Notes bij Academische Wetenschappelijke Vorming - Jaar 2 - Geneeskunde - UL - Aanvulling (2013-2014)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


Statistiek HC4 – Overlevingsdata

Het 95% betrouwbaarheidsinterval geeft aan hoe nauwkeurig de regressielijn geschat is. Het 95% predictie interval geeft aan tussen welke grenzen ongeveer 95% van alle observaties valt.

 

Bij veel onderzoeken wordt survival data (overlevingsdata) of time to event data (tijd tot gebeurtenis data) gebruikt. Enkele voorbeelden zijn:

  • Dieronderzoek waarbij het beginpunt blootstelling aan een carcinogeen is en het eindpunt de ontwikkeling van een tumor.

  • Kankeronderzoek waarbij het startpunt is bij het stellen van de diagnose en waarbij het eindpunt overlijden is.

  • Een eindpunt kan ook iets positiefs zijn, zoals bij vruchtbaarheidsonderzoek. Het startpunt is dan het begin van de behandeling en het eindpunt is zwangerschap.

  • Transplantatie onderzoek waarbij het beginpunt de transplantatie is en het eindpunt afstoting van het transplantaat.

  • Bij een trial met twee anticoagulanten is het beginpunt het tijdstip van randomisatie en het eindpunt overlijden/bloeding/trombose.

Hierbij zijn enkele vragen, zoals: hoe zijn de overlevingstijden verdeeld? Is er een verschil in verwachte overleving als iemand op een andere manier behandeld wordt? Wat is de snelste manier om zwanger te worden? Welke factoren voorspellen de 5-jaars overleving?

 

Hoe worden overlevingskansen vergeleken? Hoe worden overlevingstijden vergeleken? Dit laatste gebeurt met een T-toets of een Chi square test. Hierbij zijn een aantal problemen, want niet alle patiënten overlijden, niet alle patiënten hebben dezelfde follow-up tijd en soms raken patiënten ‘kwijt’ (door verhuizing of migratie). We nemen een voorbeeld: er worden 6 patiënten gevolgd en de follow-up is 24 maanden. Het eindpunt bij deze studie is overlijden. Patiënt 1 overlijdt na 14 maanden. Patiënt 2 is aan het einde nog in leven. Persoon 3 is kwijt geraakt. Patiënt 4 is na 13 maanden overleden. Patiënt 15 wordt nog gevolgd. Patiënt 16 was aan het einde nog in leven. Dit maakt het gecompliceerd om de gegevens te analyseren, want men weet niet van iedereen wat nodig is. Dit noemt men gecensureerde gegevens. Redenen zijn dat een individu het eindpunt niet bereikt (in dit geval: de patiënt overlijdt niet), er is lost-to-follow-up (door verhuizing of het niet nakomen van afspraken) of een patiënt overlijdt aan een andere oorzaak.

 

Stel dat er in een dialyse studie 653 mensen peritoneale dialyse krijgen. 207 van deze patiënten overlijden en 446 patiënten zijn nog in leven. De patiënten zijn voor het laatst gezien tussen de 0,8 en 5 jaar na de start van de dialyse. De 446 niet overleden personen mogen niet uit de studie verwijderd worden. Dit zou ook niet slim zijn, want dat deze personen na 5 jaar nog lezen, is juist heel informatief.

 

Men wil een overlevingsfunctie S(t) schatten. S(t) is de kans dat iemand op tijdstip t nog in leven is. De grafiek heeft op de x-as de tijd en op de y-as de overlevingswaarschijnlijkheid en dit is een afnemende functie. Het schatten van de overlevingswaarschijnlijkheid kan via de Kaplan-Meier methode. Hier wordt informatie van elke patiënt gebruikt tot dood/censurering. Een voorbeeld van 10 personen: 3, 4, 7+, 9, 10, 11+, 12, 20, 20, 25+. Een + betekent dat deze persoon gecensureerd is. Verticaal worden alle tijdstippen neergezet waarop er iets gebeurt. De tabel is hieronder te vinden.

Tijd

Aantal met risico

Aantal overledenen

Proportie overledenen

Proportie overlevenden

Overlevings-waarschijnlijkheid

0

10

 

 

 

1

3

10

1

1/10

9/10

9/10=0,9

4

9

1

1/9

8/9

0,9x8/9=0,8

7

8

0

0

1

0,8

9

7

1

1/7

6/7

0,8x6/7=0,69

10

6

1

1/6

5/6

0,69x5/6=0,57

11

5

0

 

1

0,57

12

4

1

¼

¾

0,57x3/4=0,43

20

3

2

2/3

1/3

0,14

25

1

 

 

 

0,14

 

Van deze tabel kan een Kaplan-Meier curve gemaakt worden. Op de x-as staat de tijd en op de y-as de overlevingswaarschijnlijkheid. Een verticaal streepje in de curve zegt dat iemand gecensureerd is. In ons voorbeeld stopt de curve na 25 maanden, hoewel er nog wel mensen in leven zijn. Men weet namelijk niet wat er met deze personen gebeurd is na de 25 maanden. Er waren hier slechts 10 observaties gedaan, waardoor het heel onnauwkeurig is. Er kunnen standaardfouten van de schattingen door SPSS berekend worden. Hiermee kan een 95% betrouwbaarheidsinterval gemaakt worden van de overlevingswaarschijnlijk: (S(t)-1,96xse, S(t)+1,96xse), met S(t) is de overlevingswaarschijnlijkheid op tijdstip t.

 

De mediane overlevingstijd is het tijdstip waarop 50% van de patiënten nog in leven is en 50% niet. Kaplan-Meier is nauwkeurig, als de overlevingswaarschijnlijkheden hetzelfde zijn voor personen die vroeg of laat in de studie gerekruteerd zijn, als de gecensureerde patiënten op elk tijdstip dezelfde overlevingsprognose hebben als de patiënten in de studie (onafhankelijke censurering) en als het tijdstip van de gebeurtenissen exact bekend zijn.

 

Met behulp van de log rank test kunnen overlevingscurves vergeleken worden. De nulhypothese zegt dat de twee curves gelijk zijn en de H1 zegt dat de curves verschillend zijn. De geobserveerde curves worden vergeleken met dat wat men zou verwachten als de nulhypothese waar is. Dan verwacht men twee krommes die over elkaar heen variëren. Een maat hiervoor is de statistische toets X2. Deze berekend de afstanden van de punten tot de lijn in het kwadraat. Er wordt kansrekening gebruikt om te bedenken wat er met X2 zou gebeuren als de nulhypothese waar is. Dit heeft een chi-kwadraat verdeling met één vrijheidsgraad, onder H0. Dit wordt gebruikt om de p-waarde te berekenen. Als X2 groot is en de bijbehorende p-waarde klein, dan kan de nulhypothese verworpen worden, want er is dan een significant verschil. Men moet niet slechts naar de p-waardes kijken, want bij grote groepen is deze bijna altijd significant. Men moet ook kijken naar de effectmaten en de precisie. Bij overlevingsdata is de effectmaat de hazard ratio.

 

De hazard functie is de waarschijnlijkheid dat een individu, levend net voor tijdstip t, overlijdt op tijdstip t. Een voorbeeld is dat S(12) = 0,40 en S(13) = 0,20. De Hazard is dan h(12) = ((S(12)-S(13))/S(12) = 0,5. Een hazard functie kan omgezet worden in een overlevingsfunctie en andersom. De algemene definitie van de hazard functie is: h(t) = lim (((S(t)-S(t+Δ))/ Δ)/ S(t) = (-S(t))/S(t). Als de overleving exponentieel daalt, dan zal de hazard constant zijn.

 

De hazard ratio kan gebruikt worden om een verschil in overleving te meten. We nemen als voorbeeld het onderzoek met hemodialyse patiënten en peritoneale dialyse patiënten. Hemodialyse heeft hazard functie h0(t) en peritoneale dialyse h1(t). Men neemt aan dat h1(t)/h0(t) constant is. Deze verhouding is de hazard ratio. Dus HR = h1(t) / h0(t). Er is ook een Cox proportioneel hazard model met h1(t)=h0(t) x HR. Dit is in feite de vorige formule, maar dan anders geschreven. Uit de HR kunnen een aantal getallen komen:

  • HR > 1 – dan is de overleving in de h1(t) groep hoger dan in de h0(t) groep.

  • HR < 1 – dan is de overleving in de h1(t) groep lager dan in de h0(t) groep.

  • HR = 1 – dan is de overleving in beide groepen gelijk.

Bij ons voorbeeld is HR = 0,58 (peritoneaal/hemodialyse). Dit betekent dat de overleving in de groep met peritoneale dialyse beter is. Het 95% betrouwbaarheidsinterval is hierbij (0.48, 0.66) en dus valt de 1 hier niet in. Hierdoor is het statistisch significant. Als de 1 wel in het 95% betrouwbaarheidsinterval valt, dan is HR=1 en dus is er geen significant verschil tussen de beide groepen. Nu is de vraag: is deze vergelijking (peritoneaal tegen hemodialyse) wel eerlijk? In de groep met hemodialyse patiënten is de gemiddelde leeftijd hoger. Hiervoor is een oplossing, want men kan ook gecorrigeerde hazard ratio’s berekenen, wat in dit geval nodig is vanwege confounders. Dit kan gedaan worden met behulp van SPSS.

 

Het Cox model geeft proportionele hazards. Hierbij gold de formule h1(t) = h0(t) x HR. Op de logaritmische schaal wordt dit: ln(h1(t)) = ln(h0(t)) + ln(HR). Ln is het natuurlijke logaritme. De formule kan ook geschreven worden als ln(h1(t)) = ln(h0(t)) + β1X1 + … + βpXp. β1 is de verhoging in ln-hazard wanneer X1 met één eenheid omhoog gaat en X2, …, Xp hetzelfde blijven. De hazard ratio wordt exp(β1) keer groter.

 

Hazards zijn niet altijd proportioneel, dus de hazards over de tijd zijn niet altijd proportioneel. De tumorgrootte is bijvoorbeeld heel prognostisch voor de eerste jaren van kanker overleving, maar later minder. Bij een operatie in een gastrische kanker trial wordt gelimiteerde lymfeknoop dissectie (D1) vergeleken met uitgebreide lymfeknoop dissectie (D2). De overleving in de eerste twee jaar was beter voor D1, maar op de langere termijn was de overleving van D2 beter. Bij D2 zijn de tumorcellen namelijk beter weggehaald. Een oplossing is het berekenen van hazard ratio’s per jaar.

 

Overlevingsdata vereisen dus speciale statistische technieken. De overlevingswaarschijnlijkheid kan geschat worden door het gebruiken van de Kaplan-Meier methode. Dit veronderstelt dat censurering onafhankelijk is van de prognose. Hazard ratio’s zijn heel gewoon in medische papers. Het Cox model veronderstelt proportionele Hazards.

 

HC 10 – Interpretatie van studieresultaten

Een vergelijking van risico kan gedaan worden door een ratio. Er zijn meerdere soorten ratio’s, zoals risico ratio, rate ratio, odds ratio en hazard ratio. De context kan bij een ratio echter verloren gaan. Het absolute risico verschil gaat bijvoorbeeld verloren bij het berekenen van een ratio. Het absolute risico verschil speelt een rol bij een RCT. Ook is er de attributieve factor.

