Van Cel tot Molecuul: Samenvattingen, uittreksels, aantekeningen en oefenvragen - UL
- 2854 reads
Chemisch gezien hebben eiwitten een ingewikkelde structuur en erg verfijnde functies. Eiwitten zijn opgebouwd uit een lange keten aminozuren. Er zijn 20 verschillende aminozuren. Aminozuren zijn met elkaar verbonden door middel van een covalente peptidebinding. Eiwitten worden daarom ook wel polypeptiden genoemd. Elk type eiwit heeft zijn eigen aminozuurvolgorde, die bepalend is voor de uiteindelijke vorm van het eiwit.
Een polypeptide bestaat uit een keten van aaneengekoppelde aminozuren. De specifieke zijgroepen van de aminozuren steken uit de keten. Deze zijgroepen kunnen hydrofiel of hydrofoob zijn, negatief of positief geladen of bijvoorbeeld chemisch reactief zijn. De zijgroep bepaalt de specifieke eigenschappen van het aminozuur.
Lange peptideketens zijn erg flexibel en kunnen dus op veel manieren vouwen. De gevouwen structuur van een eiwit wordt in stand gehouden door niet-covalente interacties tussen verschillende delen van de peptideketen (waterstofbruggen, elektrostatische krachten en vanderwaalskrachten). Ook hydrofobe interacties spelen een rol. De hydrofobe zijgroepen van aminozuren draaien zo ver mogelijk van de waterige omgeving af en dus het eiwit in. De hydrofiele zijgroepen draaien juist naar de waterige omgeving toe en vormen waterstofbruggen met water of met elkaar. Elk eiwit creëert op deze manier een eigen driedimensionale structuur. De niet-covalente bindingen zijn over het algemeen zwak, maar door de combinatie van vele niet-covalente bindingen kan toch een stabiele structuur ontstaan.
De driedimensionale structuur van een eiwit wordt dus bepaald door zijn aminozuurvolgorde. Als laatste heeft ook de energietoestand van het eiwit invloed op de conformatie van dat eiwit. Een eiwit zal in die vorm gevouwen worden waarbij de vrije energie het laagst is.
Het denatureren van een eiwit betreft het verkeerd opgevouwen zijn van dat eiwit. Renaturatie betekent dat het eiwit spontaan de juiste conformatie terugkrijgt. Als eiwitten zich verkeerd opvouwen, kan dat schadelijk zijn voor weefsels en cellen.
In een cel komen bepaalde eiwitten, moleculaire chaperones, voor. Moleculaire chaperones helpen gedeeltelijk gevouwen eiwitten verder te vouwen tot de meest gunstige driedimensionale structuur. Zij maken het proces efficiënter en betrouwbaarder.
Wanneer de driedimensionale structuur van verschillende eiwitten met elkaar vergeleken wordt, valt het op dat er twee vouwpatronen vaak voorkomen, de α-helix en de β-sheet. Deze vouwpatronen ontstaan door waterstofbruggen tussen de N-H en C=O groepen van de ruggengraat (zijgroepen zijn hierbij niet betrokken). α-helices zijn rechtsdraaiende of linksdraaiende spiraalvormige eiwitketens (zie afbeelding), waarbij waterstofbruggen tussen aminozuren zorgen voor de spiraalvorm.
Elke NH-groep van de peptideketen is verbonden met de C=O-groep van dezelfde keten, maar dan 4 aminozuren verder. Er zijn totaal 3,6 aminozuren per draai.
De zijgroepen van de aminozuren komen aan de buitenkant van de helix te liggen. Soms draaien meerdere helices in elkaar, er ontstaat dan een stevige structuur. Dit wordt een coiled-coil genoemd.
β-sheets zijn vlakken, bestaande uit ketens van aminozuren die bij elkaar worden gehouden door waterstofbruggen (de bruggen vinden dus plaats tussen de naast elkaar gelegen delen van de keten). De hoofdketen is hierbij vrijwel gestrekt en de zijgroepen bevinden zich zowel aan de binnen- als aan de buitenkant. Er bestaan parallelle β sheets en antiparallelle β-sheets. In de afbeelding is (A) antiparallel en (B) parallel.
