Medical research almost always requires collection of data. Study design described how is the study set up and how the data are collected. There are 2 types of study design:Cohort studyCase-control study A cohort is a group of people with a common characteristic (gender, diabetes, age, etc.). A cohort study follows such a group over time and records certain outcomes in a follow-up study or longitudinal study. Usually, 2 or more groups are compared. For instance, with patients who are hospitalized for Covid-19, there is a follow-up, record of the mortality and comparison of chloroquine treatment versus no chloroquine treatment. Cohort studies are often simplified in tables. An example is the association between smoking and lung cancer:Cases: individuals who develop of an outcome of interestN = size of the groupT = person timeIf a person contributes 50 weeks to the study, and another person 2 weeks, the person time is 52 weeks → 1 person year CasesNExposedAN1UnexposedBN0 CasesNSmokers1600100 000Unexposed400200 000 CasesTExposedAT1UnexposedBT0 CasesNExposed1600300 000Unexposed400600 000With a cohort, the risk/rate can be estimated:Cumulative incidence = A/N1→ 1600/100 000 = 1,6%The cumulative is also known as the risk → the risk of smokers getting lung cancer is 1,6%Time is not taken into accountIncidence rate = (A/T1) = 1600/300 000 years = 5,3 per 1000 person yearsTime is taken into accountIt is expected that 5,3 per 1000 individuals develops lung cancer in 1 yearRisk ratio (RR) = (A/N1)/(B/N0) → (1600/100 000)/(400/200 000) = 1,6%/0,2% = 8Can be either the cumulative incidence ratio or the incidence rate ratioCumulative incidence risk ratio = (A/N1)/(B/N0)Incidence rate ratio = (A...


Access options

      How do you get full online access and services on JoHo WorldSupporter.org?

      1 - Go to www JoHo.org, and join JoHo WorldSupporter by choosing a membership + online access
       
      2 - Return to WorldSupporter.org and create an account with the same email address
       
      3 - State your JoHo WorldSupporter Membership during the creation of your account, and you can start using the services
      • You have online access to all free + all exclusive summaries and study notes on WorldSupporter.org and JoHo.org
      • You can use all services on JoHo WorldSupporter.org (EN/NL)
      • You can make use of the tools for work abroad, long journeys, voluntary work, internships and study abroad on JoHo.org (Dutch service)
      Already an account?
      • If you already have a WorldSupporter account than you can change your account status from 'I am not a JoHo WorldSupporter Member' into 'I am a JoHo WorldSupporter Member with full online access
      • Please note: here too you must have used the same email address.
      Are you having trouble logging in or are you having problems logging in?

      Toegangsopties (NL)

      Hoe krijg je volledige toegang en online services op JoHo WorldSupporter.org?

      1 - Ga naar www JoHo.org, en sluit je aan bij JoHo WorldSupporter door een membership met online toegang te kiezen
      2 - Ga terug naar WorldSupporter.org, en maak een account aan met hetzelfde e-mailadres
      3 - Geef bij het account aanmaken je JoHo WorldSupporter membership aan, en je kunt je services direct gebruiken
      • Je hebt nu online toegang tot alle gratis en alle exclusieve samenvattingen en studiehulp op WorldSupporter.org en JoHo.org
      • Je kunt gebruik maken van alle diensten op JoHo WorldSupporter.org (EN/NL)
      • Op JoHo.org kun je gebruik maken van de tools voor werken in het buitenland, verre reizen, vrijwilligerswerk, stages en studeren in het buitenland
      Heb je al een WorldSupporter account?
      • Wanneer je al eerder een WorldSupporter account hebt aangemaakt dan kan je, nadat je bent aangesloten bij JoHo via je 'membership + online access ook je status op WorldSupporter.org aanpassen
      • Je kunt je status aanpassen van 'I am not a JoHo WorldSupporter Member' naar 'I am a JoHo WorldSupporter Member with 'full online access'.
      • Let op: ook hier moet je dan wel hetzelfde email adres gebruikt hebben
      Kom je er niet helemaal uit of heb je problemen met inloggen?

      Join JoHo WorldSupporter!

      What can you choose from?

      JoHo WorldSupporter membership (= from €5 per calendar year):
      • To support the JoHo WorldSupporter and Smokey projects and to contribute to all activities in the field of international cooperation and talent development
      • To use the basic features of JoHo WorldSupporter.org
      JoHo WorldSupporter membership + online access (= from €10 per calendar year):
      • To support the JoHo WorldSupporter and Smokey projects and to contribute to all activities in the field of international cooperation and talent development
      • To use full services on JoHo WorldSupporter.org (EN/NL)
      • For access to the online book summaries and study notes on JoHo.org and Worldsupporter.org
      • To make use of the tools for work abroad, long journeys, voluntary work, internships and study abroad on JoHo.org (NL service)

      Sluit je aan bij JoHo WorldSupporter!  (NL)

      Waar kan je uit kiezen?