 

Populatie attributieve fractie (PAF). We kijken naar een rode balk: de hele onderzoekspopulatie. In deze populatie zijn er mensen die niet ziek worden (D-; lichtrood) en mensen die wel ziek worden (D+; rood). Dit is het risico dat heerst om ziek te worden. Van de mensen die ziek zijn, is een aantal mensen wel blootgesteld aan de expositie van interesse (E+; donkerblauw) en een deel niet blootgesteld (E-; lichtblauw). De PAF zegt hoeveel mensen er in het rode vakje zitten en ook in het donkerblauwe vakje. Oftewel: de proportie van ziekte in een populatie die toegeschreven kan worden aan de expositie van interesse. Hierbij hoort een formule, namelijk: PAF = ((Rtotaal-Rniet-blootgesteld)/Rtotaal)). De PAF is van belang, want als de expositie weggehaald zou kunnen worden, dan zou de groep mensen dus niet meer ziek worden.

Een voorbeeld:

 

Ziek +

Ziek -

Totaal

Risico

Expositie A

30

1970

2000

30/2000=0,015

Niet expositie A

80

7920

8000

80/8000=0,010

Het totale risico is (30+80)/(2000+8000)=110/10.000= 0,011. Men deelt dus het aantal zieke patiënten door het totale aantal mensen. Het relatieve risico is dan 0,015/0,010=1,5. De PAF zou in dit geval zijn: (0,011-0,010)/0,011=9%. Dit betekent dat 9% van alle zieke patiënten blootgesteld was aan expositie A. Stel dat we nu naar een voorbeeld zouden kijken met een relatief risico van 1,75 (bijna hetzelfde als in het eerste voorbeeld), dan kan het zo zijn dat de PAF toch veel hoger is (27%). Dit komt door een verschillende prevalentie van expositie. Een derde voorbeeld heeft een hoog RR (11), een lage prevalentie van expositie en expositie C is bijna een noodzakelijke component oorzaak doordat de PAF 99% is. De som van deze 3 PAF’s is >100%, maar dat is niet raar omdat we het over totaal andere exposities hebben.

 

Het absolute risico verschil wordt vaak vergeten, maar het is nodig. Dit is het geval bij:

  • Het absolute risico van de patiënt.

  • Bedoelde effecten/bijwerking ratio.

  • Het berekenen van het risicoverschil.

Risk difference (RD) = risico blootgesteld – risico niet blootgesteld. NTT = 1/RD.

 

Een punt schatting is belangrijk voor hoe men vervolgens in een onderzoek aan de slag gaat. Stel dat er een relatief risico is van 1,5 en een NNT van 200. Bij 200 mensen in de onderzoekspopulatie moet dan de risicofactor weggehaald worden, om één casus van ziekte te voorkomen. Het NNT geeft meer inzicht dan het RR, want als er andere basis risico’s zijn dan kan er wel eenzelfde RR zijn, maar dan is dit te zien aan het NNT. De basisrisico’s mogen zeker niet vergeten worden als men moet besluiten of er wel of niet behandeld gaat worden. Onderzoeksvragen worden altijd gegeven vanuit een puntschatting; een verschil. De puntschattingen beantwoorden de onderzoeksvraag door middel van vergelijken. Er is één getal dat de onderzoeksvraag beantwoordt, maar hiermee gaat de context soms verloren. Hierdoor kunnen puntschattingen, gebaseerd op ratio’s, niet direct gebruikt worden maar moeten ze in context geplaatst worden. De context kan gegeven worden door middel van het absolute risico of NNT. Vooral binnen cohort studies is het NNT een van de meest inzichtgevende maten. Soms is er extra data nodig voor absolute risico’s, zoals bij case-control studies.

P-waardes helpen bij het schatten hoe zeker men is van berekeningen. Hierbij zijn ook betrouwbaarheidsintervallen van belang. De grens van 0,05 is willekeurig gekozen. De grens zorgt voor een tweedeling in denken: ja/nee? De P-waarde is gebaseerd op het effect, maar ook op de studie grootte. We nemen een voorbeeld, waarin 5 nieuwe medicijnen getest worden. Medicijn A heeft een P-waarde van <0,01. Medicijn B en C een P-waarde van <0,05. Medicijn D en E een P-waarde van >0,05. Hieruit kan echter nog niks geconcludeerd worden, want men weet nog niks over de effecten. Betrouwbaarheidsintervallen geven de grenzen waartussen het echte effect 95% van de keren ligt als de studie steeds opnieuw gedaan wordt. De waarschijnlijkheid over het bereik is niet uniform en de grenswaardes zijn onwaarschijnlijke waardes. De beste schatting is de punt schatting. Het betrouwbaarheidsinterval leidt niet tot dichotoom denken, want er wordt meer informatie gegeven.

 

Op het moment dat voor het eerst een medicament gegeven wordt aan een persoon, dan is er fase 1. Dit moet heel gecontroleerd gebeuren en het wordt meestal niet gedaan bij patiënten, maar bij gezonde mensen. Wat men tot dan toe weet komt uit dierstudies. Hierop is de ‘veilige dosis’ gebaseerd. Er zijn dus gezonde mensen, er is een gecontroleerde omgeving en er zijn strakke regels. In fase 2 wordt het medicijn voor de eerste keer gegeven aan patiënten. Welk type patiënt er wordt gebruikt, is afhankelijk van onderzoeksvraag. Bij fase 2 wordt er gekeken naar hoe hoog de dosering moet zijn voor een biologisch effect. Het belangrijkste is: werkt het medicijn? Er wordt gekeken op de korte termijn naar de effecten en bijwerkingen. Ook hier is een gecontroleerde omgeving en er zijn strikte inclusie en exclusie criteria. Vaak is er ook een controlegroep. Bij een fase 3 onderzoek wordt er voor de eerste keer randomisatie gebruikt. Er wordt een controle groep gebruikt en er is een intention-to-treat analyse. Men kijkt nu naar hoe groot het effect is en wat de effecten en bijwerkingen zijn op de lange termijn. Fase 4 onderzoek gebeurt pas nadat het medicijn op de markt gekomen is. Er kan een post marketing trial gedaan worden, maar dit is niet altijd nodig. Er kan wel een survaillance gedaan worden, in plaats van een trial, en dit is een observationele studie. Men kijkt dan op de langere termijn naar het effect in de klinische praktijk en naar de bijwerkingen.

 

De scheiding tussen de verschillende fases is bij onderzoeken niet altijd duidelijk. Er kan ook een trial zijn die en een fase 1 en een fase 2 trial is. Wat er in een trial onderzocht wordt, hangt af van de onderzoeksvraag.

 

In het voorbeeld dat in het begin te vinden is, wisten we nog niet wat de effecten van de medicijnen waren: de context. Als we kijken naar de effecten, dan zien we dat alleen medicijn A en D een goed effect hebben. Medicijn D heeft het beste effect. In dit geval zou er dus voor dit medicijn gekozen worden, zelfs al is de P-waarde 0,052. Hier gaat het dus om statistisch significant versus klinisch relevant: het grootste effect telt.

 

Er kan geconcludeerd worden dat betrouwbaarheidsintervallen informatiever zijn dan P-waardes. Betrouwbaarheidsintervallen geven in feite dezelfde informatie, maar ook meer informatie over de sterkte van het ware effect. Waarom worden er dan toch P-waardes gebruikt? Dit is eigenlijk voor ‘drukke doktoren’. Statistici en epidemiologen gebruiken de P-waardes niet, maar doktoren willen vaak een ja/nee antwoord. Dit wordt gegeven door de p-waarde. Een uitzondering is wanneer een ja/nee antwoord echt nodig is.

 

Dus als men kijkt naar onderzoeksresultaten, dan moet er ook gekeken worden naar de context van de puntschatting. Het gaat er dan om wat de onderzoeksvraag is en wat men eigenlijk wil weten. Geeft de puntschatting het juiste antwoord? Soms kan er extra informatie gegeven worden, door de NNT of PAF. Deze waardes kan men gebruiken voor het schatten van de balans klinisch relevant versus statistisch significant. Ten slotte is het dus zo dat de P-waarde slechts een ja/nee antwoord geeft, dat meestal niet voldoende is. In plaats daarvan moeten een betrouwbaarheidsinterval en een puntschatting gebruikt worden.

 

HC 11 – Mendeliaanse randomisatie

Er zijn drie criteria voor een confounder, namelijk:

  1. Een confounder is geassocieerd met de uitkomst.

  2. Een confounder is geassocieerd met de expositie.

  3. Een confounder mag niet in het causale pad zitten.

 

Stel dat men kijkt naar het risico van het hebben van gips op trombose. Er worden dan mensen met gips en mensen zonder gips gevolgd, waarna men onderzoekt wie er wel en niet veneuze trombose kregen. In de studiepopulatie is er 80% pil gebruik. Van de 1000 mensen met gips krijgen er 20 trombose en van de 1000 mensen zonder gips 10 mensen. Het relatieve risico (RR) is dan (20/1000)/(10/1000)=2. In de populatie was er dus 80% pil gebruik en er is hier geen associatie tussen pilgebruik en heb hebben van gips. Nu kan men er van uitgaan dat er in de groep mensen met gips 80% pilgebruik is en in de groep mensen zonder gips ook. In een andere populatie zijn er weer 1000 mensen met gips en 1000 mensen zonder gips. Hier is het pilgebruik 50%. Van alle mensen met gips krijgen 12 mensen trombose en van de mensen zonder gips 6. Het relatieve risico is hier dan ook 2 en er is weer geen associatie tussen gips en pilgebruik, waardoor er in beide groepen 50% pilgebruik is. Pilgebruik is hier dus geen confounder en het RR klopt in beide populaties. Wel moet men rekening houden met de karakteristieken van de populatie, want het absolute risico op veneuze trombose is in beide populaties anders. Dit kan veroorzaakt worden door minder pilgebruik in de tweede casus. Het RR hoeft niet gecorrigeerd te worden voor pilgebruik.

 

Stel nu dat er wel een associatie is tussen pilgebruik en het hebben van gips, dan krijgen vrouwen die de pil gebruiken vaker gips. Er is dan een hoger percentage pilgebruik in de groep mensen met gips. Er is dan een overschatting van het RR, doordat men niet alleen meer naar het gips kijkt maar ook naar het verschil in pilgebruik. De contrasten van de absolute risico’s zijn dan anders, want er is in de populatie een ander pilgebruik. Dit kan gecorrigeerd worden door bijvoorbeeld stratificatie, want dan wordt het pilgebruik er als het ware tussenuit gehaald. Alleen als er confounding is, dan is er een effect op het RR.

 

Een andere risicofactor heeft geen effect op het RR en dit is in feite wat men telkens doet bij randomiseren. Dan wordt de blootstelling willekeurig toebedeeld. In tabel 1 (meestal zonder p-waardes) wordt er rekening mee gehouden, want er kan bijvoorbeeld een associatie doorbroken worden. Stel dat leeftijd een risicofactor is bij gabapentin gebruik, dan kunnen er twee groepen gemaakt worden met dezelfde gemiddelde leeftijd.

 

Bij de relatie tussen pilgebruik en veneuze trombose is factor V Leiden geen confounder, maar een risicofactor. Als iemand de pil voorschrijft, dan zal er niet worden gescreend op factor V Leiden. Als dit voorbeeld wordt omgedraaid, kunnen we kijken naar het risico op een veneuze trombose voor mensen met een factor V Leiden mutatie. Is pilgebruik hierbij een confounder? Er is geen associatie tussen pilgebruik en een factor V Leiden mutatie, dus het is geen confounder. Dit is het principe van Mendeliaanse randomisatie: als er genetische risicofactoren bestudeerd worden, dan is er bijna nooit een probleem van confounding. Het is nooit zo dat er een pijl is van een bepaalde expositie naar een genetische factor. Natuurlijk zijn hier wel uitzonderingen op.

