most common classification system of bacteria is based on shape and gram negative/positive:

  • Gram negative
    • Curved → vibrio campylobacter
    • Rods → escherichia
      • For example salmonella
    • Cocci → neisseria
      • Spherical
  • Gram-positive
    • Rods
      • Spore forming → clostridium and bacilus
      • Non spore forming
    • Cocci
      • Groups → staphylococci
        • Multiply in all directions
      • Chains → streptococci
        • Multiply in only 1 direction

Classification based on growth:

Bacteria grow by either following an aerobic or an anaerobic route:

  • Aerobic: in the presence of oxygen
  • Anaerobic route: deep in the ocean or in the human bowel

Some bacteria can survive in both conditions. If anaerobic bacteria are found in a blood sample, this indicates that there's an infection somewhere in the body where there isn't any oxygen.

Aspects can be shown on a culture plate:

  • a-hemolytic: partial hemolytic
    • Greenish
  • b-hemolytic: fully hemolytic
    • Yellowish
  • Non-hemolytic

Hemolytic bacteria can cause lysis in erythrocytes.

Extracellular versus intracellular:

Bacteria can be extracellular or intracellular:

  • Extracellular bacteria are phagocytosed
    • Site of infection:
      • Interstitial spaces
      • Blood
      • Lymph
      • Epithelial surfaces
  • Intracellular bacteria can survive inside the cell
    • Site of infection:
      • Cytoplasmic
      • Vesicular
    • For example TBC or salmonella

Bacterial spores

Some gram-positive bacteria are capable of sporogenesis, for example the clostridium species. Spores can infect easily and are hard to eradicate. A bacterium becomes a spore when it's exposed to a warm, humid environment. A bacterial spore is a dehydrated structure with a thick wall, in which the bacterium is in a dormant state. It can survive extreme environmental conditions → they are hard to kill. To get rid of a spore, disinfectants and pasteurization won't work.

Bacterial capsules

A bacterial capsule is a polysaccharide surrounding the cell wall, which may be present in both gram positive and gram-negative bacteria. It prevents complement-dependent phagocytosis. Vaccines for capsules induce capsule-specific antibodies. Currently, vaccines are available for:

  • Streptococcus pneumoniae
  • Neisseria meningitidis
  • Haemophilus influenzae B

These diseases can all cause meningitis.

Replication and genetics

A bacterium has 1, usually circular, chromosome. Division takes place by binary fission → the cell is divided in 2:

  1. The bacterium replicates its DNA
  2. The cell wall is cut
  3. There are 2 bacteria

 This is a form of asexual reproduction and takes only 20 minutes.

Plasmids:

Plasmids are extra pieces of bacterial circular DNA. Plasmids are relevant because bacteria can share plasmids. They replicate independently from chromosomal DNA and convey additional properties:

  • Antibiotic resistance
  • Toxin production
  • Metabolism of additional substrates

Once plasmids have integrated into the chromosome, they stay there permanently. If this hasn't happened yet, the plasmid is still in a circle form and it can be exchanged between bacteria.

Change:

The DNA properties of bacteria can change. Because bacteria replicate so fast, errors are made easily:

  • Mutation
    • This occurs sporadically
  • Exchange of DNA
    • Transformation: uptake of free DNA and integration into a chromosome
    • Transduction: a bacteriophage (bacterial virus-DNA) is absorbed by bacteria-DNA → the bacteria changes
      • A bacterial virus may carry resistant or toxin-producing genes
    • Conjugation: transfer of the plasmid DNA via pili
  • Selection pressure
    • Determines the relevancy for humans
    • If there wouldn't be any selection pressure, bacteria would lose their resistant genes
    • Selection pressure is the cause of resistance to antibiotics

Effects

Bacteria have negative and positive effects:

  • Negative aspects
    • Infectious diseases
    • Intoxications
    • Unpleasant smells
    • Et cetera
  • Positive aspects
    • Food production
    • Probiotics
    • Medication
      • Antibiotics
      • Vaccines
      • Protein drugs
    • Water purification
    • Fuel production
      • Methanol
      • Ethanol
    • Nitrogen fixation
      • N2removal from the environment and conversion to ammonia for use by plants
    • Oxygen production
      • 50% of oxygen is produced by the cyanobacteria
    • Breakdown of dead organic matter

Image

Access: 
Public

Image

Join: WorldSupporter!

Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>

Check: concept of JoHo WorldSupporter

Concept of JoHo WorldSupporter

JoHo WorldSupporter mission and vision:

  • JoHo wants to enable people and organizations to develop and work better together, and thereby contribute to a tolerant and sustainable world. Through physical and online platforms, it supports personal development and promote international cooperation is encouraged.

JoHo concept:

  • As a JoHo donor, member or insured, you provide support to the JoHo objectives. JoHo then supports you with tools, coaching and benefits in the areas of personal development and international activities.
  • JoHo's core services include: study support, competence development, coaching and insurance mediation when departure abroad.

Join JoHo WorldSupporter!

for a modest and sustainable investment in yourself, and a valued contribution to what JoHo stands for

Check: more in bundle

Mechanisms of Disease 1 2020/2021 UL

Check: how to help

Image

 

 

Contributions: posts

Help others with additions, improvements and tips, ask a question or check de posts (service for WorldSupporters only)

Image

Check: more related and most recent topics and summaries
Check more: study fields and working areas
Check more: institutions, jobs and organizations
Check: more content in related bundles

Image

Share: this page!
Follow: nathalievlangen (author)
Add: this page to your favorites and profile
Statistics
2411
Submenu & Search

Search only via club, country, goal, study, topic or sector