De primaire structuur van een eiwit is de aminozuurvolgorde. De secundaire structuur zijn de α-helices en β-sheets. De tertiaire structuur is de driedimensionale vorm van een hele polypeptideketen. Hierbij horen zowel α-helices, als β-sheets, als andere gevormde structuren. Wanneer er meerdere polypeptideketens samen een eiwitcomplex vormen, wordt dit de quaternaire structuur genoemd.
Het eiwitdomein omvat een deel van een polypeptideketen die zich in een stabiele en compacte structuur kan vouwen. Zo’n eiwitdomein heeft vaak een bepaalde functie. Zogenaamde intrinsically disordered sequences zijn stukken polypeptide zonder eiwitdomein, die erg flexibel zijn.
In theorie zijn er oneindig veel verschillende polypeptideketens mogelijk, maar deze komen niet allemaal in cellen voor. Een polypeptide keten die n aminozuren lang is, heeft 20n mogelijke aminozuurvolgordes. Toch zal maar een klein deel van de mogelijke polypeptideketens vormen tot een stabiele driedimensionale structuur. De eiwitten die niet functioneel of stabiel waren, zijn door natuurlijke selectie geëlimineerd.
Eiwitfamilies zijn groepen eiwitten die qua aminozuurvolgorde en driedimensionale structuur op elkaar lijken. Kleine verschillen in structuur zorgen er echter voor dat verschillende ‘familieleden’ verschillende functies hebben.
Sommige eiwitten zijn opgebouwd uit meerdere polypeptideketens. Elke polypeptideketen in zo’n eiwit wordt een subunit genoemd. De interactie tussen de subunits vindt plaats door non-covalente bindingen. Ook kunnen verschillende eiwitten aan elkaar gekoppeld worden. Virussen en ribosomen zijn bijvoorbeeld opgebouwd uit één of meerdere soorten eiwitten plus RNA of DNA-moleculen.
Globular proteins zijn eiwitten waarvan de polypeptideketen zich opvouwt, zodat er een compact geheel (soort van bal) ontstaat met een onregelmatig oppervlak. Fibrous proteins zijn eiwitten met een relatief simpele, langwerpige driedimensionale structuur. Deze bevinden zich vaak buiten de cel, waar zij een extracellulaire matrix vormen, die cellen van weefsels aan elkaar helpt te binden. Eiwitten die zich extracellulair bevinden, binden hun polypeptideketens vaak door covalente kruisbindingen aan elkaar. Een zwavelbrug is een voorbeeld van zo’n binding.
Een molecuul dat aan een eiwit gebonden is noemen we een ligand. De binding tussen ligand en eiwit bestaat uit non-covalente bindingen. Om de binding zo sterk mogelijk te maken, moet het contactoppervlak tussen ligand en eiwit zo groot mogelijk zijn. De ligand en het eiwit moeten dus precies op elkaar passen. De plaats waar de ligand en het eiwit binden, wordt de bindingsite genoemd.
Enzymen zijn eiwitten die de chemische reacties die in de cel plaatsvinden katalyseren. Een ligand wordt bij een enzym ook wel substraat genoemd. Deze substraten zetten de enzymen om in een specifiek product. Enzymen versnellen reacties door het verlagen de activeringsenergie. Zij worden hierbij zelf niet verbruikt of veranderd. Elk enzym is specifiek voor een bepaald substraat en een bepaalde reactie, maar ook voor een bepaald product.
Enzymen kunnen op drie manieren reacties mogelijk maken:
Door de ladingsverdelingen in het substraat te veranderen;
Door in het substraat bepaalde hoeken te veranderen;
Door substraten die met elkaar reageren op een specifieke manier bij elkaar te brengen.
Eiwitten als hemoglobine kunnen moleculen die geen eiwit zijn, gebruiken om functioneel te zijn. Deze kleine niet-eiwitmoleculen worden dan een onderdeel van het eiwit. Een antilichaam in het bloed jaagt op antigenen. Door specifieke binding van een antilichaam aan een antigeen kunnen deze schadelijke antigenen onwerkzaam worden gemaakt. De werking van verscheidene medicijnen berust in het blokkeren van enzymen.
