Deze samenvatting is geschreven in het studiejaar 2013-2014.
Hoofdstuk 1: Systeemkunde en systeembegrippen
De systeemkunde, begonnen in de jaren ’40, is vooral na 1960 in hoog tempo ontwikkeld. De centrale thema’s van systeemkunde zijn abstractie en generalisatie: er wordt eerst een systeem gedefinieerd, voordat er naar verschillende onderdelen van het systeem gekeken wordt. Het systeemdenken is een hulpmiddel voor analyse van (bedrijfs)processen en vervolgens voor het oplossen van knelpunten. Systeemkunde is nuttig voor managers en bestuurders van organisaties. Het denken in productstromen en processen vermindert de doorlooptijden en vergroot de flexibiliteit. Het helpt ook bij het analyseren van complexe problemen en het ontwikkelen van gepaste oplossingen.
Er zijn vele methoden in de bedrijfskunde die worden gezien als dé oplossing voor alle problemen. Helaas mislukken deze methoden vaak. Een paar voorbeelden: Total quality management richt zich met name op de kwaliteit en ziet de organisatie als keten van onderling afhankelijke processen met als uiteindelijke doel het tevreden stellen van de klant. Het mislukt vaak omdat het zich maar op één aspect richt (de kwaliteit).
Supply Chain Management (SCM) richt zich op de productstroom of orderstroom door het bedrijf. Echter, SCM laat vaak onderdelen in de keten buiten beschouwing.
Business Process Redesign (BPR) is een methode om met behulp van informatiesystemen processen te analyseren en te vereenvoudigen om zo te komen tot een kortere doorlooptijd, betere beheersing en lagere kosten. Maar er is nauwelijks aandacht voor de noodzakelijke regelkringen ter beheersing van de processen.
Workflow management is een hulpmiddel om de uitvoerende processen in een model weer te geven en te analyseren. Ook hier ontbreken de noodzakelijke regelkringen ter beheersing van de kwaliteit en de kwantiteit.
Al deze technieken gaan uit van procesdenken, maar zij missen een onderliggende theorie: systeemdenken. Systeemkunde is echter ook geen middel voor alles. Het biedt een systematische wijze van denken over problemen, geeft een beter inzicht en doorzicht en is een hulpmiddel om concrete situaties op een hoger abstractieniveau te bekijken.
Een systeem heeft deze essentiële kenmerken:
- Het wil een doel bereiken;
- Het bevat een verzameling elementen;
- Er bestaat een samenhang tussen die elementen.
Een systeem is een, afhankelijk van het door de onderzoeker gestelde doel, binnen de totale werkelijkheid te onderscheiden verzameling elementen. Deze elementen hebben onderlinge relaties en (eventueel) relaties met andere elementen uit de buitenwereld.
Elementen zijn de kleinste delen die de onderzoeker wil bekijken, gezien zijn doel. Elementen kunnen zowel materieel als niet-materieel zijn. De opsomming van alle verschillende elementen in het systeem is de inhoud. De elementen kunnen ook nog eigenschappen hebben. Dit kunnen fysieke, sociale of esthetische eigenschappen zijn.
Er is ook gesteld dat elementen relaties hebben. Dat betekent dat er een bepaalde samenhang tussen hen is. De elementen beïnvloeden elkaar op die manier. De opsomming van alle relaties in een systeem is de structuur. Als de relaties binnen het systeem bekeken worden, spreken we van de interne structuur. Als de relaties met de buitenwereld erbij betrokken worden, betreft het de externe structuur. Als we van de buitenwereld ofwel de totale werkelijkheid spreken, dan heet dat het universum.
Soms is een systeem te groot om in zijn geheel te bestuderen. Dan wordt het opgesplitst in subsystemen. Een subsysteem is een deelverzameling van de elementen van het systeem, waarbij alle oorspronkelijke relaties tussen de elementen onveranderd behouden blijven. Een subsysteem is weer te beschouwen als een systeem en voldoet daarmee ook aan de definitie van een systeem.
Een aspectsysteem is een deelverzameling van de relaties in het (sub)systeem, waarbij alle elementen onveranderd behouden blijven.
Aspect- en subsystemen kunnen samenvallen: dat houdt in dat we van een bepaald subsysteem een bepaald aspect bestuderen. Dan is het een sub-aspectsysteem.
De toestand van een systeem op een bepaald moment heeft de waarden van de eigenschappen op dat tijdstip in het systeem. Een toestand is dus een momentopname. Maar in een systeem spelen zich processen af en dus kunnen eigenschappen van elementen veranderen en daarmee de toestand van het systeem: er vindt een gebeurtenis plaats. Heeft de ene gebeurtenis een andere gebeurtenis tot gevolg, dan is dat een activiteit, en activiteiten kosten tijd. Niet alleen de waarden van de eigenschappen kunnen veranderen, ook de relaties tussen de elementen: er is dan sprake van een veranderende structuur.