      JoHo membership zonder extra services (donateurschap) = €5 per kalenderjaar
      • Voor steun aan de JoHo WorldSupporter en Smokey projecten en een bijdrage aan alle activiteiten op het gebied van internationale samenwerking en talentontwikkeling
      • Voor gebruik van de basisfuncties van JoHo WorldSupporter.org
      • Voor het gebruik van de kortingen en voordelen bij partners
      • Voor gebruik van de voordelen bij verzekeringen en reisverzekeringen zonder assurantiebelasting
      JoHo membership met extra services (abonnee services):  Online toegang Only= €10 per kalenderjaar
      • Voor volledige online toegang en gebruik van alle online boeksamenvattingen en studietools op WorldSupporter.org en JoHo.org
      • voor online toegang tot de tools en services voor werk in het buitenland, lange reizen, vrijwilligerswerk, stages en studie in het buitenland
      • voor online toegang tot de tools en services voor emigratie of lang verblijf in het buitenland
      • voor online toegang tot de tools en services voor competentieverbetering en kwaliteitenonderzoek
      • Voor extra steun aan JoHo, WorldSupporter en Smokey projecten

      Meld je aan, wordt donateur en maak gebruik van de services

      Check page access:
      JoHo members
      Check more or recent content:

      Blok AWV2 2020/2021 UL

      Blok AWV HC1: Research questions

      Blok AWV HC1: Research questions

      HC1: Research questions

      Medical research

      The ultimate goal of medical research is to improve medical practice. There are different aspects of medical practice which form 4 classes of medical research:

      • Etiology (prevention/risk factors of a medical disease)
        • Is a high caloric diet a risk factor for cardiovascular disease?
      • Diagnosis
        • What is the probability of having a hip fracture if the affected leg is shorter and in exorotation?
      • Treatment
        • Does chloroquine treatment reduce the risk of mortality among COVID-19 patients admitted to the ICU?
      • Prognosis
        • What is the probability of dying within 5 years after breast cancer diagnosis?

      Research questions

      Research questions arise in practice. It is important to particularly articulate a research question → they are the starting point when designing a study or when reading a paper. A research question should be answerable and have standard elements/components.

      Components:

      Research questions can consist of several types of standard components:

      • PICO: most often used
        • Patient (population)
        • Intervention
        • Comparator
        • Outcome
      • DDO
        • Domain
        • Determinant
        • Outcome

      Examples:

      Examples of research questions are:

      • To what extent does alemtuzumab compared to interferon-β improve the time until relapse occurs in patients with relapsing remitting MS?
        • Classification: treatment
        • Patients: patients with relapsing remitting MS
        • Intervention: alemtuzumab
        • Comparator: interferon-β
        • Outcome: time until relapse occurs
      • What is the predictive value of a second ultrasound, in case a first ultrasound was inconclusive, in patients suspected of having an acute appendicitis?
        • Classification: diagnosis
        • Patients: patients suspected of having an acute appendicitis, in whom a first ultrasound was inconclusive
        • Intervention: second ultrasound
        • Comparator: /
        • Outcome: appendicitis
      • Is smoking a risk factor for lung cancer?
        • Classification: etiology
        • Patients: humans
        • Intervention: smoking
        • Comparator: no smoking
        • Outcome: lung cancer
      Access: 
      Public
      Blok AWV HC2: RCT

      Blok AWV HC2: RCT

      HC2: RCT

      ReDuCe

      ReDuCe is a new diuretic drug for patients with hypertension. Its effect has to be studied → a research question has to be made:

      • What is the effect of a new diuretic drug (ReDuCe) versus no diuretic treatment on blood pressure in patients who have an increased blood pressure?
        • Classification: treatment research
        • Patients: subjects with an increased blood pressure
        • Intervention: 40 mg ReDuCe
        • Comparator: no diuretic treatment
        • Outcome: blood pressure reduction

      Effect

      After 6 weeks of treatment, a patient prescribed with ReDuCe has a normalized blood pressure → the effect. However, this effect can have several causes:

      • Start of the pharmacological therapy (ReDuCe)
      • Stopping of smoking
      • Starting to go to the gym
      • More adherence to β-blocker treatment
      • Fear of the doctor the first time the blood pressure was measured
        • This is called “white coat hypertension”
      • Use of a more precise measurement instrument the second time
      • The blood pressure fluctuation over time
        • Regression to the mean has to be applied
        • Sometimes the blood pressure is relatively high, sometimes relatively low
      • Et cetera

      Outcome

      The outcome is a combination of 4 phenomena:

      • Treatment (T)
      • Natural course (NC)
        • Natural reasons for why the blood pressure goes up or down
      • Extraneous factors (EF)
        • E.g. going to the gym
      • Error processes (V)
        • Variation of the measurement device

      Therefore, outcome = T + NC + EF + V. The interest mainly lies in the effect of the treatment (T):

      • Outcome with treatment : T + NC + EF + V
      • Outcome without treatment : NC + EF + V

      Comparison:

      To identify the effect of treatment, 2 (or more) groups need to be compared. These groups should be comparable with respect to NC, EF and V, and differ only with respect to treatment. In this case, an observed difference in the outcome between the groups can be attributed to the only aspects that the 2 groups differ on → the treatment. Comparability is necessary.