De expressie van eiwitten kan op verschillende niveaus geregeld worden. Ten eerste kan de cel beheren welk eiwit wordt gesynthetiseerd door te reguleren welke genen tot expressie komen. Ook kan de cel reguleren hoe sterk een eiwit wordt afgebroken. Door deze twee processen kan de cel de concentratie van een bepaald eiwit reguleren. Daarnaast kan de expressie van een eiwit geregeld worden door het eiwit aan of uit te zetten. Het aan- of uitzetten van een eiwit kan op verschillende manieren.
De activiteit van eiwitten wordt vaak geregeld door de binding van andere moleculen. Hiervoor heeft het enzym twee bindingssites: één voor het substraat en één voor het regulerende molecuul. Binding van een regulerend molecuul zorgt voor een vormverandering van het eiwit, waardoor het actief of juist inactief wordt. De meeste enzymen zijn allosterische eiwitten. Een allosterisch eiwit is een eiwit dat twee of meer verschillende vormen aan kan nemen, waardoor de activiteit van het eiwit kan verschillen.
Een van de meest voorkomende vormen van regulatie van eiwitactiviteit door binding van moleculen die geen substraten zijn, is feedback inhibition: een enzym in het begin van een reactieketen wordt geremd door een product aan het eind van de reactieketen (negatieve terugkoppeling). De binding van de inhibitor aan het enzym veroorzaakt een vormverandering van het actieve centrum, waardoor substraatmoleculen niet meer kunnen binden. Het enzym staat ‘uit’. Er kan ook een positieve terugkoppeling plaatsvinden. Hierbij wordt de enzymactiviteit gestimuleerd door een bepaald product uit de reactieketen.
Een andere manier van enzymregulatie vindt plaats door het binden of het afsplitsen van moleculen. Voorbeelden van zulke processen zijn:
Reversible protein phosphorylation: door het binden/afsplitsen van een fosfaatgroep aan de zijketen van het eiwit, wordt het eiwit inactief/actief gemaakt, doordat een fosfaatgroep negatief geladen is en koppeling/afsplitsing kan zorgen voor een grote conformatieverandering binnen het eiwit. Door fosforylering kunnen eiwitten zich echter ook aan elkaar binden via zogenaamde docking sites. Dit proces van fosforylering gebeurt door omzetting van ATP in ADP. Kinase koppelt een fosfaatgroep aan het eiwit, fosfatase koppelt een fosforgroep van het eiwit af. Fosforylering is een vorm van covalente modificatie.
GTP-bindende eiwitten: door het binden van GTP door deze eiwitten wordt het eiwit ‘aangezet’. Door de hydrolyse van GTP ontstaat GDP (difosfaat) en een losse fosfaatgroep. Als GDP aan deze eiwitten is gekoppeld, staat het eiwit ‘uit’. Door GDP van het eiwit te vervangen door GTP wordt het eiwit weer actief gemaakt.
Motor proteins zijn eiwitten wiens hoofdfunctie het in beweging brengen van andere moleculen is. Een eiwit kan zich voortbewegen door een serie van vormveranderingen te ondergaan. Wanneer deze veranderingen niet gereguleerd worden zal het eiwit willekeurig bewegen. Om het eiwit vooruit te laten bewegen moet er voor gezorgd worden dat het eiwit niet achteruit kan. Dit gebeurt door de vormveranderingen van het eiwit te koppelen aan de hydrolyse van een ATP-molecuul dat aan het eiwit gebonden is. Om achteruit te kunnen bewegen, zal het eiwit nu een fosfaatgroep moeten binden aan ADP op weer ATP te vormen. Gezien de energie die deze handeling kost, is dit erg onwaarschijnlijk. Protein machines bestaan uit een samenstel van meerdere allosterische eiwitten. Zij kunnen complexe cellulaire functies efficiënt uitoefenen als gevolg van gecoördineerde vormveranderingen.
Voor veel eiwitten is hun enige doel om te binden aan een ander molecuul. Voor andere eiwitten is deze binding slechts een eerste stap voor hun uiteindelijke functionering. Dat is het geval bij enzymen, een belangrijke eiwitklasse. Zij voeren bijna alle noodzakelijke chemische transformaties uit in een cel. Enzymen binden aan een of meer liganden (substraten) en zetten ze om in chemisch gemodificeerde producten. Dit doen ze talloze keren met hoge snelheid, terwijl ze zelf niet veranderen. Er zijn verschillende typen enzymen, deze worden geclassificeerd volgens de chemische reactie die ze katalyseren (zie tabel 4-1, blz. 144).