Dynamische systemen zijn systemen waarin zich processen afspelen. Die processen hebben voor het vervullen van hun functie vaak verschillende soorten toevoer uit de omgeving nodig, zoals energie, materiaal, mensen, ideeën. Dat betekent dat dergelijke systemen een invoer, doorvoer en uitvoer hebben. Binnen statische systemen daarentegen treden geen gebeurtenissen op.
De eenvoudigste voorstelling van een systeem staat in figuur 1.2. De open dubbele pijl geeft aan dat we met een materiestroom te maken hebben, zoals mensen en middelen. In figuur 1.3 staat een informatiestroom, aangegeven met een enkele pijl. Een systeem waarin zich een proces afspeelt, heeft blijvende en tijdelijke elementen. De blijvende elementen vervullen functies in het proces. De tijdelijke elementen worden steeds opnieuw in het systeem ingevoerd, waarna ze door allerlei activiteiten tijdens de doorvoer worden omgezet/getransformeerd in de gewenste uitvoer.
Een proces is een serie transformaties tijdens de doorvoer, waardoor het ingevoerde element verandert in plaats, stand, vorm, afmeting, functie, eigenschap of ander kenmerk. De activiteiten in processen van organisatiesystemen worden onderling gekoppeld door informatiestromen. Die zorgen ervoor dat op het juiste tijdstip, op de juiste plaats, op de juiste manier de juiste activiteit wordt uitgevoerd. Uiteindelijk vervult het systeem door middel van het proces zijn functie in de omgeving en daarmee streeft het zijn doel na.
Een dynamisch systeem zal in de periode waarbinnen het systeem bestudeerd wordt, een bepaald gedrag vertonen. Het gedrag van het systeem is de wijze waarop het systeem reageert op bepaalde in- en uitwendige omstandigheden, bepaalde invoeren en veranderingen. Alleen de systeem die in een steady state zijn, zijn van belang. Het systeem is in een steady state als het een volledig bepaald gedrag heeft dat repeteerbaar is in de tijd en waarbij bovendien dat gedrag in de ene tijdsperiode gelijksoortig is aan het gedrag in een andere tijdsperiode. Denk aan het opstarten van een automotor (veel herhalingen, bijna elke keer gelijk).
Het doel van een systeem is het vervullen van bepaalde functies in de omgeving van het systeem. Elk element en subsysteem binnen het systeem levert zijn eigen bijdrage in het proces om dat doel te verwezenlijken. Om dat doel te kunnen bereiken moeten er functies vervuld worden en taken verricht worden.
De functie van een element is datgene wat door het element teweeg wordt gebracht en waaraan het grotere geheel behoefte heeft. De taak van een element houdt datgene in wat gedaan moet worden, opdat die bijdrage tot stand komt, zodat de functie wordt vervuld. Enkele verschillen tussen taak en functie:
Taak | Functie |
|
|
|
|
|
|
In wezen liggen taak en functie in elkaars verlengde als doorvoer en uitvoer: zie figuur 1.5.
Iets is een functie als men dezelfde bijdrage kan leveren met verschillende middelen.
Een voorbeeld:
Het doel van een ziekenhuis is het genezen van patiënten en/of het verlichten van hun lijden. Daartoe worden binnen het ziekenhuis functies als onderzoeken, behandelen en verplegen vervuld. De taken die daarvoor verricht moeten worden zijn röntgenfoto’s maken, bloed afnemen, medicijnen geven, wassen enz.
Een systeem zal vaak ontworpen worden door eerst de functies te bepalen die vervuld moeten worden in dat systeem om het doel te kunnen verwezenlijken. Meerdere functies kunnen best door één orgaan/persoon vervuld worden. Een functie is minder tijdgebonden dan een taak.
Er is een onderscheid tussen een systeem en zijn omgeving. Het systeem wil een doel in die omgeving bereiken en vervult daarvoor verschillende functies. Om het onderscheid duidelijk te maken, moet er een systeemgrens getrokken worden. In- en uitvoeren stromen door deze grens heen. De systeemgrens wordt vooral bepaald door het doel van het onderzoek. Meestal blijkt pas uit het vergelijken van de gevonden resultaten met de werkelijkheid of de grens juist is bepaald.
Hoofdstuk 2: Systeembenadering of maanreisbenadering
Om een bepaald systeem gestructureerd te kunnen bestuderen, kunnen er twee verschillende methoden toegepast worden:
- Het beschouwen van het geheel, de black-boxbenadering;
- Het in detail beschouwen van de elementen, de systeem- of maanreisbenadering.
In de black-boxbenadering wordt het systeem geheel intact gelaten en worden zoveel mogelijk waarnemingen aan de buitenkant gedaan. Pas als dit uitputtend genoeg gedaan is, wordt het systeem geopend en worden de interacties en functies van de verschillende subsystemen bekeken: de systeembenadering. Als dit gedaan is, kunnen die weer geopend worden tot de uiteindelijke elementen tevoorschijn komen, als dat nodig is voor de oplossing van het probleem.
Bij de systeembenadering wordt er uitgegaan van het doel van het systeem: waarvoor dient het systeem? Van daaruit worden de functies bepaald die vervuld moeten worden in het systeem om dat doel te realiseren. Het kan zijn dat om het uiteindelijke doel te realiseren er meerdere subdoelen in subsystemen bereikt moeten worden.