 

Bij alle studie designs kan er confounding zijn, want de randomisatie kan bijvoorbeeld fout gaan, waardoor er factoren storend werken op de relatie tussen blootstelling en uitkomst. Vooral bij observationele studies is er sprake van confounding. Er wordt dan gekeken naar factoren die kunnen veranderen over de tijd, zoals roken, alcoholgebruik en bloedwaardes. Het probleem dat men dan krijgt, is dat er niet slechts confounding is maar ook reverse causality. Dit laatste is dat er een blootstelling is die men ziet en het lijkt dat deze blootstelling het risico op ziekte verhoogt, maar wat men eigenlijk meet is een soort voorstadium van een ziekte of het is zo dat de ziekte de blootstelling beïnvloedt die men aan het bekijken is (het is dan een gevolg). Een voorbeeld is als men kijkt naar ontstekingsmarkers (IL) in het bloed en het risico op veneuze trombose. Men zal dan een associatie zien, want IL is verhoogd bij een veneuze trombose. Wat men eigenlijk doet is dat men kijkt naar een voorstadium van veneuze trombose, wat een verhoging van IL veroorzaakt. IL is dan geen risicofactor van de uitkomst, maar een gevolg. Een oplossing hiervoor is een Mendeliaanse randomisatie analyse. Dit probeert het probleem van confounding op te lossen en reverse causality wordt helemaal opgelost.

 

De belangrijkste wet bij Mendeliaanse randomisatie is de wet van onafhankelijke verscheidenheid. Welk allel iemand van welke ouder krijgt, wordt random verdeeld over de nakomelingen. Dus de kans op het hebben/krijgen van een bepaald allel van een bepaalde mutatie wordt random verdeeld. Er is in feite een soort natuurlijke randomisatie van genotypes. Eigenlijk is er een soort trial gemaakt als er naar genotypes wordt gekeken, omdat men random wordt ingedeeld naar expositie.

 

Bij Mendeliaanse randomisatie gebruikt men dus een genotype om een bepaald fenotype te kunnen beschrijven. Stel dat men geïnteresseerd is in cholesterol niveaus, dan gaat men niet de niveaus zelf meten, omdat er dan heel veel confounding is. Wat men gaat doen is een genotype meten dat verklarend is voor de blootstelling waarin men geïnteresseerd is. Als er bijvoorbeeld een allel is, waardoor men, als iemand drager is, een hoog niveau van stollingsfactoren heeft, dan wordt dat genotype genomen als expositie, als proxy voor die stollingsfactoren. Dan is er dus natuurlijke randomisatie van die genen. Er is dan geen hoog niveau stollingsfactoren door roken of ouderdom o.i.d. Het is random toebedeeld door de ouders. Genotype is hier een instrument om het fenotype te beschrijven. Dit gebruikt men en het voorkomt confounding en het verlaagt de kans op reverse causality. Wanneer men naar een genetische variant kijkt, die intrinsiek zorgt dat iemand een hoger niveau stollingsfactoren heeft, dan kijkt men niet naar kortdurende fluctuaties door bijvoorbeeld medicijnen. Men kijkt dan naar life-time exposure. Hiermee wordt het effect van reverse causality weggehaald. Het kan ook geschreven worden als een RCT. De random distributie van de allelen is analoog aan de random toebedeling van behandeling of placebo aan patiënten in een RCT.

 

Bij een Mendeliaanse randomisatie wordt men dus random ingedeeld naar risico allel, en daarmee worden confounders gelijk verdeeld. Dit komt doordat er een natuurlijk randomisatie proces is. Dan is er dus in feite een trial.

 

Een voorbeeld: men heeft gezien dat mensen met colonkanker een lager LDL cholesterol hadden dan mensen zonder colonkanker. Dit is gek, want een laag LDL cholesterol is dan misschien een risicofactor voor het krijgen van colonkanker. Men wil hierop het antwoord weten. Statines zijn medicijnen die het LDL cholesterol omlaag krijgen. Er wordt uitgezocht of er een causale associatie is, of dat er sprake is van confounding. De associatie tussen een laag LDL cholesterol en kanker kan verklaard worden door allerlei dingen. Het kan echt een oorzakelijk verband zijn, maar er kan ook sprake zijn van allerlei confounders (geslacht, leeftijd, BMI). Ook kan er sprake zijn van reverse causality. Een voorstadium van kanker kan LDL niveaus beïnvloeden en op dat moment is er nog geen kanker gediagnosticeerd, maar er is al wel effect op het LDL cholesterol. In de studie wordt er mendeliaanse randomisatie gedaan en er wordt een genetische variant (instrument) gezocht wat die LDL cholesterol niveaus beïnvloedt. Er wordt gekeken naar een associatie tussen het instrument en de uitkomst en er is geen last meer van confounding. Alle mogelijke confounders beïnvloeden namelijk niet of iemand wel of geen genetische allel heeft. Een SNP is een single nucleotide polymorfisme. Dit is een variatie van één nucleotide lang en heel vaak is er niet bekend wat dit is, maar heel veel mensen hebben dit. 99% van de genetische variaties zijn SNP’s en meestal zijn ze onschuldig. Ze geven dus geen voor- of nadeel op een bepaald iets Sommige SNP’s hebben wel effect op bepaalde fenotypes, waarin men geïnteresseerd kan zijn bij een onderzoek. Bij de relatie tussen LDL cholesterol en kanker kan het zijn dat er allerlei confounders zijn. Binnen de groepen met LDL cholesterol (hoog of laag) zijn er veel factoren verschillend, zoals hypertensie. Mensen met een laag LDL cholesterol hebben een lagere bloeddruk, dus dit zou een confounder kunnen zijn. Er is een associatie van confounders met LDL en het zijn risicofactoren voor colonkanker. Hiervoor moet men dus corrigeren. Dit kan op verschillende manieren: in het design of tijdens de analyse. In studie design kan er bijvoorbeeld randomisatie (bekende en onbekende confounders), restrictie (bekende confounders) of matching (bekende confounders) gedaan worden. Bij de analyse kan met stratificatie of een multivariaat analyse doen. Dit is beide voor bekende confounders. Dit werd gedaan en er moest randomisatie gedaan worden, zodat de onbekende confounders (hopelijk) gelijk zouden verdelen over de groepen. Er werd toen een genetische variatie gebonden: APOE gen. Als dit als instrument wordt genomen, dan kan de associatie bekeken worden tussen gen en uitkomst, zonder confounders.

 

Mendeliaanse randomisatie heeft voordelen:

  • Geeft correctie voor bekende en onbekende confounders.

  • Reverse causality is onwaarschijnlijk.

  • Geschatte ‘life-time differences’.

Check page access:
Public
Check more or recent content:

Medische wetenschappen - Geneeskunde - Bundel

Study Notes bij Academische Wetenschappelijke Vorming - Jaar 2 - Geneeskunde UL - Deel 1 (2013-2014)

Study Notes bij Academische Wetenschappelijke Vorming - Jaar 2 - Geneeskunde UL - Deel 1 (2013-2014)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


Opfris college statistiek

Statistiek: er is een grote, onbekende populatie (bijvoorbeeld alle inwoners van Nederland boven de 65 jaar) en het is vaak lastig om iedereen te meten. Daarom neemt men een steekproef uit de populatie. Met deze steekproef gaat men proberen om uitspraken te doen over de gehele populatie. Kansrekening is het kijken naar: als mijn populatie er op deze manier uitziet, hoe ziet mijn steekproef er dan uit? Bij statistiek gaat het juist andersom: als dit mijn steekproef is, hoe ziet de populatie er dan uit?

 

Medische artikelen beginnen meestal met een tabel 1, die de karakteristieken geeft van de mensen in de studie. Mean is het gemiddelde. De sd is de standaarddeviatie. Met de standaarddeviatie kan men zeggen dat 95% van de bevolking zich bevindt tussen het gemiddelde + 2 x sd en gemiddelde – 2 x sd. De standaarddeviatie is de gemiddelde spreiding. Officieel is het geen 2 x sd, maar 1,96 x sd. Als een individu buiten dit interval ligt, dan is deze persoon ‘extreem’. 68% van de bevolking ligt één sd van het gemiddelde af.

 

De standaard fout (error) zegt hoe nauwkeurig het gemiddelde geschat is, dus het meet de precisie van het steekproef gemiddelde.

 

Wat gebeurt er nu als de steekproef groter wordt? De standaard fout zal dan kleiner worden, want het gemiddelde wordt steeds preciezer. De standaard deviatie zal ongeveer hetzelfde blijven, doordat de verhouding (95% ertussen en 5% erbuiten) hetzelfde zal blijven.

 

P-waarde

Een voorbeeld: men vergelijkt twee medicijnen (A en B). 10 patiënten krijgen A en 3 patiënten genezen. 10 patiënten krijgen B en 4 patiënten genezen. Er is dus 10% verschil (40%-30%). De kans dat dit wordt gezien als A en B dezelfde medicijnen zijn, is 64%: p = 0,64. Stel nu dat het gaat om 30 uit 100 en 40 uit 100 genezen. Dan is de kans op dit toeval 14%, dus p=0,14. Bij 300 uit 1000 en 400 uit 1000 is de p < 0,001 op toeval. Dus de p-waarde is de kans op het krijgen van de geobserveerde resultaten, of nog extremer, onder de veronderstelling dat beide behandelingen even effectief zijn. De p-waarde wordt berekend door middel van statistische toetsen.

 

Het algemene idee van de hypothese toetsen is steeds hetzelfde. Het gaat als volgt:

  1. Men begint met het definiëren van twee

  2. .....read more
Access: 
Public
Notes bij Academische Wetenschappelijke Vorming - Jaar 2 - Geneeskunde - UL - Aanvulling (2013-2014)

Notes bij Academische Wetenschappelijke Vorming - Jaar 2 - Geneeskunde - UL - Aanvulling (2013-2014)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


Statistiek HC4 – Overlevingsdata

Het 95% betrouwbaarheidsinterval geeft aan hoe nauwkeurig de regressielijn geschat is. Het 95% predictie interval geeft aan tussen welke grenzen ongeveer 95% van alle observaties valt.

 

Bij veel onderzoeken wordt survival data (overlevingsdata) of time to event data (tijd tot gebeurtenis data) gebruikt. Enkele voorbeelden zijn:

  • Dieronderzoek waarbij het beginpunt blootstelling aan een carcinogeen is en het eindpunt de ontwikkeling van een tumor.

  • Kankeronderzoek waarbij het startpunt is bij het stellen van de diagnose en waarbij het eindpunt overlijden is.

  • Een eindpunt kan ook iets positiefs zijn, zoals bij vruchtbaarheidsonderzoek. Het startpunt is dan het begin van de behandeling en het eindpunt is zwangerschap.

  • Transplantatie onderzoek waarbij het beginpunt de transplantatie is en het eindpunt afstoting van het transplantaat.

  • Bij een trial met twee anticoagulanten is het beginpunt het tijdstip van randomisatie en het eindpunt overlijden/bloeding/trombose.