Een enzym waarvan de werking uitgebreid bestudeerd is, is een lysozym. Een lysozym katalyseert een hydrolysereactie. Hierdoor wordt de binding tussen twee suikergroepen verbroken. Om de reactie te laten verlopen, moet de activeringsenergie overschreden worden. Dan komt het enzym in het spel. Net als andere enzymen heeft een lysozym een bindingsplaats, een active site. Als een polysacharide bindt aan de actieve site, wordt de binding tussen suiker-suiker verbroken. Het lysozym doet drie dingen om de activeringsenergie terug te brengen:
Het zorgt ervoor dat een van de twee suikergroepen van vorm verandert, waardoor de verbinding makkelijker verbroken wordt.
Het brengt de binding die verbroken moet worden in de buurt van twee aminozuren met zure zijketens, die reageren met de verstoorde suikergroep waardoor de binding breekt.
Het zorgt ervoor dat een watermolecuul reageert met het C1 koolstofatoom van het substraat, waardoor de hydrolyse gecompleteerd wordt.
Andere enzymen gebruiken gelijkwaardige mechanismes om de activeringsenergie te verlagen en zo reacties te versnellen De meeste medicijnen werken door de activiteit van een bepaald enzym te blokkeren.
De katalyserende activiteiten van enzymen worden vaak gereguleerd door andere moleculen. Duizenden enzymen werken vaak gelijktijdig en in het zelfde gebied. Het is een heel complex systeem en daarom zijn er uitgebreide controles vereist om alle reacties op de juiste wijze te reguleren. Het meest gebruikte controlemechanisme treedt op wanneer een ander molecuul dan het substraat aan de bindingsplaats van het enzym bindt. Als een bepaald product zich begint op te stapelen, bindt het product zelf vaak aan het enzym waardoor verdere omzetting van substraat gelimiteerd wordt Dit wordt feedback inhibition genoemd. Dat is een vorm van negatieve regulering. Er is ook positieve regulering, dan wordt de enzymactiviteit juist gestimuleerd door een ander molecuul.
Een enzym heeft minstens twee verschillende bindingsplaatsen: een voor het substraat en een andere voor regulerende moleculen. Deze twee bindingsplaatsen kunnen op een bepaalde manier communiceren, zodat de katalyserende activiteit beïnvloed kan worden door regulerende moleculen. Dit gebeurt doordat de structuur van een enzym verandert, zodat bijvoorbeeld de bindingsplaats voor het substraat minder toegankelijk is. De meeste eiwitten zijn allosterisch. Dat wil zeggen dat ze twee of meer verschillende conformaties aan kunnen nemen.
Eukaryote cellen gebruiken vooral een methode om eiwitactiviteit te reguleren waarbij fosfaatgroepen binden aan de zijgroep van het aminozuur van het eiwit. De fosfaatgroepen dragen twee negatief ladingen, hierdoor kan er een grote conformationele verandering ontstaan. Dit zorgt weer voor een verandering van liganden aan het eiwit oppervlak. Zo verandert de eiwit activiteit; deze wordt geïnactiveerd. Het eiwit kan weer worden geactiveerd door enzymen. Zie Figure 4-40 op pagina 153. Deze omkeerbare eiwitfosforylatie reguleert de activiteit van veel verschillende eiwitten. Deze fosfaatgroep komt van een gehydrolyseerd ATP-molecuul; de reactie kost dus energie.
Individuele cellen in multicellulaire organismen moeten hun omgeving kunnen aanvoelen en daarmee kunnen communiceren. Als een signaal gedurende de weg die het aflegt, wordt omgezet (bijvoorbeeld geluid in radiogolven), wordt dit proces signaaltransductie genoemd. Bij communicatie tussen cellen produceert de ene cel meestal een signaalmolecuul dat wordt gedetecteerd door de andere cel, de targetcel. De meeste cellen kunnen zowel signalen verzenden als ontvangen. Het ontvangen gebeurt via speciale receptoreiwitten.