Beide systemen zijn toe te passen, en door intuïtief gevoel wordt vaak de oorzaak van het probleem al snel achterhaald in een element. Echter, het is vaak symptoombestrijding. Om het probleem in de toekomst te voorkomen is het goed om later alsnog de systeembenadering toe te passen.
Een black box is een systeem of subsysteem waarvan de interne elementen en relaties de onderzoeker (nog) niet bekend zijn of die hij (vooralsnog) buiten beschouwing laat. Als we een systeem als black box beschouwen, gaat het om het gedrag van die black box, zoals we dat aan de buitenkant kunnen zien. Begrip wordt ook gebruikt als we het gedrag van het systeem willen onderzoeken.
Het systeem dat we willen bestuderen, kunnen we in eerste instantie beschouwen als één grote black box met meerdere in- en uitvoeren, zoals in figuur 2.1. Vervolgens gaan we kijken wat er gebeurt als we een bepaalde invoer veranderen. Er wordt geprobeerd vanaf de buitenkant kijkend het gedrag van het systeem vast te leggen. Soms is het niet nodig om het inwendige van een systeem te bekijken, omdat er op grond van waarneming van de in- en uitvoeren alle gebeurtenissen verklaard kunnen worden. Echter, er zijn wel verschillende structuren denkbaar om dezelfde functie te vervullen: het principe van de onbepaaldheid van de structuur.
De systeembenadering, vanaf nu de maanreisbenadering, heeft zijn naam te danken aan de maan, waar in de loop van de tijd steeds meer elementen en subsystemen ontdekt werden. Het gaat vooral om de toenemende detaillering: inzoomen. Inzoomen betekent bij concrete systemen dat we stapsgewijs steeds kleinere concrete details in onze beschouwingen gaan betrekken. Er kan ook uitgezoomd worden, om zo meer overzicht en samenhang te ontdekken. Als de verschillende afstanden waarop het systeem bekeken kan worden in stappen wordt verdeeld, dan zijn er eigenlijk verschillende niveaus. Masarovic (1970) noemde dit aggregatiestrata. Op ieder aggregatiestratum moeten zowel het systeem dat we bekijken als de op dat stratum te onderscheiden subsystemen, duidelijke eigenschappen hebben. De te vervullen functies kunnen daarbij helpen. Zie voor voorbeelden pagina’s 43 en 44.
De systeembenadering/maanreisbenadering kunnen we toepassen op verschillende casussen. Door eerst het systeem als black box te bekijken en daarna steeds verder in te zoomen, kunnen er functiemodellen ontwikkeld/getekend worden. Zie de pagina’s 47 t/m 50 voor een uitgebreid voorbeeld.
Bij het definiëren van een uit te voeren onderzoek is de systeembenadering goed bruikbaar. Door het beschrijven van sub- en/of aspectsystemen kan worden bepaald waar de kern van het onderzoek zal liggen en welke delen van het systeem geen of minder aandacht zullen krijgen. De maanreisbenadering is het hulpmiddel om de onderzoeksactiviteiten en de volgtijdelijkheid daarvan aan te geven. Ook is het onderscheid tussen functie en taak bruikbaar bij het gedetailleerd informatie verzamelen over het systeem bij het onderzoek.
Hoofdstuk 3: Procesbeheersing
Een systeem heeft vaak het doel om een bepaalde functie in zijn omgeving te vervullen. Dit doet hij door uitvoeren te produceren. Dat betekent dat er zich binnen zo’n systeem een transformatiefunctie bevindt.
Inrichten is het eenmalig inregelen van het proces om de invoer te transformeren tot de gewenste uitvoer. Sturen is het vaststellen van de normen, waaraan het systeem moet voldoen. Er gaan middelen, mensen en informatie het systeem in, dat zijn ingangssignalen. Ingangssignalen kunnen verdeeld worden in stuursignalen en storingssignalen. Storingssignalen kunnen weer verdeeld worden in meetbare storingssignalen en niet-meetbare storingssignalen. Stuursignalen kunnen bij de invoer beïnvloedt worden, storingssignalen niet. Storingssignalen leiden ertoe dat de uitvoer niet aan de normen voldoet, het proces loopt niet beheerst. Dit willen we voorkomen, dus hebben we een orgaan nodig dat ingrepen in het systeem bepaalt. Daarvoor zijn bepaalde functies nodig. De vergelijkingsfunctie vergelijkt de invoer of doorvoer met de gestelde norm, de regelfunctie regelt vervolgens dat de ingreepfunctie de juiste ingreep doet, waardoor de door- en uitvoer weer aan de normen voldoen. Er zijn drie verschillende methoden om die regeling te realiseren. De functies die dat doen zijn regelkringen. De drie vormen van regelen zijn:
voorwaartskoppeling;
terugkoppeling;
toevoegen van het ontbrekende.