Hierbij zijn enkele vragen, zoals: hoe zijn de overlevingstijden verdeeld? Is er een verschil in verwachte overleving als iemand op een andere manier behandeld wordt? Wat is de snelste manier om zwanger te worden? Welke factoren voorspellen de 5-jaars overleving?

 

Hoe worden overlevingskansen vergeleken? Hoe worden overlevingstijden vergeleken? Dit laatste gebeurt met een T-toets of een Chi square test. Hierbij zijn een aantal problemen, want niet alle patiënten overlijden, niet alle patiënten hebben dezelfde follow-up tijd en soms raken patiënten ‘kwijt’ (door verhuizing of migratie). We nemen een voorbeeld: er worden 6 patiënten gevolgd en de follow-up is 24 maanden. Het eindpunt bij deze studie is overlijden. Patiënt 1 overlijdt na 14 maanden. Patiënt 2 is aan het einde nog in leven. Persoon 3 is kwijt geraakt. Patiënt 4 is na 13 maanden overleden. Patiënt 15 wordt nog gevolgd. Patiënt 16 was aan het einde nog in leven. Dit maakt het gecompliceerd om de gegevens te analyseren, want men weet niet van iedereen wat nodig is. Dit noemt men gecensureerde gegevens. Redenen zijn dat een individu het eindpunt niet bereikt (in dit geval: de patiënt overlijdt niet), er is lost-to-follow-up (door verhuizing of het niet nakomen van afspraken) of een patiënt overlijdt aan een andere oorzaak.

 

Stel dat er in een dialyse studie 653 mensen peritoneale dialyse krijgen. 207 van deze patiënten overlijden en 446 patiënten zijn nog in leven. De patiënten zijn voor het laatst gezien tussen de 0,8 en 5 jaar na de start van de dialyse. De 446 niet overleden personen mogen niet uit de studie verwijderd worden. Dit zou ook niet slim zijn, want dat deze personen na 5 jaar nog lezen, is juist heel informatief.

 

Men wil een.....read more

Access: 
Public
Notes bij Vraagstukken in de praktijk - UL

Notes bij Vraagstukken in de praktijk - UL

Bevat de artikelsamenvattingen en aantekeningen van de colleges uit het studiejaar 2015-2016 en 2014-2015


LESA - Artikelen

Aanvraag laboratoriumdiagnostiek

LESA-rationeel aanvragen van laboratoriumdiagnostiek.

Het doel van het aanvragen van laboratoriumdiagnostiek is het optimaal gebruik maken van laboratoriumdiagnostiek door de juiste diagnostiek bij de juiste indicatie te bevorderen. Op deze manier kan onnodige diagnostiek voorkomen worden, of het aanvragen van diagnostiek op onjuiste indicatie kan voorkomen worden.

De pasgeborene

LESA-pasgeborene.

Het is van belang dat er kwalitatief goede zorg wordt geleverd aan de pasgeborene en de ouders ervan. Dit kan worden bereikt door de werkzaamheden van de verloskundige en huisarts op elkaar af te stemmen, samen te werken en werkafspraken te maken en te noteren. De pasgeborene moet direct postpartum worden onderzocht om een eerste indruk van de pasgeborene te verkrijgen en om de aanwezigheid van congenitale afwijkingen op te sporen.

Anamnese bij een pasgeborene

Wanneer het kindje net geboren is, zal uiteraard geen anamnese afgenomen worden bij de moeder. De verloskundige moet beschikken over informatie over de voorgeschiedenis van moeder, pre-existente afwijkingen bij moeder, gebruik van medicatie, alcohol of drugs en roken, de familieanamnese, contact met andere hulpverleners, verloop van de huidige zwangerschap en bevalling en de wens ten aanzien van borstvoeding.

Lichamelijk onderzoek bij een pasgeborene

Het is belangrijk dat lichamelijk onderzoek van de pasgeborene plaatsvindt in een warme omgeving en nadat de ouders de gelegenheid hebben gehad om contact met het kindje te maken. Verder moet het kind binnen één uur postpartum blootgesteld worden aan borstvoeding indien gewenst. Er wordt een algemene indruk van het kind verkregen via de hartfrequentie, ademhaling, spiertonus, reactie op prikkels en de kleur van het kindje. Dit is de APGAR-score waarbij 10 het hoogst is en 0 het laagst. Deze score wordt.....read more

Access: 
Public
Samenvatting bij de colleges (GNK & Maatschappij - Sociale Geneeskunde) - UU

Samenvatting bij de colleges (GNK & Maatschappij - Sociale Geneeskunde) - UU

Samenvatting van de les- en collegemateriaal van het vak. Gebaseerd op mei 2014.


Week 1

De tekst uit de casus en vragen in de werkgroepen is afkomstig uit het Blokboek Geneeskunde en Maatschappij, CRU2006, Master jaar 2, cursusjaar 2013-2014.

Samenvattingen van de verplichte leerstof zijn afkomstig uit Mackenbach J.P. & van der Maas P.J., Volksgezondheid en Gezondheidszorg, Reed Bussiness Amsterdam, 6e druk, 2012.

HC 1.1 – Introductie

De individuele gezondheidszorg, zoals die in het ziekenhuis plaatsvindt, richt zich op het behandelen van individuele patiënten. De sociale geneeskunde speelt zich meer af op meso- en macroniveau. Daardoor is de sociale geneeskunde meer verworven met de maatschappij. De sociale geneeskunde is breder en richt zich niet alleen op het behandelen van ziekte, maar ook bijvoorbeeld op preventie (screeningsprogramma’s, rijksvaccinatieprogramma (RVP)), gezondheidsbevordering (beleid maken via GGD, ministeries) en rampbestrijding. Alle geneeskunde dat zich buiten het ziekenhuis (dus niet door klinisch medisch specialisten) afspeelt en niet onder huisartsgeneeskunde valt, valt onder de sociale geneeskunde. 30% van alle 40-jarige artsen werkt in de sociale geneeskunde.

Er zijn vier grote takken binnen de sociale geneeskunde, elke met een eigen subspecialisatie:

-        Arts Maatschappij en Gezondheid: jeugdgezondheidszorg, infectieziektebestrijding, forensische geneeskunde.

-        Arts Arbeid en Gezondheid: Arbo-, verzekerings- en sportgeneeskunde.

-        Multidisciplinaire/care: verzorgings-/verpleeghuisarts, verslavings- en gehandicaptenzorg.

-        Beleid en management: GGD, ministerie van volksgezondheid.

Enkele belangrijke begrippen:

-        Volksgezondheid: omvang en spreiding van gezondheid en ziekte in de bevolking.

-        Public health: ‘the science and art of preventing disease, prolonging life and promoting health trough the organized effort of society’. Ook wel: het vakgebied dat zich bezighoudt met de volksgezondheid en collectieve maatregelen om deze te bevorderen, ook wel community medicine genoemd. Heeft dus meer te maken met gezondheid dan met ziekte. Organisatie.....read more

Access: 
JoHo members
Stamplijst GNK & Maatschappij

Stamplijst GNK & Maatschappij

Stamplijst met alle belangrijke begrippen voor Geneeskunde & Maatschappij.

 

4 takken van Sociale Geneeskunde:

 

Arts Maatschappij en Gezondheid

Jeugdgezondheidszorg, infectieziektebestrijding, forensische geneeskunde.

Arts Arbeid en Gezondheid

Arbo-, verzekerings- en sportgeneeskunde

Multidisciplinair/care

Verzorgings-/verpleeghuisarts, verslavings- en gehandicaptenzorg.

Beleid en management

GGD en ministerie van volksgezondheid

Volksgezondheid

De omvang en spreiding van gezondheid en ziekte in de bevolking

Public Health

Het vakgebied dat zich bezighoudt met de volksgezondheid en collectieve maatregelen om deze te bevorderen. Het wordt ook wel community medicine genoemd.

Sociale geneeskunde

Het onderdeel van Public Health waarbij artsen betrokken zijn

Model van Lalonde

De gezondheid is afhankelijk van de 4 volgende factoren:

  • Biologische factoren: genetica, geslacht en leeftijd

  • Omgeving: fysieke omgeving (woning, werk), sociale omgeving, financiële situatie, juridische omgeving en patiëntenomgeving

  • Leefstijl: BRAVIOS (bewegen, roken, alcohol, voeding, internetgebruik, ontspanning, seksualiteit)

  • Zorgverlening: deze wordt onderverdeeld in cure (specialistische zorg en huisartsenzorg), care (verpleeghuizen, verslavingszorg), preventie en terminale zorg

Belangrijkste successen Public Health in de 20e eeuw

  1. Vaccinaties

  2. Bestrijding infectieziekten

  3. Veiligheid van de werkplek

  4. Gezondere moeders en baby’s

  5. Veiliger en gezonder voedsel

  6. Family planning

  7. Fluoridering van drinkwater

  8. Veiligheid van motorvoertuigen

  9. Daling van sterfte aan hartziekte en beroerte

  10. Bestrijding van tabaksgebruik.

Model van Andersen

Dit model beschrijft de gezondheidszorg op macroniveau, er zijn 4 categoriën:

  • Omgeving: externe omgeving en het gezondheidszorgsysteem

  • Populatiekenmerken: ontvankelijkheid en aanleg (demografische kenmerken, sociale en culturele kenmerken en gezondheidsbeeld), financiële situatie

  • Gezondheidsgedrag: leefstijl en gezondheidsvoorlichting

  • Uitkomsten: ervaren gezondheid, gemeten gezondheid en gebruikers tevredenheid

Milleniumdoelen

  1. Halveren armoede en honger

  2. Elk kind naar school

  3. Gelijke rechten mannen en vrouwen

  4. Minder kindersterfte

  5. Minder moedersterfte

  6. Het stoppen van infectieziekten als aids en malaria

  7. Schoon milieu en veilig drinkwater

  8. Eerlijke handel en minder schulden arme in landen

Demografische transitie

Een vermindering van sterftecijfers, die wordt gevolgd door een periode van verlaagde geboortecijfers. Deze vorm van transitie zien we bij het ouder worden (vergrijzen) van een populatie.

Epidemiologische transitie

Een vermindering van sterftecijfers als gevolg van een radicale verschuiving in het patroon van doodsoorzaken. Dit gebeurt in drie fasen, eerst is er een fase van epidemieën en hongersnood, dan een fase van afnemende pandemieën en als laatste een fase van degeneratieve en door de mens

.....read more
Access: 
Public
Casuïstiekvragen over praktische geneeskunde

Casuïstiekvragen over praktische geneeskunde

Dit zijn algemeen bruikbare oefenvragen die betrekking hebben op diverse klachten en ziektebeelden. Aan de hand van casussen, worden de klachten getoetst.


Casus: “Urineweginfecties”

Een 9-jarig meisje is naar de kinderarts is verwezen wegens secundaire incontinentie. Op haar 3e levensjaar is zij continent geworden. Sinds een jaar heeft zij weer ‘ongelukjes’ waarbij zij in haar broek plast. Het valt op dat zij weinig naar het toilet gaat en grote porties plast. Sinds een aantal weken is ook haar loopgedrag veranderd. Zij struikelt meer en kan tijdens gymnastiek niet meer rennen of op haar hakken staan.

Vraag 1: Wanneer een blaasecho wordt gemaakt blijkt Esther een blaasresidue te hebben van 100 ml na mictie. Bij welke aandoening past dit klachtenpatroon?
  1. habituele obstipatie

  2. seksueel misbruik

  3. tethered cord

  4. Wilms tumor

Je bent huisarts. Een 55- jarige patiënt komt op je spreekuur met ongewenst urineverlies. Zij heeft deze klachten sinds een jaar of twee en klaagt met name over het feit dat zij urine verliest bij sporten, hoesten niezen en persen.