In multicellulaire organismen is de meest gebruikte manier om te communiceren in het lichaam het uitzenden van een signaal. De signaalmolculen kunnen eiwitten, peptides, aminozuren, nucleotiden, steroiden, vetzuren of zelfs gassen zijn. Dit gebeurt door secretie in de bloedsomloop. De signaalmoleculen heten dan hormonen en de producerende cellen worden endocriene cellen genoemd. Daarnaast is er ook paracriene signalering. Een signaalmolecuul diffundeert dan lokaal door een extracellulaire vloeistof en blijft dan dus in de buurt van de producerende cel. Sommige cellen reageren op de moleculen die ze zelf uitscheiden, dit wordt autocrien genoemd. Een derde vorm van celcommunicatie gaat via neuronen. Zo kunnen signalen over lange afstanden worden doorgegeven. Dit gaat via elektrische signalen, specifiek tussen bepaalde cellen, axonen. De overgang van de ene zenuwcel naar de andere verloopt via een neurotransmitter, een chemisch signaal. Tot slot is er een vorm waarbij cellen direct fysiek contact maken via signaalmoleculen in het plasmamembraan van de ene cel tegen de receptoreiwitten in de andere cel. Dat gebeurt bijvoorbeeld als naburige cellen elkaar stimuleren om te specialiseren.
Een cel kan alleen reageren op een signaal als het daarvoor de juiste receptor heeft. Een receptor is normaal gesproken actief voor maar één signaaltype. Een signaalmolecuul kan het gedrag van een cel op vele manieren veranderen. Vanaf de receptor wordt een signaal de cel ingeleid via intracellulaire signaalmoleculen. Het hangt van deze moleculen af wat een signaal in een cel op gang zet. Een cel kan snel of langzaam reageren op een bepaald signaal. Dat hangt ervan af wat er moet gebeuren wanneer het signaal ontvangen wordt.
Bij extracellulaire signaalmoleculen kan er onderscheid gemaakt worden tussen twee klassen. De eerste en grootste klasse bestaat uit moleculen die te groot of te hydrofiel zijn om door het plasmamembraan van de targetcel heen te gaan. Zij moeten hun boodschap dus via receptoren doorgeven. De tweede klasse bestaat uit moleculen die wel klein of hydrofoob genoeg zijn, deze gaan door het plasmamembraan heen en activeren daar intracellulaire enzymen of binden aan intracellulaire receptoreiwitten. Een belangrijk type signaalmoleculen dat afhankelijk is van intracellulaire receptoren is de steroïde hormonen.
Er zijn ook bepaalde opgeloste gassen die direct het plasmamembraan kunnen passeren. Zo kunnen ze heel snel binnen in de cel de activiteit van specifieke eiwitten reguleren.
Onder signaaltransductie wordt het proces verstaan waarbij een signaal overgebracht wordt. Hierbij kan de aard van het signaal veranderen. Een signaalcel produceert signaalmoleculen die door de doelcel gedetecteerd worden. Doelcellen bezitten receptoren die de signaalmoleculen herkennen en er op een signaalspecifieke manier op reageren.
Signaaltransductie begint wanneer een receptor een extracellulair signaal ontvangt en deze omzet naar een signaal binnen de cel.
Er zijn vier manieren waarop communicatie tussen cellen gerealiseerd wordt.
Endocrien: hierbij wordt de communicatie geregeld door signaalmoleculen die door het hele lichaam gaan. Deze signaalmoleculen worden in de bloedbaan uitgescheiden en heten hormonen. De cellen die hormonen produceren worden heel toepasselijk endocriene cellen genoemd.
Paracrien: hierbij verspreiden signaalmoleculen zich in de extracellulaire omgeving, waarbij ze zich niet ver verwijderen van de signaalcel. Deze stoffen heten local mediators. Soms reageren signaalcellen op hun eigen local mediators. Dit verschijnsel heet autocriene signalering.
Neuronaal: hierbij brengen zenuwcellen (neuronen) signalen over. Deze neuronen kunnen zeer lang zijn. De overdracht van het signaal vindt echter plaats over een kleine afstand. Het uiteinde van een uitloper van een neuron produceert een extracellulair signaalmolecuul, een zogenaamde neurotransmitter. Dit signaalmolecuul bindt zich aan een receptor van de doelcel en activeert deze daarmee.