      Design elements

      A randomized controlled trial is the number 1 design to achieve comparability. In order to achieve comparability, an RCT typically has 3 design elements:

      • Randomization
        • Concealment of treatment allocation → treatment allocation independent of patient characteristics
          • A remote algorithm that is concealed for both the patient and physician
            • The physician who asked patients to participate does not know what treatment the next patient will receive, nor do the patients themselves
          • The physician can cheat on other processes
      • Blinding
        • Participants should not now which treatment they receive → can influence their behavior
          • This also applies to the treating physicians, nurses and relatives
          • Aims to keep the groups comparable during the follow-up
        • Methods
          • Placebo
            • Tastes/looks/smells like the active treatment, but does not contain the active compound
            • Sometimes difficult in case of surgery or physiotherapy
      .....read more
      Access: 
      Public
      Blok AWV HC3: Sample size calculation

      Blok AWV HC3: Sample size calculation

      HC3: Sample size calculation

      Motivation

      In medical papers, there often is a statistical analysis paragraph with a motivation of the number of people in a sample of a study.

      The aim of an RCT is to compare 2 treatments → patients are recruited to the study and randomized to treatment A or B. It also needs to be determined how many patients are included in the RCT → the sample size:

      • Too few
        • Imprecise results → no power to determine the effect of treatment
      • Too many
        • Takes a lot of time, effort and money
        • It is unethical to include many patients in a study

      Factors

      Factors for deciding sample size are:

      • Practical
        • Number of eligible patients treated at the center
        • Number of patients willing to participate
        • Time
        • Money
      • Statistical
        • How big of an effect can be detected with a given number of patients?

      Hypothesis testing

      Hypothesis testing yields P-values and statements of statistic significance. Hypothesis testing is done as follows:

      1. Decide on a null hypothesis (H0) about the population
        • H0: there is no difference between the 2 groups
      2. Take a representative sample of the population
      3. Calculate the observed difference in the sample
      4. Calculate the p-value
        • P-value: the probability to observe at least this difference if H0is true
          • This is done by a statistical test
      5. If the p-value is smaller than the prespecified value α, H0is rejected
        • The value αis called the significance level

      Mistakes:

      However, mistakes can be made in hypothesis testing. H0is rejected in case the observations are unlikely to occur if H0is true, and not if they are impossible:

      • Correct decisions
        • H0is not rejected + H0 is true
        • H0is rejected + H0is not true
      • Incorrect decisions
        • H0is rejected + H0is true → a type 1 error
          • α = the probability of a type 1 error
        • H0is not rejected + H0is not true → a type 2 error
          • β = the probability of a type 2 error
            • Power = 1 - β

      Power:

      The power is the probability of finding a significant effect in a sample when the effect is really present in the population. This depends on:

      • Relevant difference (effect size)
      • Sample size
        • If the sample size decreases, the power will also decrease
      • Variance/standard deviation
        • If there is more variation in a group the power will be smaller
      • Significance level α

      The aim is to have a study with a large power of 80-90%.

      Example:

      There is an RCT on patients with high blood pressure:

      • Intervention: 40 mg of ReDuCe
      • Comparator: 25 mg of hydrochlorothiazide
      • Outcome: blood pressure after 6 weeks of treatment

      In order to calculate the optimal sample size of this trial, some extra information is necessary:

        .....read more
        Access: 
        Public
        Blok AWV HC4: Cohort studies

        Blok AWV HC4: Cohort studies

        HC4: Cohort studies

        Study designs

        Medical research almost always requires collection of data. Study design described how is the study set up and how the data are collected. There are 2 types of study design:

        • Cohort study
        • Case-control study

        Cohort

        A cohort is a group of people with a common characteristic (gender, diabetes, age, etc.). A cohort study follows such a group over time and records certain outcomes in a follow-up study or longitudinal study. Usually, 2 or more groups are compared. For instance, with patients who are hospitalized for Covid-19, there is a follow-up, record of the mortality and comparison of chloroquine treatment versus no chloroquine treatment.