Vraag 2: Hoe noem je deze vorm van incontinentie?
  1. continue incontinentie

  2. overloop incontinentie

  3. stress incontinentie

  4. urge incontinentie

Casus: “Hoofdpijn”

Een 40-jarige docente krijgt tijdens een drukke les van het ene moment op het andere ondraaglijke hoofdpijn. Zij is bekend met migraine, maar deze hoofdpijn is veel malen ernstiger en ook anders van karakter. Zij maakt de les nog af, maar gaat daarna naar de huisarts. Op dat moment zijn de klachten duidelijk afgenomen.

Vraag 1: Wat is de meest waarschijnlijke diagnose?

 

Vraag 2: Noem vijf middelen die kunnen worden gebruikt bij de behandeling van migraine aanvallen (doseringen zijn niet nodig, toedieningsvorm wel).

 

Vraag 3: Noem vier middelen die kunnen worden gebruikt als profylactische therapie bij migraine. (Doseringen zijn niet nodig.)

Je bent neuroloog. Een 40-jarige vrouw die al jaren bekend is met migraine wordt door haar huisarts naar jou verwezen omdat ze de laatste maanden twee tot vier migraine aanvallen per week heeft die steeds langer duren, namelijk minstens een dag. Tussen de aanvallen door houdt ze last van zeurende hoofdpijn. Ze slikt al maanden 6-8 tabletten paracetamol per dag maar daar heeft ze nauwelijks baat meer bij.

Vraag 4: Wat dien je patiënt.....read more
Access: 
Public
Samenvatting van Gezonde en Zieke Cellen I (GZC)

Samenvatting van Gezonde en Zieke Cellen I (GZC)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


Week 3

Hoorcollege 1

Om alle processen in een cel goed te coördineren is er communicatie door middel van signalen tussen de cellen nodig. Deze communicatie heet signaaltransductie. Als een cel geen enkel signaal van zijn omgeving krijgt, sterft hij af. Als hij signalen krijgt om te delen of te differentiëren, moet hij hierop gehoorzamen. Kanker is een ziekte waarbij de cellen niet meer gehoorzamen aan de signalen. Door een ophoping aan kankercellen in een weefsel kan het desbetreffende weefsel zijn functie niet meer uitvoeren en hieraan kan de patiënt overlijden.

Als een kankercel deelt, is zijn dochtercel ook een kankercel. Dit betekent dat er een verandering in het DNA is opgetreden die zorgt voor het ongehoorzame gedrag. De belangrijkste eigenschappen van een tumor zijn: niet reageren op signaalstoffen die de groei onderdrukken, blijvende snelle groei en uitblijvende celdood. Een veel voorkomende mutatie in het DNA dat kanker als gevolg heeft is de mutatie in één van de base van het gen voor het RAS-eiwit.

Deze moleculaire schakelaar kon normaal uit- en aangezet worden. De kankercel bleek een mutatie te hebben in een bepaald gen dat ervoor zorgde dat er een blokkade optrad waardoor de moleculaire schakelaar in actieve stand, niet meer uitgezet kon worden. De schakelaar staat continu aan en krijgt voortdurend een stimulus. Normaal gesproken is het Ras-eiwit als ingeschakeld als GTP is gebonden. Zodra GTP echter veranderd in GDP doordat een fosfaatgroep is gehydroliseerd, staat het eiwit uit. Later verlaat het GDP het GTP-bindend eiwit, zodat een nieuw GTP-molecuul er aan kan koppelen om het eiwit weer te activeren. Door de mutatie kan het GTP niet een fosfaatgroep loskoppelen en blijft daardoor na de binding aan GTP in de actieve toestand. De mutatie in het gen heeft tot gevolg dat er defecten zijn in de signaaltransductie en in de celcyclus controle. De communicatie tussen de cellen vindt niet meer goed plaats. Dit leidt tot kanker. Het krijgen van kanker is een kansproces. Hoe ouder je wordt, hoe meer kans je hebt op het krijgen van kanker. Oncogenen zijn gemuteerde genen die een positieve bijdrage leveren aan het ontstaan van kanker. Tumorsuppressie genen zijn genen die het ontstaan van kanker tegenwerken. Inactiveren van deze genen draagt ook bij aan het ontstaan van kanker.

Er zijn vier verschillende vormen.....read more

Access: 
Public
Samenvatting literatuur bij Academische en Wetenschappelijke Vorming - Geneeskunde UL

Samenvatting literatuur bij Academische en Wetenschappelijke Vorming - Geneeskunde UL

Bevat samenvattingen bij relevante artikelen en hoofdstukken uit Epidemiology (Rothman) .


Epidemiologie - Het meten van het optreden van ziekte en de causale effecten (4)

In de wetenschap staat het meten van gegevens centraal. Epidemiologie is de wetenschap van het optreden van ziektes. Het gaat vooral over de frequentie, risico, incidentie en prevalentie van de ziekte. Bij het risico wordt er onderscheid gemaakt tussen een persoon en een populatie. Voor een populatie is de formule: risico = A / N te gebruiken. A is hier het aantal mensen dat gedurende een bepaalde periode de ziekte heeft ontwikkeld en N is de hele populatie die gedurende een periode is gevolgd. Het algemene risico wordt ook wel het incidentie proportie genoemd. De enige manier om een risico te interpreteren is wanneer het bekend is over welke tijdsperiode het risico geldt.
Tijdens een onderzoek moet er rekening gehouden worden met het ‘concurrerende risico’. Dit fenomeen houdt in dat er in de populatie die wordt gevolgd mensen zijn die overlijden, waardoor het niet zeker is welke uitkomst van het onderzoek zij zouden hebben. Dit risico wordt groter wanneer de deelnemers van het onderzoek ouder zijn of een langere tijd worden gevolgd. De incidentie van een ziekte kan worden berekend met de formule: incidentie = A / T.

Hierbij is A het aantal mensen dat de ziekte ontwikkeld en T is de tijd waarin deze groep werd gevolgd. De incidentie wordt hier niet gemeten binnen een domein [0,1]. Dat komt doordat het aantal mensen dat door een bepaalde ziekte getroffen wordt heel erg groot kan zijn. Bij een epidemie is de tijd waarin dit gemeten wordt ook nog eens erg klein. Daarom kan de incidentie in theorie oneindig groot worden.

In een onderzoek wordt ernaar gestreefd om zo veel mogelijk variabelen gelijk te houden en om één variabele te laten verschillen in de onderzoeksgroepen. Dit is de determinant. Het is niet mogelijk om alle variabelen constant te houden, daarom moet hier ook altijd rekening mee worden gehouden bij het interpreteren van de resultaten van het onderzoek.

Voor een.....read more

Access: 
Public
Study Notes bij Academische Wetenschappelijke Vorming - Jaar 1 - Geneeskunde UL (2016-2017)

Study Notes bij Academische Wetenschappelijke Vorming - Jaar 1 - Geneeskunde UL (2016-2017)

Bevat collegeaantekeningen bij week 1 & 2 van het vak.


HC Opzet blok

De klassieke benadering voor het aanleren van wetenschappelijke vorming:

  • Eerst: veel theorie.

  • Oefenen met fictieve voorbeelden.

  • Luisteren naar voorbeelden van de docent.

  • Literatuuronderzoek doen.

  • Wetenschapsstage.

Bij LUMC leert met wetenschappelijke vorming op een eigen manier aan:

  • Integratie met kliniek.

  • Zelf doen.

Doel: het beantwoorden van de eigen vraagstelling door literatuur te zoeken, gegevens te analyseren, een verslag te schrijven en de resultaten te presenteren.

Toetsing: In dit blok wordt er een tentamen gehouden dat voor 60% meetelt. Daarnaast moet je een presentatie houden en een verslag schrijven over je onderzoek die elk voor 20% meetellen.

Aanvullende eisen:

  • Data verzamelen (zorgstage)

  • Actieve deelname in de werkgroepen

  • Verslag van je onderzoek inleveren aan begin van de werkgroep 3

  • Presentatie houden over je onderzoek in werkgroep 3.

HC Onderzoek in de praktijk

Wetenschappelijk onderzoek is vaak nauw verbonden met de klinische praktijk.

Een vrouw (86 jaar) valt:

  • Konden we dit zien aankomen?

  • Voorspellen?

  • Voorkomen? (Bijvoorbeeld door medicatie, wooninrichting, etc.)

  • Hard maken? (Helpt het om het bed in de laagste stand te zetten?)

  • Evidence nodig? (Vroeger was er bijvoorbeeld geen onderzoek)

Vallen heeft met meerdere factoren te maken. Bij ouderen kan het te maken hebben met medicatie, BMI, ziekten, woonomstandigheden etc. Aan de hand van verschillende onderzoeken zijn bepaalde richtlijnen opgesteld.

Arts in de praktijk: hoe kan ik deze patiënt beter helpen?

Biomedische onderzoeker: ziekte onderzoeken

Er is soms sprake van een tegenstelling tussen wat de arts in praktijk nodig heeft om de patiënt te helpen en wat biomedische onderzoekers gevonden hebben bij het onderzoeken van de ziekte.

Er is nog zeer veel wat men nog niet weet. Wel zijn er ideeën over wat goed is, maar nog niet over alles is er evidence. Vragen stellen, nadenken en kritisch zijn, zijn belangrijke vaardigheden die vallen onder wetenschappelijke vorming.

Bij onderzoek maakt men vaak gebruik van twee groepen: 1 groep met de onderzochte factor en 1 groep zonder de onderzochte factor (de controle groep).

Vaak maakt men gebruik van observationeel onderzoek. Hierbij worden mensen geselecteerd (op basis van restrictie.....read more

Access: 
Public
Samenvatting bij Architectuur klinisch wetenschappelijk onderwijs (AKWO) - Geneeskunde - UU

Samenvatting bij Architectuur klinisch wetenschappelijk onderwijs (AKWO) - Geneeskunde - UU

Uitwerking colleges en behandeling verplichte stof. Gebaseerd op 2011-2012.


De vragen en tekst uit de colleges zijn afkomstig uit het blokboek Architectuur van Klinisch Wetenschappelijk Onderwijs, Geneeskunde CRU2006/Bachelor jaar 3, cursusjaar 2011-2012.

 

HC 1 – Introductie Klinisch wetenschappelijk onderzoek

Ventilator associated pneumonia (VAP)

Ventilator associated pneumonia (VAP) is een beademingsgeassocieerde longontsteking. Deze kan optreden bij patiënten op de IC die beademt worden. Er zijn drie soorten longontstekingen:

  • CAP: community acquired pneumonia.

  • HAP: hospital acquired pneumonia.

  • VAP: ventilator associated pneumonia. Een VAP is altijd een HAP, niemand ligt immers thuis aan de beademing. Een VAP treedt vaak op op de IC.

 

Typische symptomen van een CAP zijn:

  • Hoesten.

    • Met opgave van sputum.

    • Koorts.

    • Pijn bij de ademhaling.

    • Dyspnoe.

 

Lichamelijk onderzoek bestaat uit:

  • Auscultatie.

  • Hartfrequentie.

  • Temperatuur.

  • Percussie.

  • Bloeddruk.

  • Ademhalingsfrequentie.