Contactafhankelijk: hierbij is de afstand van de overdracht het kleinst. Er worden geen moleculen via secretie uitgescheiden, maar de cellen maken direct contact met elkaar. De signaalmoleculen bevinden zich in het plasmamembraan van de signaalcel en de receptoren bevinden zich in het plasmamembraan van de doelcel.
Er komen vele verschillende signaalmoleculen voor en elke cel moet hier selectief op reageren. Negeren van bepaalde signaalstoffen en reageren op andere leidt tot de gespecialiseerde functies van cellen. Een cel is alleen gevoelig voor signalen waarvoor hij een receptor heeft, en kan zo dus op bepaalde signalen wel, en op bepaalde signalen niet reageren.
Een signaal dat de cel binnenkomt via signaaltransductie, wordt via de receptor overgebracht op intracellulaire signaalmoleculen. Deze intracellulaire signaalmoleculen zetten effectoren aan tot activiteit. De effectoren beïnvloeden het gedrag van de cel. De intracellulaire communicatie en effectoren zijn bij verschillend gespecialiseerde cellen anders. Hierdoor kunnen verschillende type cellen op een andere manier reageren op hetzelfde extracellulaire signaal.
De reactie van een cel op een extracellulair signaal kan snel of langzaam zijn. De reactie is snel als er in de cel eiwitten geactiveerd moeten worden die zich reeds in een niet-actieve vorm in de cel bevinden. Deze moeten slechts geactiveerd worden. De reactie is langzaam als er eiwitten geactiveerd moeten worden die zich niet in de cel bevinden. Deze moeten eerst gesynthetiseerd worden. Hier gaat genexpressie aan vooraf, wat extra tijd kost.
Er zijn twee soorten extracellulaire signaalmoleculen.
De ene soort bestaat uit moleculen die te groot of te hydrofiel zijn om door het plasmamembraan van de doelcel te kunnen diffunderen. Deze moleculen geven hun signaal af aan de cel via receptoren in het plasmamembraan.
De andere soort bestaat uit moleculen die klein of hydrofiel genoeg zijn om door het plasmamembraan te kunnen diffunderen. Binnen de cel activeren deze moleculen enzymen of binden zich aan intracellulaire receptoren die de genexpressie reguleren.
Een belangrijke groep signaalmoleculen die door het plasmamembraan kunnen diffunderen zijn de steroïden, die tot de hormonen behoren. Een andere belangrijke groep van deze signaalmoleculen zijn de thyroïden (ook hormonen). Steroïden en thyroïden diffunderen door het celmembraan en binden aan intracellulaire receptoren. Deze bevinden zich zowel in het cytosol als in de kern. Zowel de receptoren in het cytosol als de receptoren in de kern worden nucleaire receptoren genoemd, omdat ze de transcriptie kunnen reguleren. De receptoren veranderen van vorm nadat ze een binding zijn aangegaan met het signaalmolecuul. Hierdoor wordt het eiwit geactiveerd en zorgt het ervoor dat bepaalde genen wel of niet tot uiting komen. Elk hormoon bindt aan een ander type receptor en reguleert daarom specifieke genen.
Sommige opgeloste gassen kunnen door het plasmamembraan heen diffunderen en zo direct invloed uitoefenen op de activiteit van intracellulaire eiwitten. Een voorbeeld hiervan is het gas stikstofmonoxide (NO). Dit wordt door de endotheelcellen in de bloedvaten geproduceerd en komt vrij na prikkeling van de endotheelcellen door zenuwuiteinden. In de doelcellen gaat NO een binding aan met het enzym guanylyl cyclase en activeert dit. Dit enzym stimuleert de omzetting van GTP in cyclisch GMP. Cyclisch GMP is een intracellulair signaalmolecuul dat een schakel vormt in de keten van reacties binnen de cel.
Het grootste gedeelte van de signaalmoleculen kan echter niet door het membraan heen diffunderen. Deze moleculen binden aan membraanreceptoren van de targetcel. De receptoren geven na binding het signaal in de cel af door middel van intracellulaire signalen. De uiteindelijke reactie van een cel op een extracellulair signaal heet de respons.
Intracellulaire signaalmoleculen kunnen een of meer van de volgende vier functies hebben:
Het doorgeven van een signaal binnen de cel.