Voorwaartskoppeling: oorzaak bepaalt ingreep. Bij voorwaartskoppeling meten we de storing zelf, waarna we ergens in het proces ingrijpen. De vergelijkingsfunctie vergelijkt met de gestelde norm. Als er iets mankeert in de volgende stap in het proces, signaleert de vergelijkingsfunctie dat en geeft het door aan de regelfunctie. Die functie beschikt over de informatie, gebaseerd op de gestelde normen en het gedrag van het systeem, om de noodzakelijke ingreep te bepalen: de ingreepfunctie voert die ingreep uit. De gestelde normen kunnen zowel kwaliteit als kwantiteit betreffen. Voor elk facet is een aparte regelkring nodig. Zie figuur 3.2. Er kan op verschillende plaatsen in het proces worden gemeten en ingegrepen. Ook de storing kan overal plaatsvinden. Zie figuur 3.3. Alle voorwaartskoppelingen zijn hetzelfde. Steeds wordt de storing zelf gemeten en van daaruit wordt de ingreep bepaald. Voorwaarde is wel dat de storing bekend en meetbaar is.
Terugkoppeling betekent: resultaat bepaalt ingreep. Als de uitvoer van de gestelde norm afwijkt, moet er ergens ingegrepen worden om te zorgen dat de uitvoer weer aan de norm voldoet. Zie figuur 3.4. Het verschil met de voorwaartskoppeling is dat deze meting niet op een willekeurige plaats gedaan kan worden, maar in de uitvoer moet plaatsvinden. Het resultaat wordt gemeten, en dat bepaalt de ingreep. Bij terugkoppeling bestaat een kans op instabiliteit.
Toevoegen van het ontbrekende betekent dat een product dat niet aan de gestelde norm voldoet, ter plekke wordt gerepareerd. Zie figuur 3.5.
Deze drie methoden om processen beheerst te laten verlopen, worden gehanteerd bij processen die repeteerbaar zijn in de tijd en waarbij het gedrag in de ene tijdsperiode gelijk is aan het gedrag in een andere tijdsperiode (steady states).
Een systeem is stabiel als de aspecten van dat systeem binnen bepaalde, vastgestelde grenzen blijven. Sommige aspecten kunnen stabiel zijn en andere niet. De norm zal altijd een bereik zijn met een onder- en bovengrens. Als de storing binnen dit tolerantiegebied blijft, wordt er niet ingegrepen. Bij kwaliteitsmanagement worden steekproeven genomen of statische methoden gebruikt om te bepalen of het proces binnen de tolerantiegrenzen blijft en of er een verschuiving begint op te treden. Zo kan er tijdig ingegrepen worden in het proces.
De regelkring terugkoppeling moet voorzichtig worden toegepast. Het duurt namelijk de doorlooptijd van het transformatieproces voordat het gevolg van een ingreep gemeten wordt. Er kan overcompensatie en een opslingereffect ontstaan. Meekoppeling houdt in dat in een systeem met terugkoppeling het afwijkingssignaal dat de regelfunctie ontvangt, hetzelfde teken (+ of -) heeft als de op dat moment optredende afwijking in de invoer, waardoor de afwijking steeds groter wordt. Dit verschijnsel is afhankelijk van (1) de tijd die nodig is voor het totale transformatie- en regelproces en (2) verandering van de oorzaak van de afwijking in de loop van de tijd. Tegenkoppeling houdt in dat het systeem met terugkoppeling terugkeert naar de vastgestelde normen door de ingreep. In een terugkoppelend systeem kan zowel tegen- als meekoppeling optreden. Zie voor een overzicht van de regelkringen figuur 3.7.
Als een transformatieproces langdurig is, dan is het onvoldoende om alleen terugkoppeling toe te passen. Vaak wordt dan ook een combinatie van voorwaarts- en terugkoppeling toegepast, met daarbij nog de methode van toevoegen van het ontbrekende. Deze combinatie staat in figuur 3.8.
Als het transformatiesysteem binnen het onderzochte systeem heel lang duurt en uit veel verschillende handelingen bestaat, kan het ook opgesplitst worden in een reeks subsystemen met deelprocessen. Elk subsysteem kan dan zijn eigen regelkringen hebben. Als bij een subsysteem het ontbrekende toegevoegd wordt, dan is daar sprake van het toevoegen van het ontbrekende. Maar als er dan uitgezoomd wordt en gekeken naar het totale proces, dan is het voorwaartskoppeling.
Hoofdstuk 4: Het vliegensvlugge vliegbedrijf (casus)
In hoofdstuk 4 wordt een uitgebreide casus behandeld over de Fokker-vliegtuigfabriek. Lees dit zelf een keer goed door, dit is een belangrijk voorbeeld!
Er wordt begonnen met de voorgeschiedenis van het bedrijf en de situatie wordt beschreven zoals die nu is. Daarna wordt een probleemanalyse gemaakt. Met de gegevens die nu bekend zijn, kan een model van het proces ontwikkeld worden. Daarvoor moet uiteraard eerst het doel van het model gedefinieerd worden: welk probleem willen we ermee kunnen oplossen? Daarna kan het model getekend worden en vragen beantwoord. Zie daarvoor blz. 89 t/m 95!