 

Aanvullend onderzoek bestaat uit een sputumkweek, een X-thorax, bloedonderzoek (leuko’s, CRP) en een bloed- en urinekweek.

De belangrijkste verwekkers van een CAP zijn:

  • De pneumokok: streptococcus pneumoniae.

  • Morexella Catharhalis.

  • Hemophilus Influenzae.

  • Mycoplasma pneumoniae.

  • Influenza (virus).

  • Legionella spp.

  • Stafylococcus Aureus.

 

Om snel iets te weten te komen over het type bacterie waar het om gaat, kan een Gram-kleuring gedaan worden. Wat hiermee niet kan worden gezien is influenza (dit is immers een virus), mycoplasma pneumoniae (deze heeft een soort draden) en legionella spp. (omdat deze intracellulair zit). Met een Gram-kleuring wordt de celwand van een bacterie aangekleurd. Het gaat om het verschil in de opbouw van gram-positieve en gram-negatieve bacteriën: een verschil in proteïnen. Als de laag dik is, komt er meer kleuring in de cellaag dan wanneer deze dun is. De gram-negatieve bacteriën zijn blauw en de gram-positieve zijn rood. Degene die je niet kunt zien kunnen toch ontdekt worden met bijvoorbeeld antilichaam testen m.b.v. urine. Dit is een heel specifieke test, wat betekent dat een positieve test ook vrijwel zeker legionella aantoont. De test is echter niet zo sensitief, wat betekent dat een negatieve test legionella niet uitsluit.

Behandeling van een CAP bestaat uit:

  • Amoxiciline. Dit werkt voor pneumokokken, een deel van de Morexella (maar voor een deel ook niet) en voor de meerderheid van H. Influenzae. Het werkt niet

  • .....read more
Access: 
Public
Samenvatting bij Architectuur klinisch wetenschappelijk onderwijs (AKWO) - Geneeskunde - UU (2014-2015)

Samenvatting bij Architectuur klinisch wetenschappelijk onderwijs (AKWO) - Geneeskunde - UU (2014-2015)

Uitwerking colleges en behandeling verplichte stof. Gebaseerd op 2014-2015


HC 1 – Introductie Klinisch wetenschappelijk onderzoek

CVA

De definitie die door de Nederlandse vereniging voor Neurologie (NVN) wordt gegeven voor beroerte luidt als volgt: “Onder een beroerte (ook wel cerebrovasculair accident (CVA) genoemd) wordt verstaan: plotseling optredende verschijnselen van een focale stoornis in de hersenen waarvoor geen andere oorzaak aanwezig is dan een vasculaire stoornis.”  Er kan een verdere onderverdeling worden gemaakt tussen een herseninfarct, intracerebrale bloeding, SAB en TIA.

Op 1 januari 2011 waren er naar schatting in Nederland 174.400 mensen met een beroerte: 90.900 mannen en 83.500 vrouwen. De incidentie van beroerte zonder TIA’s wordt geschat op 2 to 3 per 1000 personen per jaar. In 80% van de gevallen was hierbij sprake van een herseninfarct. Voor de TIA’s ligt de incidentie tussen de 1,5 tot 2 per 1000 personen per jaar.

Diagnostiek

De eerste stap in de diagnostiek van een CVA is het afnemen van de anamnese en het doen van lichamelijk onderzoek, waarbij gelet wordt op de symptomen passend bij de verschillende soorten beroertes. Zo past bij een herseninfarct een beeld van acute focale uitval, met  bijvoorbeeld een scheef-hangende mond, parese in de arm en afasie. Welke uitvalverschijnselen er zijn hangt af van de plaats van het infarct in de hersenen. Bij een intracerebrale bloeding is er ook sprake van acute focale uitval, vaak met hoofdpijn en bewustzijnsdaling. Bewustzijnsdaling komt bij een herseninfarct minder vaak voor. Bij een subarachnoïdale bloeding past een beeld van acute hele ernstige hoofdpijn en soms bewustzijnsdaling. Als er sprake is van een TIA, kunnen dezelfde symptomen optreden als bij een herseninfarct, maar bij een TIA verdwijnen de symptomen over het algemeen binnen een uur.

Om het onderscheidt te kunnen maken tussen de verschillende vormen van een CVA is medische beeldvorming nodig. De diagnostische testen die hiervoor worden gebruikt zijn CT en MRI. Het belangrijkste onderzoek is de CT-scan. Dit komt doordat CT een hele snelle methode is en logistiek handiger dan MRI. Met een CT kan in de acute fase snel het onderscheid worden gemaakt tussen een bloeding en een infarct, omdat de bloedingen goed zichtbaar worden. Voor het aantonen van een infarct is de MIR meer gevoelig.

Etiologie

Een CVA ontstaat door een vasculaire stoornis in de hersenen. Dit kan verschillende oorzaken hebben zoals malformaties, trauma en stollingsstoornissen. Meestal ontstaat een CVA doordat de kwaliteit van de binnenwand van bloedvaten slecht is. Er ontstaat artherosclerose in de vaten. Risicofactoren.....read more

Access: 
Public
Bullet point samenvatting AKWO (Architectuur van Klinisch Wetenschappelijk Onderwijs)

Bullet point samenvatting AKWO (Architectuur van Klinisch Wetenschappelijk Onderwijs)

Bevat een BulletPoint samenvatting met een beknopte behandeling van de verplichte stof. Gebaseerd op 2014-2015


Diagnostisch onderzoek
 

  • Diagnosticeren in de praktijk is het schatten van een kans op ziekte op basis van anamnese, lichamelijk onderzoek en testuitslagen van de patiënt.

  • We doen niet alle mogelijke testen omdat dit belastend is (voor patiënt en budget) en omdat dit overbodig is (verschillende testuitslagen geven dezelfde informatie).

    • In de praktijk wordt vaak meer getest dan nodig is.

  • Prior kans = vooraf-kans op ziekte voordat er diagnostiek plaats vindt.

  • Posterior kans = achteraf-kans op ziekte na diagnostiek. Ofwel kans op ziekte gegeven de testuitslagen.

    • Een ideaal diagnostisch proces leidt tot een posteriorkans van 0 of 100%.

Kenmerken diagnostisch onderzoek:

  • Vraagstelling:

    • Kunnen we met behulp van (determinant) betrouwbaar (uitkomst) vaststellen bij (domein)?

    • Wat is de toegevoegde diagnostische waarde van (determinant) bij het vaststellen van (uitkomst) bij (domein)?

  • Domein:

    • Type patiënt met een bepaald symptoom + settting
      patiënten met …(klacht)… verdacht voor …(ziekte)… in de ….(setting)…

  • Onderzoekspopulatie:

    • Steekproef uit het domein

  • Determinanten:

    • Dit zijn de te onderzoeken testen

  • Uitkomst:

    • Werkelijke aan/afwezigheid van de ziekte (bepaald met referentietest).

    • De referentie test is de beste test die beschikbaar is. Deze wordt echter niet bij iedereen afgenomen om verschillende redenen; belastend, risicovol, duur, etc.

    • De nieuwe test wordt als het ware vergeleken met de referentietest.

    • Beoordeling van de referentietest moet blind zijn voor de determinanten.

  • Determinant-uitkomst relatie:

    • Kans op ziekte als functie van de testuitslagen

  • Onderzoeksontwerp:

    • Observationeel:
      Dit houdt in dat er geen manipulatie van determinanten is.

      • Voorbeeld: in de trial gaat het lot bepalen wie wel of niet de behandeling gaat krijgen. Bij observationeel onderzoek krijgt iedereen alle testen.

    • Descriptief:
      Dit houdt niet-causaal in. Er wordt niet meteen etiologisch geïnterpreteerd en niet meteen causaal. Als de determinant maar voorspelt. Er is geen hypothese werkingsmechanisme. Het gaat om determinant-uitkomst.

    • >1 determinanten:
      Er wordt vaak gezien dat er meer dan 1 determinant is, de diagnose wordt immers ook bijna nooit aan de hand van 1 test bepaald.

    • Cross-sectioneel (dwarsdoorsnede):
      Dit houdt in dat determinanten en uitkomst op ‘hetzelfde’ moment bepaald worden, dus op een bepaald moment. Men wilt hierbij niks zeggen over later, maar over het hier en nu.

  • .....read more
Access: 
Public
Samenvatting bij Medical Humanities (MH 1) - Geneeskunde - UU - Week 1 t/m 4 (2012-2013)

Samenvatting bij Medical Humanities (MH 1) - Geneeskunde - UU - Week 1 t/m 4 (2012-2013)

Uitwerking colleges en behandeling van de verplichte stof. Gebaseerd op 2012-2013.


WEEK 1

Voorbereiding college 1 - Ten Have hoofdstuk 1

Inleiding

De medische ethiek houdt tegenwoordig niet alleen artsen bezig, vrijwel iedereen komt in aanraking met de gezondheidszorg en met ziekte, pijn en dood. Daarnaast komen in de politiek en media regelmatig (medisch)-ethische onderwerpen ter sprake. Sommige onderwerpen zijn al zo oud als de geneeskunde (bijvoorbeeld het beroepsgeheim), andere onderwerpen zijn het gevolg van nieuwe technische ontwikkelingen (bijvoorbeeld stamceltechnologie). Een arts ontkomt er tegenwoordig niet aan om een standpunt in te nemen over de medisch-ethische vragen waar hij mee te maken krijgt. Ethiek kan bovendien bijdragen aan het verhelderen van de redenen achter iemands keuze om in de gezondheidzorg te gaan werken en vaak heeft dit te maken met de omgang met mensen.

Ethiek is voor veel mensen een vaag begrip en ook is niet altijd duidelijk wat een ethische beschouwing oplevert, soms lijkt het alleen maar ingewikkelder te worden. Ethische beschouwingen zijn echter meer dan alleen het uitwisselen van persoonlijke standpunten: het doel van een ethische beschouwing is het onderscheiden van wat goed is om te doen. Met een ethisch betoog wil men dan ook laten zien wat er zou moeten gebeuren of behoort te gebeuren, ook al is de dagelijkse praktijk vaak anders en denken sommige mensen hier anders over. Dat betekent dus dat er wel degelijk een oordeel wordt gevormd. Ethiek houdt dan ook een bepaald gezichtspunt in, een manier van kijken naar het handelen van onszelf en anderen.

Ethische problematiek

Ethische problemen kunnen verschillende reacties oproepen, zoals:

Access: 
Public
Samenvatting bij Medical Humanities (MH 2) - Geneeskunde - UU - Week 1 t/m 4 (2014-2015)

Samenvatting bij Medical Humanities (MH 2) - Geneeskunde - UU - Week 1 t/m 4 (2014-2015)

Uitwerking colleges en behandeling van de verplichte stof. Gebaseerd op 2014-2015. update in maart/april 2015


WEEK 1

Hoorcollege 1

Scientific literacy: geletterdheid/sociologie/filosofie over wetenschap. Iemand die deze eigenschap heeft, heeft weet van wat wetenschap is en wat wetenschap doet, wat de plek is in de samenleving en wat de relatie is tussen overheid burger en wetenschap. Dan weet je wat een kennisclaim is. Hoe we aan de kennis komen.

Wetenschap in de democratische kennissamenleving
Wetenschap is een belangrijke factor in onze economie en maatschappij. De kennissamenleving betekent dat kennis een groot goed is binnen de samenleving. Alle burgers kunnen meebeslissen over de rol die kennis in de samenleving speelt. Ook leken. De burgers betalen belasting waarvan een deel naar wetenschap gaat. Wie betaalt bepaald ook mede. Burger en wetenschappers zijn dus met elkaar betrokken of zouden dat moeten zijn.