Het versterken van een signaal, zodat een klein aantal extracellulaire signalen kan leiden tot een groot intracellulair respons. Dit heet amplificatie.
Het ontvangen van signalen van meerdere signaalmoleculen en deze integreren.
Het signaal doorsturen naar verschillende signaalmoleculen of effectoren, waardoor het signaal meerdere effecten heeft.
Veel van de intracellulaire signaalmoleculen hebben de functie van een moleculaire schakelaar. Het ontvangen van een signaalmolecuul laat het wisselen van een inactieve naar actieve vorm. Als deze eiwitten door een signaal geactiveerd zijn, kunnen ze andere eiwitten activeren. Vervolgens blijven ze actief totdat een andere proces de eiwitten weer inactief maakt. De meeste eiwitten worden in- of uitgeschakeld door middel van fosforylering. Aan het eiwit kan een fosfaatgroep gebonden worden door het eiwit kinase. Door het eiwit fosfatase wordt deze fosfaatgroep weer losgekoppeld.
Een andere belangrijke groep moleculaire schakelaars zijn de GTP-gebonden eiwitten. Deze wisselen tussen een geactiveerde en niet-geactiveerde staat onder invloed van een binding met ofwel GTP, ofwel GDP. Een actieve staat wordt veroorzaakt door een binding met GTP, een inactieve staat door een binding met GDP. Wanneer deze eiwitten geactiveerd zijn kunnen ze zelf de binding met GTP verbreken door zichzelf te hydrolyseren. Deze eiwitten bezitten dus GTPase-activiteit.
Er zijn twee soorten GTP-bindende eiwitten die meedoen aan intracellulaire signaalpathways. De eerste soort omvat de zogenaamde G-eiwitten, waar verderop meer over te lezen is. De tweede soort omvat de monomerische GTPases. De verwisseling van GDP voor GTP door deze eiwitten wordt geholpen door de zogenaamde guanine nucleotide exchange factors (GEFs), en de GTPase-activating proteins (GAPs) zorgen ervoor dat de hydrolysering van GTP kan plaatsvinden.
Receptoren binden extracellulaire signalen en geven het signaal door in de cel door middel van intracellulaire signaalmoleculen. Er zijn drie soorten receptoren die zich op het celmembraan bevinden:
De ionkanaalgekoppelde receptoren;
De G-eiwitgekoppelde receptoren;
De enzymgekoppelde receptoren.
De ionkanaalgekoppelde receptoren laten een stroom van ionen de cel in of uitgaan via het plasmamembraan, waardoor de membraanpotentiaal verandert en er een elektrische stroom ontstaat. Ionkanaalgekoppelde eiwitten zijn verantwoordelijk voor de snelle overdracht van signalen bij synapsen in het zenuwstelsel. Door middel van signaaltransductie veranderen ze een chemisch signaal (via een neurotransmitter) dat de buitenkant van een doelcel bereikt heeft, in een elektrisch signaal. Dit elektrische signaal houdt een verandering in de spanning over het plasmamembraan van de doelcel in. Wanneer de neurotransmitter een binding aangaat met de receptor, verandert de receptor van vorm, waardoor een ionkanaal in het plasmamembraan zich vaker in de geopende, of juist gesloten conformatie bevindt. Dankzij de elektrische lading gaan ionen de cel in of uit waardoor de membraanpotentiaal verandert. Deze verandering kan een impuls veroorzaken of kan het voor andere neurotransmitters moeilijker of makkelijker maken om een impuls te veroorzaken.
De extracellulaire messengers zijn in te delen in 2 hoofdgroepen:
de grotere en hydrofiele die niet door het celmembraan heen kunnen diffunderen, dit is de grootste groep;
de kleine hydrofobe (oftewel lipofiele) die wel door het celmembraan heen kunnen diffunderen.