        Example:

        Cohort studies are often simplified in tables. An example is the association between smoking and lung cancer:

        • Cases: individuals who develop of an outcome of interest
        • N = size of the group
        • T = person time
          • If a person contributes 50 weeks to the study, and another person 2 weeks, the person time is 52 weeks → 1 person year

         

        Cases

        N

        Exposed

        A

        N1

        Unexposed

        B

        N0

         

        Cases

        N

        Smokers

        1600

        100 000

        Unexposed

        400

        200 000

         

         

        Cases

        T

        Exposed

        A

        T1

        Unexposed

        B

        T0

         

        Cases

        N

        Exposed

        1600

        300 000

        Unexposed

        400

        600 000

        With a cohort, the risk/rate can be estimated:

        • Cumulative incidence = A/N1→ 1600/100 000 = 1,6%
          • The cumulative is also known as the risk → the risk of smokers getting lung cancer is 1,6%
          • Time is not taken into account
        • Incidence rate = (A/T1) = 1600/300 000 years = 5,3 per 1000 person years
          • Time is taken into account
          • It is expected that 5,3 per 1000 individuals develops lung cancer in 1 year
        • Risk ratio (RR) = (A/N1)/(B/N0) → (1600/100 000)/(400/200 000) = 1,6%/0,2% = 8
          • Can be either the cumulative incidence ratio or the incidence rate ratio
            • Cumulative incidence risk ratio = (A/N1)/(B/N0)
            • Incidence rate ratio = (A/T1)/(B/T0)
          • The risk of developing lung cancer is 8x as large for smokers compared to non-smokers

        Cohort versus dynamic population

        There are several differences between a cohort and a dynamic population:

        • Cohort
          • Membership is established during a certain period in time, defined
        .....read more
        Access: 
        JoHo members
        Blok AWV HC5: Case control studies

        Blok AWV HC5: Case control studies

        HC5: Case control studies

        Case-control study

        In a case control study, instead of a census (information about everybody), sampling is done. The cases are compared to a sample of the entire population. This happens as follows:

        1. Case detection
        2. Sample of the controls
        3. Exposure status assessment among cases and among controls
          • E.g. comparison between the smoking status among the population and the smoking status among the population
        4. Exposure-outcome relation estimation

        Case-control versus cohort:

        A case-control study is very efficient compared to a cohort study:

        • Cohort: requires information about the entire study population
        • Case-control: requires information about part of the controls
          • Advantage: practical efficiency, particularly when:
            • Disease is rare
            • There is a long/unknown latency period
            • Assessment exposure is expensive
          • Disadvantage: it is not possible to estimate absolute disease frequencies (risk/rate)

        Case-control studies do not allow for:

        • Randomization
        • Absolute measures of disease frequency

        Odds ratio

        The odds ratio is the ratio of odds of exposure among cases and odds of exposure among controls. It is the only measure that can be estimated with a case control study.

        Case-control

        Cases

        Controls

        Exposed

        a

        c

        Unexposed

        b

        d

        The following calculations can be done:

        • Odds ratio (OR) = (a/b)/(c/d) = ad/bc

        Interpretation:

        The interpretation of the odds ratio depends on how the control study is done and what the controls represent. How this can be interpreted depends on the moment of sampling controls. Moments of sampling controls are:

        • At the end of the follow-up → sampling from non-cases
        • At the start of the follow-up → case-cohort
        • During the follow-up (each time a case occurs) → incidence density sampling
          • Each time a case is identified, a control is sampled from the cohort

        Controls can represent various things, such as:

        • Non-cases
        • Total number of subjects
        • Person time

        Sampling of non-cases:

        Case-control

        Cases

        Non-cases

        N

        Person time

        Exposed

        A

        C

        N1(A+C)

        T1

        Unexposed

        B

        D

        N0(B+D)

        T0

        In this case, non-cases (those who did not develop the outcome of interest) are sampled → the controls represent the non-cases in the cohort study:

        • c = k x C
        • d = k x D
          • OR = ad/bc = (a/(k x C))/(b/(k x D))
          • RR = (A/(A+C))/(B/(B+D)) = (A/C)/(B/D) = AD/BC = OR
            • This only is the case if A ≪C and B ≪D → in case of a rare outcome
              • If the outcome is <10%
              • The odds ratio can be interpreted as the risk ratio
        .....read more
        Access: 
        JoHo members
        Blok AWV HC6+7: Bias

        Blok AWV HC6+7: Bias

        HC6+7: Bias

        Medical research

        Medical research often consists of the quantification of a phenomenon, for example quantifying the effect of cholesterol lowering treatment on the risk of cardiovascular events among those with elevated serum cholesterol levels. Ideally, results apply not only to those who participate in the study (the study population/sample), but also to others with elevated cholesterol levels (the domain).

        The domain consists of a large group for whom the results of the study should apply. Of this domain, a sample is selected based on:

        • In-/exclusion criteria
        • Region
        • Time period
        • Et cetera

        While the study is done within this sample, the results of the study should apply to the domain. If there is a systematic error, results of the study do not apply to the domain.