Het HPV vaccin
Zembla liet verschillende voor- en tegenstanders over het baarmoederhalskanker vaccin aan het woord, om de discussie aan te wakkeren. Dit illustreert het reinigend vermogen van journalistiek in de kennissamenleving.

Vragen omtrent het omstreden kankervaccin (en bij elk nieuw geneesmiddel):

  • Hoe is de effectiviteit?

  • Heeft het middel bijwerkingen?

  • Is het veilig?

In allerlei rollen doen mensen uitspraken over deze vragen: wetenschap, industrie, media, het publiek, politiek.

  • Verschillende wetenschappers blijken het niet eens te zijn; geen consensus. Iedere wetenschapper legt andere accenten.

  • De industrie zijn belanghebbende; zij kunnen verdienen aan het vaccin. En maakte daarom reclame, welke niet altijd ethisch goed gekeurd werd.

  • De media zijn de thermometer van de samenleving die proberen de vinger aan de pols te houden. Dit gebeurd niet altijd even kritisch. Je hebt verschillende soorten en maten van media. Hierdoor ook ongelijksoortige mededelingen.

  • Het publiek is heel amorf

  • .....read more
Access: 
Public
BulletPoint samenvatting bij Medical Humanities (MH 1) - Geneeskunde - UU - Week 1 t/m 4 (2014-2015)

BulletPoint samenvatting bij Medical Humanities (MH 1) - Geneeskunde - UU - Week 1 t/m 4 (2014-2015)

Bevat een BulletPoint samenvatting met een beknopte behandeling van de verplichte stof. Gebaseerd op 2014-2015. Update in maart/april 2015


Week 1

Medische ethiek

  • Ethiek is een systematische reflectie op verantwoord handelen. Het gaat dus om denken en redeneren volgens een bepaalde methode om uiteindelijk een antwoord te krijgen op de vraag ‘wat is uiteindelijk het goede om te doen?’.

Ethisch redeneren

  • Het doel van ethisch redeneren is het formuleren van goede redenen voor een bepaalde manier van handelen. Bij het ethisch redeneren zijn de volgende dingen van belang:

    • Anti-dogmatische houding: Je moet open staan voor de argumenten van anderen.

    • Argumentatieve houding: je moet bereid zijn te zoeken naar argumenten.

    • Al-partijdig houding: je moet proberen alle betrokkenen in beeld te krijgen en het probleem vanuit al deze perspectieven bekijken.

    • Er moeten redelijke anderen bij het gesprek betrokken zijn.

  • Het resultaat van ethisch redeneren zij provisional fixed points. Het resultaat is provisional omdat het altijd weer te veranderen is op grond van betere argumenten. Aan de andere kant zijn de eindpunten fixed, omdat ze onderbouwd zijn met argumenten en dus niet zomaar opgeefbaar zijn.

  • Eigenschappen van ethische uitspraken zijn:

    • Normatief: ze gaan over morele juistheid

    • Prescriptief: ze bevatten voorschriften

    • Universaliseerbaar: ze zijn van toepassing in alle vergelijkbare gevallen (ceteris paribus). Dit gaat (cultuur)relativisme tegen.

  • Bij ethische uitspraken zijn niet objectief, niet subjectief, maar intersubjectief. Het is een onpersoonlijk uitspraak: het is het beste antwoord, los van jezelf als mens. De uitspraak is gebaseerd op de houdbaarheid van het standpunt tegenover redelijke anderen. Met de uitspraak wordt geen waarheidsbegrip verkregen, maar wel goede redenen om het op een bepaalde manier te doen.

  • Stappenplan voor ethische reflectie:

    • Fase I: Verkenning: Welke eerste reacties?

    • Fase II: Explicitering: Wat is de morele vraag? Welke handelingsmogelijkheden zijn er? Welke informatie is nog nodig?

    • Fase III: Analyse: Wie zijn de betrokken partijen? Welke argumenten zijn er?

    • Fase IV: Afweging: Welk gewicht hebben de argumenten? Welke handelingsmogelijkheid heeft aan de hand hiervan de voorkeur?

    • Fase V: Aanpak: Vaststellen van concrete stappen om de handelingsmogelijkheid uit te voeren.

Normen en waarden

  • Normen: handelingsvoorschriften die aangeven wat we in bepaalde situaties moeten doen. Het zijn principes of gedragsregels, zoals: je moet de waarheid spreken.

  • Waarden: nastrevenswaardige ervaringen, situaties, standen van zaken of eigenschappen van mensen. In dit geval gaat het om deugden zoals zorgvuldigheid, transparantie etc.

  • Er zijn verschillende theoriën over welke normen en waarden terug moeten komen in de ethische reflectie: de consequentialistische

  • .....read more
Access: 
Public
Samenvatting bij Medical Humanities (MH 1) - Geneeskunde - UU - Week 1 t/m 4 (2014-2015)

Samenvatting bij Medical Humanities (MH 1) - Geneeskunde - UU - Week 1 t/m 4 (2014-2015)

Uitwerking colleges en behandeling van de verplichte stof. Gebaseerd op 2014-2015.


WEEK 1

Voorbereiding college 1 - Ten Have hoofdstuk 1

Inleiding

De medische ethiek houdt tegenwoordig niet alleen artsen bezig, vrijwel iedereen komt hiermee in aanraking. Daarnaast komen in de politiek en media regelmatig (medisch)-ethische onderwerpen ter sprake. Sommige onderwerpen zijn al zo oud als de geneeskunde (bijvoorbeeld het beroepsgeheim), andere onderwerpen zijn het gevolg van nieuwe technische ontwikkelingen (bijvoorbeeld stamceltechnologie). Een arts ontkomt er tegenwoordig niet aan om een standpunt in te nemen over de medisch-ethische vragen waar hij mee te maken krijgt. Ethiek kan bovendien bijdragen aan het verhelderen van de redenen achter iemands keuze om in de gezondheidzorg te gaan werken en vaak heeft dit te maken met de omgang met mensen.

Ethiek is voor veel mensen een vaag begrip en ook is het niet altijd duidelijk wat een ethische beschouwing oplevert, soms lijkt het alleen maar ingewikkelder te worden. Ethische beschouwingen zijn echter meer dan alleen het uitwisselen van persoonlijke standpunten: het doel van een ethische beschouwing is het onderscheiden van wat goed is om te doen. Met een ethisch betoog wil men dan ook laten zien wat er zou moeten gebeuren of behoort te gebeuren, ook al is de dagelijkse praktijk vaak anders en denken sommige mensen hier anders over. Dat betekent dus dat er wel degelijk een oordeel wordt gevormd. Ethiek houdt dan ook een bepaald gezichtspunt in, een manier van kijken naar het handelen van onszelf en anderen.

Ethische problematiek

Ethische problemen.....read more

Access: 
Public
Study Notes bij Lijn Beroepsvorming (LBV) - Jaar 1 - Geneeskunde UL

Study Notes bij Lijn Beroepsvorming (LBV) - Jaar 1 - Geneeskunde UL

Bevat 10 patientdemonstraties, gebaseerd op voorgaande studiejaren.


PD 1 – Een patiënt met acute buik

Casus 1: meisje, 12 jaar, buikpijn

Een meisje van 12 jaar met een blanco voorgeschiedenis heeft sinds de ochtend buikpijn. Deze buikpijn is in de loop van de dag toegenomen: het is progressief. De pijn zit voornamelijk in de rechter onderbuik. Verder heeft ze in de loop van de dag koorts gekregen en ze voelt zich niet lekker.

Bij een acute buik is de differentiaal diagnose afhankelijk van de lokalisatie van de pijn. Bij deze patiënte was er acute pijn in de rechter onderbuik. Hierbij past de volgende differentiaal diagnose: gastro-enteritis, appendicitis, opstijgende urineweginfectie of beginnende pijnlijke menstruatie. De eerste twee diagnoses passen bij de tractus digestivus en de laatste twee bij de tractus urogenitalis.

Hierna wordt gekeken of er andere zieken zijn in de familie en of er een medische voorgeschiedenis is. Ook wordt de klacht verder uitgevraagd. Het blijkt dat de pijn hoog in de buik is begonnen, waarna de pijn naar rechtsonder is gezakt. De pijn is continu en het is een zeurende pijn. Verder heeft de patiënte geen eetlust. Ze heeft geen last van braken, misselijkheid, pijnlijke mictie en diarree.

Door deze extra informatie wordt de diagnose appendicitis waarschijnlijker. Bij gastro-enteritis zou er sprake moeten zijn van diarree, maar deze diagnose wordt niet uitgesloten. Hetzelfde geldt voor een UWI, want daarbij is normaal gesproken een pijnlijke mictie.

Bij lichamelijk onderzoek wordt er gelet op meerdere dingen. Als er een vermoeden zou zijn op een peritonitis, dan zou er geen peristaltiek waar te nemen zijn bij auscultatie. Verder geeft pijnlijke percussie ook kans op een peritonitis.

Door de verdenking op een appendicitis wordt de patiënte doorverwezen naar de chirurg. Bij het lab blijkt dat de CRP verhoogd is. Dit duidt op een ontstekingsproces. Uit de echo blijkt dat er een ontstoken appendix is. De appendix is normaal gesproken niet goed te zien bij een echo, maar als de appendix wel goed te zien is, dan duidt dit op een verdikking en dus op een ontsteking. De verdikking kan ook een andere oorzaak hebben.

De behandeling bij een appendicitis is een operatie: een appendectomie. Hierbij wordt de appendix verwijderd. Tijdens deze operatie wordt de diagnose bevestigd. Als de appendix geperforeerd is, dan zijn er zeer ernstige complicaties. Er kan.....read more

Access: 
Public
Study Notes bij Lijn Beroepsvorming (LBV) - Jaar 3 - Geneeskunde UL (2014-2015)

Study Notes bij Lijn Beroepsvorming (LBV) - Jaar 3 - Geneeskunde UL (2014-2015)

Bevat notes bij de colleges, werkcolleges en patientdemonstraties, gebaseerd op 2014-2015


HC 1 – Inleidend hoorcollege LBV jaar 3

Casus 1
Vrouw van 38 jaar is nooit ziek geweest, ze is erg moe en tijdens het werk in het huishouden heeft ze soms last van duizelingen en hartkloppingen. Haar man vindt dat ze er bleekjes uit is gaan zien en hij moet haar steeds meer helpen in het huishouden. Verder zijn er geen bijzonderheden in de ontlasting en er zijn geen maagklachten, buikpijn of krampen in de buik. Verschillende oorzaken voor moeheid zijn: overbelasting, anemie, hypothyreoïdie, slaapproblemen, tumor, psychische klachten, infecties enzovoorts. Moeheid kan voorkomen bij oneindig veel ziekten. De voorgeschiedenis roept geen vragen op, maar ze heeft thuis wel drie kinderen en doet het huishouden. Anemie geeft over het algemeen pas moeheid als het Hb lager is dan 6.5.