Tunnelformule: gemiddeld aantal elementen in het systeem = aankomsttempo x gemiddelde doorlooptijd
Er kunnen in het proces complicaties optreden, zoals slecht weer bij het testen van vliegtuigen. Als dit gebeurd, komt het hele proces achter op schema te liggen. De doorlooptijd wordt langer: de tijd, gemeten vanaf de invoer tot en met de uitvoer van het product. Om hierop voorbereid te zijn, kunnen er buffers en kranen in het model ingevoerd worden.
Om voortdurend te weten of de werkelijkheid nog steeds overeenkomt met de berekeningen in het model, moeten de variabelen regelmatig worden gecontroleerd met tabellen en grafieken. Hiervoor zijn regelkringen noodzakelijk. Deze worden echter niet altijd in het model ingetekend, omdat de probleemstelling daar niet altijd aanleiding toe geeft.
De procesfunctie is de functie die in een proces vervuld wordt.
Voor sommige berekeningen zijn simulaties nodig om berekeningen te maken. Vaak is hiervoor kansrekening nodig. In de praktijk wordt er vaak met een tabel met aselecte getallen of ‘random numbers’ gewerkt. Dit werkt alleen als de kansen voor elke gebeurtenis gelijk zijn. Als de kansen voor de gebeurtenissen ongelijk zijn, kan een Monte Carlo-simulatie gebruikt worden. Als een proces net opgestart wordt heeft het proces een tijdje nodig om te stabiliseren: het proces is in ingelopen toestand, dat wil zeggen: het verloopt volgens de gestelde normen.
Hoofdstuk 5: Hoofdstromen en processen
In de klassieke bedrijfskunde wordt er vaak van uitgegaan dat een organisatie is opgebouwd uit betrekkelijk zelfstandige eenheden en dat de mogelijkheden voor coördinatie en communicatie wel toereikend zullen zijn. Binnen de eenheid ligt de nadruk op de toepassing van de aanwezige mensen en middelen. Een goed functionerende eenheid zou automatisch leiden tot een optimaal functionerende totale organisatie. Maar als de doelen van de organisatie steeds aan verandering onderhevig zijn, wordt het nodig om te kunnen ingrijpen, met voorwaarts- en terugkoppeling. Men moet denken in processen, die door meer eenheden kunnen stromen, in plaats van denken in op zichzelf staande eenheden. Bij een systeembenadering van een organisatie gaan we dan ook altijd uit van de (bedrijfs)processen, die moeten leiden tot het realiseren van de doelen van de organisatie, en niet van de bestaande afdelingen.
In een proces vindt een mensen- en middelenstroom plaats: een hoofdstroom in een proces, bestaande uit mensen en middelen als geld en machines. Deze stroom kan in de tijd veranderen, maar dat gaat meestal heel langzaam. In deze stroom is bij binnenkomst in het systeem reeds een grote hoeveelheid kennis aanwezig.
De mensen en middelen hebben ook energie en te verbruiken hulpmiddelen nodig om de transformaties ten uitvoer te kunnen brengen. Soms blijft daarvan iets over dat voor het systeem zelf geen waarde meer heeft, maar voor een ander systeem nog wel. Soms ook is de uitvoer hinderlijk voor anderen, bijvoorbeeld als het afval, rook of stank oplevert. Deze energie- en hulpmiddelenstroom beweegt zich veel sneller dan de mensen- en middelenstroom. Het is een hoofdstroom in het proces, bestaande uit energie en hulpmiddelen die snel het proces weer verlaten.
Als de mensen- en middelenstroom en de energie- en hulpmiddelenstroom vastgesteld zijn, is het systeem op hoofdlijnen ingericht. Worden er materiaal of bijv. patiënten het systeem ingevoerd, dan kan de combinatie van mensen, (hulp)middelen, energie en gegevens deze invoer transformeren tot het gewenste product/dienst in het transformatieproces. De te transformeren invoer is in het hele proces het stromende element en gaat altijd in één richting. Er zijn steeds nieuwe gegevens nodig voor mensen en middelen om een functie te vervullen: de gegevensstroom. Gegevens worden pas informatie als een mens of middel die gegevens begrijpt en op grond daarvan een besluit neemt.
De organisatie heeft een primair doel: het doel dat de organisatie moet realiseren om te kunnen blijven bestaan. Zij vervult een functie in de omgeving. Het proces dat het primaire doel realiseert, is het primaire proces. Als uitgangspunt voor de opbouw van een organisatiestructuur wordt dit primaire proces genomen. De primaire functie moet zo goed mogelijk vervuld worden, rekening houdende met en gebruikmakende van de beschikbare mensen en middelen. In het primaire proces moeten allerlei functies worden vervuld, waarvoor taken of activiteiten moeten worden verricht. Die laatste worden verricht door mensen en/of middelen.
Bij de realisatie van het primaire doel van de organisatie onderscheiden we drie soorten processen:
De bewerkende processen: deze dragen direct bij aan de invoer, aan de transformaties tijdens de doorvoer en aan de uitvoer.