        Systematic errors:

        Systematic errors in design, conduct or analysis may lead to erroneous results → bias. An example of a systematic error is a broken measuring tape when measuring the length of something. Each time the measuring tape is used, results are incorrect → a systematic error is not solved by a large sample size.

        Random errors:

        Random errors can be decreased by increasing the sample size. As the study size increases, random errors start playing a increasingly smaller role.

        Sources of bias

        There are 3 sources of bias:

        • Measurement errors → information bias
        • Missing data → selection bias
        • Incomparability of study groups → confounding

        There can be bias in different parts of studies, depending on the study type:

        • Randomized trial
          • Outcome
        • Cohort study
          • Exposure
          • Outcome
          • Confounders
        • Case-control study
          • Exposure
          • Outcome
          • Confounders

        Measurement errors

        Examples of measurement errors are:

        • Questionnaires for measuring body weight instead of scales
        • Drug use measured by “prescription information” instead of controlling if the drugs actually are taken
        • Measuring smoking status with “yes/no” instead of pack years

        This changes the risk ratio → results of the study are (often) incorrect.

        Consequences:

        Measurement errors can have different consequences:

        • Can result in over-/underestimation
        • Better to prevent than to cure
        • Correction is possible

        Missing data

        In case of missing data, certain information is not available:

        • Questionnaire is not returned
        • Question is not answered
        • Study drop-outs
        • Individuals not willing to participate

        The extent of the impact of missing data often depends on the research question, study design, data collection, etc. This changes the risk ratio → a small percentage of missing data (3%) can lead to 100% bias, but this doesn’t necessarily happen → 50% missing data can also result in no bias (the ratio remains the same). Depending on if it is a selective or random process, missing data has a different influence on the results.

        Selection bias:

        Selection bias arises when in either of the exposure groups, a selection was made on stroke. Selecting on the outcome in a follow-up study hardly ever occurs since the participants have not yet developed the outcome at the start of follow-up.

        Meta-analysis:

        .....read more
        Access: 
        JoHo members
        Blok AWV HC8+9: Survival analysis

        Blok AWV HC8+9: Survival analysis

        HC8+9: Survival analysis

        When to use survival analysis

        Survival is used to determine when a certain event happens, such as:

        • When a tumor develops after exposure to a carcinogen
        • When a patient dies after a cancer diagnosis
        • When a patient becomes pregnant after the start of fertility treatment
        • When a graft is rejected after transplantation

        Possible questions that can be answered with survival analysis are:

        • What is the distribution of the survival times?
        • Is there a difference in expected life-time between different treatments?
        • What is the fastest way to become pregnant?
        • Which factors predict 5-year survival probabilities?

        Example:

        For patients with end stage renal disease, it needs to be determined which treatment gives better survival:

        • Hemodialysis (HD)
        • Peritoneal dialysis (PD)

        Survival probabilities and survival times after start of dialysis can possibly be compared with help of T-tests of Chi square tests. However, there are several problems:

        • Not all patients died
        • Not all patients have the same follow-up time
          • Some started dialysis a while ago, some started dialysis recently
        • Patients get lost (e.g. migration)

        Censoring

        Because the time of death of all patients isn’t known, some patients have censored survival times. In an ideal world, patients that are still alive in each group are compared after a certain time period. However, some patients may be lost to follow-up. This can be solved by censoring survival times → the time of event (e.g. death) is not observed, it is only known when the patient was last seen alive. Reasons for censoring are:

        • Administrative censoring: individuals do not have the event (death) before the end of the study
        • Lost to follow-up: the patient moves or does not show up for appointments
        • The patient dies of another disease

        Example:

        In the peritoneal dialysis group, 207 patients died and 446 are still alive and were last seen between 0,8 and 5 years after the start of dialysis → the follow-up varies. Not only the data of the 207 patients should be used because it is very informative that someone is still alive after 5 years → all patients must be used.

        This can be shown in a graph with on the y-axis the a line for each patient, with the length of the line corresponding to the time after start of dialysis on the x-axis. Red dots indicate that the patient has died, green dots indicate that the patient is still alive or, if the dots are before the time of measurement, that the patient was lost to follow-up.

        The survival function

        The aim of survival analysis is to estimate the survival function S(t):

        • S(t) = probability that an event occurs after time (t) → the probability to be “alive” at time (t)
        • Always starts at 1 → everyone is alive at the start of study

        Kaplan-Meier method:

        Survival probabilities can be estimated with the Kaplan-Meier method. Information of each patient is used until death/censoring, for instance the information

        .....read more
        Access: 
        JoHo members
        Blok AWV HC10+11: Regression analysis

        Blok AWV HC10+11: Regression analysis

        HC10+11: Regression analysis

        Mean and standard deviation

        Statistics consists of making statements about a population based on data observed from a sample. This is often done using means and standard deviations (σ). The bigger the standard deviation, the bigger the spread in the population.