De zeven dimensies bij moeheid zijn natuurlijk iets anders dan pijn. De lokalisatie is niet echt aan de orde, behalve als je vraagt of iemand meer moe is in het hoofd of in het lichaam. De kwaliteit kan wel uitgevraagd worden, lusteloosheid duidt eerder op een psychische oorzaak zoals een depressie, terwijl een verminderde uithouding de kans op een somatische oorzaak vergroot. Bij de kwantiteit vraag je in hoeverre de patiënt belemmerd wordt in zijn dagelijkse bezigheden door de aanwezigheid van de vermoeidheid. Beloop: wanneer men in de ochtend al moe is duidt dit eerder op een psychische oorzaak, wanneer deze pas later op de dag ontstaat is er meer kans op een somatische oorzaak. In de context wordt er gevraagd naar de context en bezigheden voor het begin van de moeheid. Bij factoren van invloed vraag men naar medicatie, intoxicaties en de invloed van rust. Als laatste vraagt men naar begeleidende verschijnselen. Omdat moeheid op zoveel verschillende ziekten kan duiden is de lijst met de verschijnselen ontzettend lang en moet je de patiënt hierop voorbereiden.

Casus 2
Een jonge man van 24, zesdejaars geneeskunde student, heeft last van moeheid. Afgelopen maanden waren erg leuk, is verliefd geworden op een medestudente. Nu heeft hij echter al enkele weken geen fut meer en is bij het opstaan al moe. Zijn medestudente komt iedere dag kijken hoe het met hem is en kookt dan ook voor hem. Hij heeft helaas bijna geen eetlust. Moeheid bij opstaan duidt eerder op.....read more

Access: 
Public
Aanvulling collegeaantekeningen week 3 Wetenschappelijke Vorming

Aanvulling collegeaantekeningen week 3 Wetenschappelijke Vorming

Deze samenvatting is geschreven in collegejaar 2012-2013.


WG2 Studieopzet

 

RCT

Een RCT is altijd prospectief. In tegenstelling tot een follow-up onderzoek kun je bij een RCT zelf de blootstelling indelen, waardoor de confounding minimaal zal zijn.

 

Voordelen:

  • Randomisatie

  • Concealment

  • Blindering

Deze drie voorkomen bias en randomisatie voorkomt ook confounding.

 

Nadelen:

  • Duurt lang

  • Duur

  • Randomisatie is niet altijd mogelijk i.v.m. ethische aspecten

 

RCTs worden vooral gebruikt voor therapeutische onderzoeken.

 

Bij RCTs wordt vaak een 2:1 ratio gebruikt bij de verdeling van de patiënten, vooral voor de veiligheid en de voorkeuren van de patiënten.

 

Confounding kan voorkomen worden door:

  • de studieopzet: restrictie van bepaalde factoren (bijv. geslacht) waarvan je denkt dat ze confounding zullen veroorzaken.

  • Analyse: stratificeren of regressie-analyse.

 

Follow-up onderzoek

Bij follow-up onderzoek kan er retrospectief of prospectief gewerkt worden. Verschil zit in de identificatie van de onderzoeksgroepen (vroeger of nu).

 

Bij follow-up onderzoek kijk je naar de expositie (wel of niet blootgesteld) en kijk je vervolgens hoeveel uitkomsten er zijn in iedere groep.

 

Voordeel retrospectief: je hebt een grote onderzoeksgroep.

Nadeel retrospectief: je moet tevreden zijn met de info die je hebt.

 

Voordeel prospectief: je hebt de gegevensverzameling zelf in de hand.

Nadeel prospectief: door drop-out e.d. kan er verlies zijn van gegevens.

 

Follow-up onderzoek wordt gebruikt bij zeldzame blootstelling, niet bij zeldzame uitkomsten.

 

Case-control onderzoek

Bij case-control onderzoek kan er retrospectief of prospectief gewerkt worden. Verschil zit in de identificatie van de onderzoeksgroepen (vroeger of nu).

 

Bij case-control onderzoek kijk je naar de uitkomst (wel of geen ziekte) en kijk je vervolgens hoe patiënten er blootgesteld zijn (geweest) in iedere groep. De controlegroep wordt gebruikt om te kijken naar de expositie in de algemene bevolking. Op deze manier is de odds-ratio te bereken.

 

Voordeel:

- conceptuele eenvoud

Nadeel:

- keuze voor de controle groepen

 

Case-control onderzoek wordt gebruikt bij zeldzame uitkomsten, niet bij zeldzame blootstelling.

 

Uiteraard hangt de keuze voor de onderzoeksvorm altijd af van de situatie.

 

 

HC 21 (22-5-2013 8.30)

 

Bij dit college is er gewerkt met een trial waarbij de verschillen werden bekijken bij de behandeling van migraine. Er blijkt dat er statistische verschillen zijn tussen de behandeling met acupunctuur en een wachtlijst. Ook heeft 51% van de patiënten met migraine een vermindering van dagen met migraine met 50% (responders) t.o.v. 15% bij wachtlijst. De valkuil is dat er geen goed controlegroep is; er is geen placebo toegediend. Wanneer er een controlegroep gebruikt worden,.....read more

Access: 
Public
Collegeaantekeningen academische en wetenschappelijke vorming

Collegeaantekeningen academische en wetenschappelijke vorming

Deze samenvatting is geschreven in collegejaar 2012-2013.


HC 1 Onderzoek in de praktijk

Wetenschappelijk onderzoek is vaak nauw verbonden met de klinische praktijk.

Een vrouw (86 jaar) valt:

  • Konden we dit zien aankomen?

  • Voorspellen?

  • Voorkomen?

  • Hard maken?

  • Evidence nodig?

Vallen heeft met meerdere factoren te maken. Bij ouderen kan het te maken hebben met medicatie.

 

Arts in de praktijk: hoe kan ik deze patiënt beter helpen?

Biomedische onderzoeker: ziekte onderzoeken

  • Dit is de rol van de academicus (CANMEDS).

Achtergrond  methode  resultaat.

Er is nog zeer veel wat men nog niet weet. Wel zijn er ideeën over wat goed is, maar nog niet over alles is er evidence.

 

HC 2 – Opzet van onderzoek

Bij onderzoek maakt men gebruik van twee groepen: 1 groep met de onderzochte factor en 1 groep zonder (de controle groep).

Vaak maakt men gebruik van observationeel onderzoek. Hierbij worden mensen geselecteerd en voor een bepaalde tijd geobserveerd.

Wanneer mensen gevolgd worden in de tijd: follow-up onderzoek (cohort onderzoek). Hierbij worden eerst mensen geselecteerd en vervolgens stelt men een risicofactor vast. Hierna zoekt men naar een uitkomst.

Dit kan op twee manieren gebeuren:

  1. Vooruitkijkend/prospectief: hierbij is meer controle, maar het is niet waterdicht.

  2. Terugkijkend/retrospectief: dit kost minder tijd, maar de gegevens zijn iets minder.

Retrospectief en prospectief onderzoek kan even goed zijn, maar dit hoeft niet.

Iemand kan prospectief gegevens verzamelen, maar voor de persoon die deze gegevens gaat gebruiken zijn de gegevens retrospectief verkregen.

Voor een grotere betrouwbaarheid is een grote onderzoeksgroep nodig. De groep moet echter niet zó groot zijn, dat het onderzoek niet meer efficiënt is.

Case-control study (patiënt-controle onderzoek): hierbij begint men met de uitkomst  terugkijken  controlegroep vinden en onderzoeken  case groep en controle groep vaststellen.

Een voorbeeld hierbij: roken en longkanker.

De conclusie is bij beide vormen van onderzoeken hetzelfde. Beiden vormen.....read more

Access: 
Public
Study Notes bij Academische Wetenschappelijke Vorming - Jaar 2 - Geneeskunde UL (2014-2015)

Study Notes bij Academische Wetenschappelijke Vorming - Jaar 2 - Geneeskunde UL (2014-2015)

Bevat aantekeningen bij het blok, gebaseerd op 2014-2015, komt overeen met onderwerpen uit meer recente collegejaren.


Collegeaantekeningen

HC-01: Introductie (24/11/2014) - inleidend college, geen samenvatting nodig

HC-02: Gerandomiseerde Klinische Onderzoeken (24/11/2014)

Onderzoeksvraag: Verlaagt Prozac de symptomen van depressie in mannen van 40-60 jaar? Is dit een goede onderzoeksvraag? Een onderzoeksvraag moet vier componenten bevatten, namelijk Populatie/Patiënt, Interventie, Controle en Uitkomst (Outcome): PICO.

Stel dat er een jonge psychiater (A) is en een depressieve man komt naar hem toe. Hij schrijft Prozac voor en zes weken later komt de man terug zonder symptomen. De psychiater behandelt nog drie depressieve mannen en zij komen ook terug zonder symptomen. De conclusie die de psychiater trekt, is dat Prozac werkt. Deze conclusie mag niet getrokken worden, want het natuurlijke beloop kan ook zijn dat de symptomen binnen zes weken weg zijn. Een andere psychiater (B) gelooft de resultaten niet. Psychiater A schrijft Prozac voor en na 6 weken zijn 8 van de 10 patiënten genezen. Psychiater B zet mensen op een wachtlijst en dan zijn na 6 weken 6 van de 10 patiënten genezen. Nu concludeert psychiater A dat Prozac beter is dan niks doen.

Elk onderzoek dat gedaan wordt, kan een naam krijgen zoals retrospectief, longitudinaal, follow-up en case-control. Het onderzoek dat psychiater A deed, was een case-series. Een case-series is niet belangrijk voor het bepalen van een therapeutische interventie. Het resultaat kan veroorzaakt worden door het natuurlijke beloop van de ziekte of door een non-specifiek effect. Er is power nodig, waarvoor gezorgd kan worden door een cohort te gebruiken. Er wordt dan een cohort studie gedaan. In dit geval wordt er een prospectief onderzoek gedaan. Door het introduceren van een controle groep kan worden uitgesloten dat het natuurlijke beloop zorgt voor genezing en niet het medicijn. Bij een cohort studie kan er een probleem zijn in de vergelijkbaarheid van de controle groepen. Een retrospectieve cohort studie zal zorgen dat de power goed is. Bij een RCT wordt het placebo effect ingevoerd. Een placebo is.....read more

Access: 
Public
Samenvatting bij Context Medisch Handelen - Geneeskunde - oud - UL

Samenvatting bij Context Medisch Handelen - Geneeskunde - oud - UL

Deze samenvatting is gebaseerd op het oude Geneeskunde curriculum van de Universiteit Leiden, studiejaar 2014-2015.


 

Thema 1 Medische ethiek in het vak Geneeskunde

H1.....read more

Access: 
Public
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Check more of this topic?
How to use more summaries?


Online access to all summaries, study notes en practice exams

Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Starting Pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
  2. Use the menu above every page to go to one of the main starting pages
  3. Tags & Taxonomy: gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
  4. Follow authors or (study) organizations: by following individual users, authors and your study organizations you are likely to discover more relevant study materials.
  5. Search tool : 'quick & dirty'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject. The search tool is also available at the bottom of most pages

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study (main tags and taxonomy terms)

Field of study

Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
1863
Comments, Compliments & Kudos:

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Promotions
Image

Op zoek naar een uitdagende job die past bij je studie? Word studentmanager bij JoHo !

Werkzaamheden: o.a.

  • Het werven, aansturen en contact onderhouden met auteurs, studie-assistenten en het lokale studentennetwerk.
  • Het helpen bij samenstellen van de studiematerialen
  • PR & communicatie werkzaamheden

Interesse? Reageer of informeer

More contributions of WorldSupporter author: Medicine Supporter:
Follow the author: Medicine Supporter