De ondersteunende processen: zij verzorgen de mensen- en middelenstromen en het in stand houden daarvan.
De regelende processen: deze moeten niet alleen de activiteiten in de bewerkende processen onderling op elkaar afstemmen, maar zij moeten ook de ondersteunende processen afstemmen op de bewerkende processen en bovendien alle interne processen afstemmen op de omgeving.
Voorbeeld: in een ziekenhuis zijn de bewerkende processen o.a. het werk van de artsen en verpleegkundigen. De ondersteunende processen zijn bijv. de administratie, de onderhoudsdienst, de afdelingen Inkoop en Personeel en Organisatie. De regelende processen zijn de afdeling Planning, het werk van de afdelingshoofden, enz.
Als het primaire proces is vastgesteld, kan dit onderverdeeld worden in de functies die in dat proces vervuld moeten worden. Er wordt dus ingezoomd op het systeem. De functies in zo’n proces veranderen in de loop van de tijd weinig, in tegenstelling tot de taken en activiteiten. Het begrip (sub)systeem houdt in dat er een grens is die het (sub)systeem scheidt van zijn omgeving. Die systeemgrens houdt een discontinuïteit in. De discontinuïteit vormt op de (sub)systeemgrens een verandering in technologie, plaats, tijd of een combinatie daarvan. Dit geldt voor alle processen in een (sub)systeem.
Een andere logische reden voor het kiezen van een systeemgrens kan zijn dat er ergens in het proces een controle moet worden uitgevoerd.
Het is, afhankelijk van de probleemstelling, zinvol (sub)systemen te kiezen die een min of meer zelfstandig deel vormen. Maar die keuze hoeft niet overeen te komen met de op dat ogenblik in de organisatie bestaande indeling in afdelingen. Het is wel van belang de grenzen duidelijk aan te geven, anders kan dat tot verwarring bij en meningsverschillen met andere mensen leiden.
Een (sub)systeem houdt zijn elementen zinvol bijeen en handhaaft zijn grenzen door het bestaan van regelende processen. Regelende processen zijn te verdelen in:
Intern geregelde processen;
Grensregelende processen.
Intern geregelde processen maken gebruik van voorwaarts- of terugkoppeling. De intern geregelde processen zorgen ervoor dat de doorvoer beheerst blijft verlopen. De grensregelende processen, ook wel ‘boundary control’, treden rondom en op de systeemgrenzen op en beheersen de stroom invoer- en uitvoertransacties door de grens heen. In figuur 5.1 is te zien hoe rondom de bewerkende processen (de transformaties), een grensgebied ligt waar de boundary control actief is. Deze zorgt er bijv. voor dat de invoer in een door het systeem verwerkbare vorm wordt gebracht.
Hoofdstuk 6: Het steady-statemodel voor de uitvoering van processen
Een korte terugblik op H3:
Sturen is het vaststellen van de normen waaraan het systeem moet voldoen. Deze functie reageert niet op storingen die het systeem binnenkomen.
Bij voorwaartskoppeling meten we de storing zelf, waarna we ergens in het proces ingrijpen. Die storing kan plaatsvinden in de invoer of tijdens de doorvoer, maar niet in de uitvoer. Als we de storing gemeten hebben, wordt de ingreep bepaald.
Bij terugkoppeling wordt er in de uitvoer gemeten. De situatie zoals die nu is (‘Ist-situatie) wordt vergeleken met de situatie zoals die zou moeten zijn (‘Soll’-situatie). Dat resultaat wordt vergeleken met de norm, en als het niet voldoet moet er ingegrepen worden.
Bij toevoegen van het ontbrekende wordt er niet ergens in het proces ingegrepen, maar worden de onvolwaardige producten ‘gerepareerd’.
Al deze drie regelkringen kunnen gecombineerd voorkomen. Deze regelkringen zorgen ervoor dat het proces binnen zijn systeemgrenzen beheerst blijft verlopen.
Het gaat erom ervoor te zorgen dat het bewerkende proces op beheerste wijze de behoefte blijft vervullen. Het systeem moet dus een steady state hebben.
Het steady-statemodel wordt verdeeld in drie zones. Eerst kijken we naar de grenszone aan de invoerzijde, waar het stromende element binnenkomt en eventueel bewerkingen ondergaat.
Vaak wordt de invoer van een proces aangeboden in een vorm die het bewerkende proces niet zonder meer kan verwerken. De invoer moet eerst geschikt gemaakt worden voor verwerking: codering. Als de invoer in een verwerkbare vorm is gebracht, kunnen we gaan regelen. Kwaliteit meten gebeurd in de filterfunctie, op basis van de normen die binnen het proces gesteld zijn. Een filter meet de kwaliteit van de invoer. Als de kwaliteit onvoldoende is, moet er ingegrepen worden. Dat kan op verschillende manieren: door de kwaliteit op het juiste peil te brengen, of, als dat onmogelijk is, de invoer te weigeren en uit het proces te verwijderen. Dat gebeurt via de uitlaat, in figuur 6.3 getekend als een stroom vanuit het filter het systeem uit met een druppel.