        For example, the lung function (FEV1 in L) of 40 children is measured:

        • Mean FEV1 = 3,16 L
        • σ = 0,41 L

        This means that roughly 95% of the population has a FEV1 between 3,16 – 0,82 and 3,19 + 0,82 L → approximately 95% of observations are less than 2σ from the mean:

        • 95% CI = (2,34 L, 3,84 L)

        However, lung function depends on many factors such as age and gender. These factors also need to be taken into account.

        Linear regression

        Simple linear regression is regression for continuous outcomes. Linear regression tries to predict or explain a variable → the outcome or the dependent variable (x). This variable is explained by another variable → the explanatory variable (y). A regression line is based on a scatter plot and calculates the mean value of “y” for a value of “x”:

        • y = the dependent variable, outcome and response variable
        • x = the independent variable, covariate, risk factor, predictor and explanatory variable
        • Mean y = β0+ β1x
          • β0= the intercept (“constante”)
            • The predicted value of “y” if “x” is equal to 0
              • Not always clinically meaningful
          • β1= the slope (“richtingscoëfficiënt”)
            • The expected change in the outcome by increasing the exposure of 1 unit if β1 is positive
              • Or decrease, in case β1is negative

        For instance, a regression line can describe the mean FEV1 as function of age:

        • Mean FEV1 = 2,281 + 0,119 x age

        This means that for 2 children with an age difference of 1 year, the expected mean difference in the FEV1 is 0,119 L.

        Error/residual:

        Observations of (x1, y1), (x2, y2), …, (xn, yn) show that each pair represents the values of 1 person. Sometimes, the error can also be taken into account:

        • y = β0+ β1x + e

        The deviations of the regression line are called residuals, which are taken into the error. The error/residual is assumed to be normally distributed with the standard deviation σ. σ indicates how much the observations vary around the regression line:

        • Small σ: all observations are close to the regression line
        • Large σ: some observations are far from the regression line

        The residual is the distance from a single observation to the regression line → the difference between what is observed and what is predicted:

        • yi– (β0+ β1xi)

        Least squares method:

        The unknown true regression line in the population is line y = β0+ β1x. Using the least squares method, the regression line can be estimated by y = b0+ b1x. The b0and b1which minimize the sum of squared residuals need to be selected:

        .....read more
        Access: 
        JoHo members
        Blok AWV HC12: Diagnostische begrippen

        Blok AWV HC12: Diagnostische begrippen

        HC12: Diagnostische begrippen

        Begrippen

        Een kans is een getal tussen 0 en 100% dat weergeeft hoe waarschijnlijk iets is. Deze kans stijgt als een test positief is, en daalt als een test negatief is. Belangrijke termen zijn:

        • Voorafkans/a-priori kans/prevalentie: voor een test
        • Achterafkans/a-posteriori kans/voorspellende waarde: na een test
        • Sensitiviteit: kans op een positieve test als de ziekte aanwezig is
        • Specificiteit: kans op een negatieve test als de ziekte afwezig is
        • Positief voorspellende waarde: kans dat de ziekte aanwezig is als de test positief is
        • Negatief voorspellende waarde: kans dat de ziekte afwezig is als de test negatief is

        Achterafkans

        Op een polikliniek chirurgie komt een jonge patiënt, die sinds een halve dag buikpijn heeft. De pijn is heftig, continue en gelokaliseerd op het punt van McBurney. De dokter denkt aan appendicitis acuta:

        • 20% van alle acute buik patiënten heeft een appendicitis acuta → de voorafkans is 20%
        • Van alle acute buik patiënten met appendicitis acuta zegt 90% pijn te hebben op McBurney → de sensitiviteit is 90%
        • Van alle acute buik patiënten zonder appendicitis acuta zegt 15% pijn te hebben op McBurney → de specificiteit is 85%

        Positieve testuitslagen kunnen terecht positief (TP) of fout positief (FP) zijn:

        • TP = voorafkans op ziekte x sensitiviteit → 20% x 90% = 18%
        • FP = voorafkans op geen ziekte x (1 – specificiteit) → 80% x 15% = 12%

        2x2 tabel:

        Deze gegevens kunnen gezet worden in een 2x2 tabel:

         

        Appendicitis

        Geen appendicitis

        Totaal

        Wel pijn MB

        18%

        12%

        30%

        Geen pijn MB

        2% (0,1 x 0,2)

        68% (0,85 x 0,8)

        70%

        Totaal

        20%

        80%

        100%

        De achterafkans na een positieve test is 18% van 30% → 60% kans. De kans dat de patiënt appendicitis heeft is 60%. Dit heeft ook wel de positief voorspellende waarde:

        • VW+ = TP/(TP + FP) = 18%(18% + 12%) = 60%

        De negatief voorspellende waarde is de kans dat ziekte afwezig is, gegeven de negatieve testuitslag:

        • VW - = TN/(TN + FN) = 68%/(68% + 2%) = 97%
          • Er zijn heel weinig fout negatieve testuitslagen

        Bayes’ theorema

        Thomas Bayes (1701-1761) was een Engelse dominee en wiskundige. Hij is bekend geworden door zijn theorema over conditionele kansen:

        • Als bekend is dat X waar is, wat is dan de kans op Y?
        • Als het vandaag regent, wat is dan de kans dat het morgen regent?
        • Als de test positief is, wat is dan de kans op ziekte?

        Odds:

        Een kans kan beschreven worden als “odds”:

        • Een kans van 50% is een odds van 1:1 → odds van 1
        • Een kans van 80% is een odds van 80:20 → odds van 4
        • Een kans van 20%
        .....read more
        Access: 
        Public
        Blok AWV HC13: Beslisbomen

        Blok AWV HC13: Beslisbomen

        HC13: Beslisbomen

        3 deuren probleem

        Een beslisboom bestaat uit takken met beslisknopen en eindknopen. Een voorbeeld is het drie deuren probleem, waarbij achter 1 deur een auto staat. Vervolgens wordt van 1 deur bekend wordt dat deze fout is waardoor de kans 50% is dat achter 1 van de overgebleven deuren het goede zit. Vervolgens kan de persoon die voor 1 van de overgebleven 2 deuren staat besluiten om wel of niet te wisselen. Voor beide opties zijn 2 mogelijkheden:

        • Niet wisselen
          • Eerst goede deur → kans van 1/3 → de auto wordt gewonnen
          • Eerst foute deur → kans van 2/3 → niks wordt gewonnen
        • Wel wisselen
          • Eerst goede deur → kans van 1/3 → niks wordt gewonnen
          • Eerst foute deur → kans van 2/3 → de auto wordt gewonnen

        Dit zijn de kansen vóór het wisselen. Deze analyse laat zien dat in het geval dat er niet gewisseld wordt, de kans op het winnen van de auto 1/3 is, terwijl als er wel gewisseld wordt, de kans 2/3 is.

        Spijt:

        Spijt ontstaat als de persoon eerst goed stond, en daarna wisselde waardoor de auto alsnog niet is gewonnen.

        Opmerkingen:

        Een aantal opmerkingen bij het 3-deuren probleem zijn:

        • De goede beslissing geeft niet steeds de beste uitkomst
          • Proces- versus uitkomstkwaliteit
          • Effectiviteit versus bijwerkingen
        • Het beslissingscriterium bepaalt de optimale beslissing
          • Wat is het doel?
            • Vooral de auto willen hebben of geen spijt willen hebben?
          • Geanticipeerde spijt → achteraf geen spijt willen hebben

        Beslisbomen

        Met beslisbomen kunnen problemen geanalyseerd worden:

        • Structuur
          • Keuzeknopen, kansknopen en eindknopen
          • Van links naar rechts
        • Getallen
          • Getallen bij de kansknopen
          • De kans op een hele “tak” is p1x p2x …
          • Uitkomsten staan bij de eindknopen
        • Analyseren en optimaliseren
          • Bereken de verwachtingswaarde voor elke beslissing
          • Kies d ebeste verwachte waarde

        Verwachtingswaarde:

        Over het algemeen is de verwachtingswaarde ongeveer “het midden” → in een continue of normale verdeling is de verwachtingswaarde de mediaan. Echter is de uitkomst bij beslisbomen niet continu → er zijn meerdere mogelijkheden. Zo zijn er bij het gooien van een dobbelsteen 6 mogelijkheden, die allemaal een kans van 1/6 hebben. De verwachtingswaarde van een dobbelsteenworp is daarom:

        • 1/6 x 1 + 1/6 x 2 + 1/6 x 3 + 1/6 x 4 + 1/6 x 5 + 1/6 x 6 = 3,5

        De verwachtingswaarde is niet hetzelfde als het gemiddelde → de verwachtingswaarde is een begrip uit de kansrekening en het gemiddelde is een begrip uit de statistiek:

        • Kansrekening
          • Ontstaan in de 16e eeuw, vanwege analyse van kansspelen
          • Het vooraf modelleren en doorrekenen van toeval
            • Bijv. het maken van een model met de dobbelsteen waarmee doorgerekend wordt
        • Statistiek
          • Ontstaan in de 17e eeuw, vanwege (levens)verzekeringen
          • Het achteraf beschrijven en analyseren van data
            • Bijv. het gemiddelde als er 8x is gegooid met een dobbelsteen
        .....read more
        Access: 
        Public
        Blok AWV HC14: Test en behandeldrempel

        Blok AWV HC14: Test en behandeldrempel

        HC14: Test en behandeldrempel

        Behandeldrempel

        De behandeldrempel beantwoord de klinische vraag: “Hoe zeker moet ik zijn van de ziekte, voordat ik overga tot behandeling, wetende dat elke behandeling zowel voor- als nadelen heeft?”

