What are nerve cells and nerve impulses? - Exams 1c

Questions

Question 1

Explain the function and process of a neuron’s refractory period.

Question 2

Describe how the brain transports essential chemicals.​

Question 3

Describe the key aspects of the resting potential.​

Question 4

Provide a summary of the all-or-none law of action potentials.​

Question 5

Describe the structure of the blood-brain barrier and explain why it is important.​

Answers

Question 1

Although the electrical potential across the membrane is returning from its peak toward the resting point, it is still above the threshold. Why doesn’t the cell produce another action potential during this period? (If it did, of course, it would endlessly repeat one action potential after another.) Immediately after an action potential, the cell is in a refractory period during which it resists the production of further action potentials. In the first part of this period, the absolute refractory period, the membrane cannot produce an action potential, regardless of the stimulation. During the second part, the relative refractory period, a stronger-than-usual stimulus is necessary to initiate an action potential. The refractory period depends on two facts: The sodium channels are closed, and potassium is flowing out of the cell at a faster-than-usual rate. In most of the neurons that researchers have tested, the absolute refractory period is about 1 millisecond (ms), and the relative refractory period is another 2 to 4 ms.

Question 2

The brain has several transport mechanisms. Small, uncharged molecules, including oxygen and carbon dioxide, cross freely. Water crosses through special protein channels in the wall of the endothelial cells. Also, molecules that dissolve in the fats of the membrane cross easily. Examples include vitamins A and D and all the drugs that affect the brain—from antidepressants and other psychiatric drugs to illegal drugs such as heroin. How fast a drug takes effect depends partly on how readily it dissolves in fats and therefore crosses the blood– brain barrier.

For a few other chemicals, the brain uses active transport, a protein-mediated process that expends energy to pump chemicals from the blood into the brain. Chemicals that are actively transported into the brain include glucose (the brain’s main fuel), amino acids (the building blocks of proteins), purines, choline, a few vitamins, iron, and certain hormones.

Question 3

All parts of a neuron are covered by a membrane about 8 nanometers (nm) thick (just less than 0.00001 mm), composed of two layers (free to float relative to each other) of phospholipid molecules (containing chains of fatty acids and a phosphate group). Embedded among the phospholipids are cylindrical protein molecules through which various chemicals can pass. The structure of the membrane and its proteins controls the flow of chemicals between the inside and outside of the cell. When at rest, the membrane maintains an electrical gradient, also known as polarization—a difference in electrical charge between the inside and outside of the cell. The neuron inside the membrane has a slightly negative electrical potential with respect to the outside, mainly because of negatively charged proteins inside the cell. This difference in voltage is called the resting potential.

Question 4

Once a neuron reaches the threshold of activation, the action potential is conducted all of the way down the axon without loss of intensity. Furthermore, the magnitude of the action potential is roughly the same every time and is independent of the intensity of the stimulus that initiated it.

Question 5

Tightly joined endothelial cells form the capillary walls in the brain, making the blood-brain barrier. This protects the brain from harmful viruses, bacteria, and chemicals that might otherwise be able to enter the brain and cause damage.

 

Image

Access: 
Public

Image

Join WorldSupporter!

Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>

Check: concept of JoHo WorldSupporter

Concept of JoHo WorldSupporter

JoHo WorldSupporter mission and vision:

  • JoHo wants to enable people and organizations to develop and work better together, and thereby contribute to a tolerant tolerant and sustainable world. Through physical and online platforms, it support personal development and promote international cooperation is encouraged.

JoHo concept:

  • As a JoHo donor, member or insured, you provide support to the JoHo objectives. JoHo then supports you with tools, coaching and benefits in the areas of personal development and international activities.
  • JoHo's core services include: study support, competence development, coaching and insurance mediation when departure abroad.

Join JoHo WorldSupporter!

for a modest and sustainable investment in yourself, and a valued contribution to what JoHo stands for

Image

 

 

Contributions: posts

Help other WorldSupporters with additions, improvements and tips

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.

Image

Check more: related and most recent topics and summaries
Check more: study fields and working areas

Image

Follow the author: Vintage Supporter
Share this page!
Statistics
3081
Submenu & Search

Search only via club, country, goal, study, topic or sector