Als de kwaliteit van de invoer goed is, volgt controle op de kwantiteit. In figuur 6.3 wordt een kwantiteitsmeting aangegeven door een ovaaltje met ‘meting’ erin.
De volgende functie uit figuur 6.3 is de bufferfunctie: deze slaat de invoer op. De opslag moet geregeld gecontroleerd worden op kwaliteit, want deze kan verouderen.
De buffer kan vol raken. Dan is het noodzakelijk om aan de invoerzijde ook een veiligheidsfunctie in te bouwen, om de overloop van de buffer op te vangen. Dit kan bijv. opslag elders zijn of werk uitbesteden. In figuur 6.3 is die functie getekend met een uitstroom naar de omgeving, omdat je het teveel binnen maar ook buiten het proces kunt opvangen.
Dit alles speelt zich af vóór het eigenlijke transformatieproces begint.
Er kunnen ook regelprocessen in de doorvoer en aan de uitvoerzijde plaatsvinden. In figuur 6.4 staat het transformatieproces met de interne regelprocessen en de functies in de grenszone aan de uitvoerzijde getekend.
De transformatiefunctie zet de invoer om in de gewenste uitvoer. Nadat de invoer getransformeerd is in de uitvoer, moet ook daar gecontroleerd worden of de juiste aantallen wel uit het proces komen en of het product wel de juiste kwaliteit heeft. Deze metingen liggen achter het transformatieproces, maar nog wel binnen het systeem en niet in de grenszone. Eerst moet er weer op kwaliteit gecontroleerd worden en dat gebeurt in de filterfunctie uitvoer. Als de uitvoer kwalitatief onvoldoende is, kan die weer uit het proces verwijderd worden door middel van de uitlaat. Ook kan er ter plekke gerepareerd worden. Dat is het toevoegen van het ontbrekende. Soms moet het product weer door het gehele of gedeeltelijke bewerkende proces, in figuur 6.4 aangegeven met een terugvoerleiding. Een terugvoerleiding voert het kwalitatief onjuiste product terug door het gehele of een deel van het bewerkende proces.
In figuur 6.4 is ook de grenszone aan de uitvoerzijde getekend. Het kan nodig zijn de uitvoer op te slaan totdat hij aan de omgeving kan worden geleverd. Daarvoor is weer een bufferfunctie uitvoer getekend. Ook hier kan het zijn dat de buffer te vol raakt en er een veiligheidsfunctie uitvoer nodig is om het teveel op te vangen. Ten slotte kan het zijn dat het resultaat van het bewerkende proces niet meteen geschikt is voor opname in de omgeving. Dan kan er alsnog een aanpassing nodig zijn. Decoderen is het geschikt maken van de uitvoer voor ontvangst in de omgeving.
Om het bewerkende proces goed te laten functioneren, zijn meestal verscheidende ondersteunende processen nodig. Dit kunnen processen zijn om de invoer te transporteren, om de mensen en middelen in te voeren, om het proces in stand te houden, om de mensen en middelen te verbeteren, om hulpmaterialen of energie toe te voeren, enz. Deze ondersteunende processen kunnen geheel binnen het systeem liggen, maar ook buiten de systeemgrenzen. In het laatste geval kunnen er op de systeemgrenzen weer allerlei coderings- en grensregelingsproblemen optreden (zie ook figuur 6.6).
Het systeem dat we bestuderen vervult een behoefte in de omgeving. Het vervullen van die behoefte is het doel van de organisatie. De omgeving stelt eisen aan dat doel, en die komen als normen het systeem binnen. De functie die de normen vaststelt waaraan het interne proces moet voldoen heet de initiërende functie. Deze functie ligt dus binnen het systeem in de grenszone, zie figuur 6.5.
Normen stellen heeft alleen zin als er ook regelmatig gemeten en geëvalueerd wordt of die normen nog wel juist zijn. Een norm is in de praktijk een tijdelijke maatstaf. Veranderingen in de behoeften van de omgeving en veranderingen in het systeem zelf kunnen de reden zijn voor een wijziging van de norm. De evaluerende functie toetst op grond van een meting of de uitvoer van het systeem nog aan de gestelde normen voldoet. Zo niet, dan meldt zij dit aan de initiërende functie. De evaluerende functie krijgt signalen vanuit de omgeving. De initiërende functie stelt nieuwe normen op en geeft die door aan de filterfuncties, de vergelijkingsfunctie, de transformatiefunctie en de evaluerende functie. Zie ook figuur 6.5.
Ook het proces van normen stellen en evalueren is dus een regelkring met als twee belangrijkste functies de initiërende en evaluerende functie.
De laatste meting in de uitvoer in figuur 6.5 is een meting voor de evaluerende functie, die het resultaat van het proces in de omgeving, bij de klant, meet. Deze regelkring werkt op langere termijn. Er mag dus nooit zomaar in de dagelijkse gang van zaken van het proces ingegrepen worden. De regelkringen voorwaarts- en terugkoppeling op het bewerkende proces doen de metingen van dag tot dag en zijn alleen bedoeld om ter plekke in het proces in te grijpen als een storing zich voordoet, maar daarmee worden de normen niet gewijzigd.