        Kosten en baten:

        Elke behandeling heeft voor- en nadelen. De consequenties van een behandeling bepalen wanneer een behandeling wordt ingezet → er wordt gekeken naar de balans tussen de voor- en nadelen:

        • Baat: vermindering van de schade door de ziekte
          • Kan alleen optreden bij de aanwezigheid van die ziekte
        • Kosten: gezondheidsschade door de behandeling zelf
          • Bij mensen met en zonder de ziekte
            • Bij mensen met de ziekte, zitten de kosten al verwerkt in de baat
            • Mensen zonder de ziekte hebben alleen de kosten
          • Baat het niet, dat schaadt het niet

        Het volgende geldt:

        • Bij zekerheid over de ziekte
          • Bij mensen met de ziekte is er baat
          • Bij mensen zonder de ziekte zijn er kosten
        • Bij onzekerheid over de ziekte
          • Bij mensen met een hoge kans op de ziekte is er meer baat dan kosten
          • Bij mensen met een lage kans op de ziekte zijn er meer kosten dan baat

        Bij de behandeldrempel is de baat gelijk aan de kosten.

        Beslisboom:

        De baat en kosten zijn ook zichtbaar in de beslisboom, bijvoorbeeld over AAAA:

        • Opereren
          • De patiënt heeft AAAA → overlevingskans van 40%
            • De kans hierop is pAAAA
          • De patiënt heeft iets anders → overlevingskans van 95%
        • Afwachten
          • De patiënt heeft AAAA → overlevingskans van 0%
            • De kans hierop is pAAAA
          • De patiënt heeft iets anders → overlevingskans van 100%

        In dit geval is de baat 40% - 0% = 40%, en zijn de kosten 100% - 95% = 5%.

        Utility:

        Elke beslissing heeft zijn eigen uitkomst → elke uitkomst heeft een “utility” (waarde of nut):

        • UTP= nut van “true positive” → terecht behandeld
        • UFP= nut van “false positive” → onterecht behandeld
        • UFN= nut van “false negative” → onterecht onbehandeld
        • UTN= nut van “true negative” → terecht onbehandeld

        Hiermee kunnen de baten en kosten berekend worden:

        • Benefit (B) = UTP– UFN
          • Het verschil tussen wel en niet behandelen bij mensen met de ziekte, inclusief de behandelschade
        • Costs (C) = UTN– UFP
          • Het verschil tussen wel en niet behandelen bij mensen zonder de ziekte, exclusief het behandelvoordeel

        De “expected utility” (EU) is de verwachtingswaarde van het nut van de 2 mogelijke strategieën:

        • EU (wel behandelen) = p x UTP+ (1-p) x UFP
        • EU (niet behandelen) = p x UFN+ (1-p) x UTN

        Door EU (wel behandelen) gelijk te stellen aan EU (niet behandelen), kan berekend worden wanneer het even goed is om wel/niet te behandelen:

        1. EU (wel behandelen) = EU (niet behandelen)
        2. p x UTP+ (1-p) x UFP= p x UFN+ (1-p) x UTN
        3. p x (UTP– UFN) = (1-p) x (UTN–
        .....read more
        Access: 
        Public
        Work for WorldSupporter

        Image

        JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

        Working for JoHo as a student in Leyden

        Parttime werken voor JoHo

        Check more of this topic?
        How to use more summaries?


        Online access to all summaries, study notes en practice exams

        Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

        There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

        1. Starting Pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
        2. Use the menu above every page to go to one of the main starting pages
        3. Tags & Taxonomy: gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
        4. Follow authors or (study) organizations: by following individual users, authors and your study organizations you are likely to discover more relevant study materials.
        5. Search tool : 'quick & dirty'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject. The search tool is also available at the bottom of most pages

        Do you want to share your summaries with JoHo WorldSupporter and its visitors?

        Quicklinks to fields of study (main tags and taxonomy terms)

        Field of study

        Access level of this page
        • Public
        • WorldSupporters only
        • JoHo members
        • Private
        Statistics
        1208
        Comments, Compliments & Kudos:

        Add new contribution

        CAPTCHA
        This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
        Image CAPTCHA
        Enter the characters shown in the image.
        Promotions
        Image
        The JoHo Insurances Foundation is specialized in insurances for travel, work, study, volunteer, internships an long stay abroad
        Check the options on joho.org (international insurances) or go direct to JoHo's https://www.expatinsurances.org