In een grote organisatie kunnen we, als we uitzoomen, meer volgtijdelijke systemen, een keten van systemen zien.
Een steady-statemodel is een model van een systeemtoestand met een volledig bepaald gedrag, die is ontstaan wanneer het gedrag van het systeem repeteerbaar is in de tijd en wanneer dat gedrag in de ene tijdsperiode gelijksoortig is aan dat in de andere tijdsperiode. Figuur 6.6 geeft het steady-statemodel weer. Er moet goed uit elkaar gehouden worden of het om een materie- of informatiestroom gaat.
Het model dat getekend is in figuur 6.6 is universeel: het is onafhankelijk van de inhoud van het transformatieproces voor welke soort invoer dan ook. Het is een in principe leeg model en kan op allerlei soorten processen worden toegepast. Het model is een basismodel. Dat betekent dat de daar getekende functies niet altijd in werkelijkheid voor hoeven te komen.
Het steady-statemodel geldt voor ieder bewerkend systeem, klein of groot. Bij complexe systemen wordt eerst het systeem volledig als black box bekeken. Daarna kan er ingezoomd worden. Ieder subsysteem op zichzelf kunnen we weer als een systeem zien, dat eerst als black box benaderd wordt om eventueel daar ook weer een steady-statemodel van te tekenen. Dan wordt de maanreisbenadering toegepast. In wezen geldt dat voor iedere functie in het steady-statemodel, als we een aggregatiestratum inzoomen, opnieuw datzelfde steady-statemodel: het droste-effect. Door in te zoomen treffen we op elk aggregatiestratum weer hetzelfde aan. Er bestaat op deze manier een hiërarchie van systemen. Uit figuur 6.7 blijkt dat deze subsystemen achter elkaar (in serie) of parallel kunnen liggen.
Alle functies die hiervoor besproken zijn en die in het steady-statemodel in figuur 6.6 staan, kunnen op een rij gezet worden. Zie hiervoor blz. 157 en 158.
Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>
Contributions: posts
Spotlight: topics
Online access to all summaries, study notes en practice exams
- Check out: Register with JoHo WorldSupporter: starting page (EN)
- Check out: Aanmelden bij JoHo WorldSupporter - startpagina (NL)
How and why use WorldSupporter.org for your summaries and study assistance?
- For free use of many of the summaries and study aids provided or collected by your fellow students.
- For free use of many of the lecture and study group notes, exam questions and practice questions.
- For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
- For compiling your own materials and contributions with relevant study help
- For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.
Using and finding summaries, notes and practice exams on JoHo WorldSupporter
There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.
- Use the summaries home pages for your study or field of study
- Use the check and search pages for summaries and study aids by field of study, subject or faculty
- Use and follow your (study) organization
- by using your own student organization as a starting point, and continuing to follow it, easily discover which study materials are relevant to you
- this option is only available through partner organizations
- Check or follow authors or other WorldSupporters
- Use the menu above each page to go to the main theme pages for summaries
- Theme pages can be found for international studies as well as Dutch studies
Do you want to share your summaries with JoHo WorldSupporter and its visitors?
- Check out: Why and how to add a WorldSupporter contributions
- JoHo members: JoHo WorldSupporter members can share content directly and have access to all content: Join JoHo and become a JoHo member
- Non-members: When you are not a member you do not have full access, but if you want to share your own content with others you can fill out the contact form
Quicklinks to fields of study for summaries and study assistance
Main summaries home pages:
- Business organization and economics - Communication and marketing -International relations and international organizations - IT, logistics and technology - Law and administration - Leisure, sports and tourism - Medicine and healthcare - Pedagogy and educational science - Psychology and behavioral sciences - Society, culture and arts - Statistics and research
- Summaries: the best textbooks summarized per field of study
- Summaries: the best scientific articles summarized per field of study
- Summaries: the best definitions, descriptions and lists of terms per field of study
- Exams: home page for exams, exam tips and study tips
Main study fields:
Business organization and economics, Communication & Marketing, Education & Pedagogic Sciences, International Relations and Politics, IT and Technology, Law & Administration, Medicine & Health Care, Nature & Environmental Sciences, Psychology and behavioral sciences, Science and academic Research, Society & Culture, Tourisme & Sports
Main study fields NL:
- Studies: Bedrijfskunde en economie, communicatie en marketing, geneeskunde en gezondheidszorg, internationale studies en betrekkingen, IT, Logistiek en technologie, maatschappij, cultuur en sociale studies, pedagogiek en onderwijskunde, rechten en bestuurskunde, statistiek, onderzoeksmethoden en SPSS
- Studie instellingen: Maatschappij: ISW in Utrecht - Pedagogiek: Groningen, Leiden , Utrecht - Psychologie: Amsterdam, Leiden, Nijmegen, Twente, Utrecht - Recht: Arresten en jurisprudentie, Groningen, Leiden
JoHo can really use your help! Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world
4312 |
Add new contribution