Van de laatste groep is nitric oxide (NO) de belangrijkste. Dit is met name een paracriene agens. Doordat het namelijk een halfwaarde tijd heeft van 5-10 sec moet het snel reageren. Endotheelcellen in de bloedvatwand laten NO vrij als respons op stimulering door zenuwuiteinden. NO diffundeert naar naburige spiercellen (bijvoorbeeld spiercellen in de bloedvatwand), waar het zorgt voor de relaxatie van de spier. De werking van NO in nitrocglycerine wordt al meer dan 100 jaar gebruikt als medicijn om de hartvaten te laten verwijden bij een hartinfarct. Zenuwcellen gebruiken NO ook om naburige cellen te waarschuwen, bijvoorbeeld bij de erectie van de penis. In een cel bindt NO aan het enzym guanylyl cyclase, wat de formatie van cyclisch GMP van de nucleotide GTP stimuleert. Cyclisch GMP is ook weer een signaal voor een ander molecuul als volgende stap in de signaaltransductie. Viagra grijpt in op de moleculen die de afbraak van cyclisch GMP regelen, vermindert hiermee deze afbraak en verlengt zo de werking van NO. Cyclisch GMP lijkt in zijn structuur en functie veel op cyclisch AMP, wat een grote rol speelt als intracellulair messenger molecule.
Naast NO kunnen ook de steroïde hormonen (cortisol, estradiol, testosteron, thyroxine en andere thyreoide hormonen) door het membraan diffunderen om vervolgens aan de nucleus of intracellulaire receptoren te binden. Hierna gaat het eiwit een vormverandering aan die de activatie of remming van de transcriptie van bepaalde genen regelt. De hormonen binden aan slechts één receptor, en deze receptoren slechts aan bepaalde genen. Steroïde hormonen vervullen een belangrijke functie die te zien is wanneer testosteron niet goed functioneert. Mensen die als man zijn geboren, met een XY chromosoom, maar geen testosteron receptor hebben, zullen zich uiteindelijk als vrouw ontwikkelen doordat testosteron zijn werk niet kan doen.
Tegenover deze hormonen en NO staan de moleculen die met een receptor op het plasmamembraan in reactie gaan. Deze receptoren zijn onder te verdelen in:
ion-channel coupled receptors
G-protein-linked receptorsWat doen
enzyme-linked receptors
De respons van een ion-channel coupled receptor bestaat uit een stroom van ionen de cel in, die zo de elektrische lading van een cel veranderen. Die van een G-protein-linked receptor bestaat uit de vorming van een membraan-gebonden eiwit dat ergens anders op het plasmamembraan weer meerdere reacties teweeg brengt. Enzyme-linked receptors reageren of zelf als enzym, of synthetiseren een enzym waarbij talloze responsen kunnen ontstaan.
G-eiwitgekoppelde receptoren binden een groot aantal verschillende signaalmoleculen en hebben vele verschillende functies. Ondank deze verscheidenheid heeft iedere GPCR ongeveer eenzelfde structuur. De receptor bestaat uit een polypeptideketen die zeven keer door de dubbele lipidelaag van het plasmamembraan heen gaat. Wanneer een extracellulair signaalmolecuul aan de receptor bindt, verandert deze van vorm, waardoor deze een G-eiwit dat aan de receptor gekoppeld zit, activeert. Een G-eiwit is gelegen aan de onderkant van het membraan en bestaat uit drie eenheden: een α-, ß-, en een γ-eenheid. In de inactieve staat is aan de α-eenheid een GDP-molecuul gebonden. Wanneer de receptor een G-eiwit activeert, verandert de affiniteit van de α-eenheid voor GDP. GDP wordt losgekoppeld en deze wordt door een GTP-molecuul vervangen. Vervolgens splitst het G-eiwit zich vaak en ontstaat er een α-subeenheid en een ßγ-complex. Deze zijn dan beide geactiveerd en kunnen interactie aangaan met doeleiwitten.
De tijd waarin de eenheden geactiveerd zijn hangt af van de α-subeenheid. Deze kan zichzelf uitschakelen volgens intrinsic GTP-hydrolizing, waardoor de α-eenheid zijn GTP hydrolyseert tot GDP en zo inactief wordt, en de eenheden weer gekoppeld worden. Vervolgens kan het G-eiwit weer geactiveerd worden door een volgend extracellulair signaal. De eiwitten waar het G-eiwit invloed op heeft, zijn ofwel enzymen, ofwel ionkanalen.
De twee enzymen waar G-eiwitten meestal invloed op uitoefenen, zijn adenylyl cyclase en fosfolipase C. Deze enzymen zijn beide verantwoordelijk voor de productie van kleine intracellulaire signaalmoleculen. Adenylyl cyclase is verantwoordelijk voor de productie van cyclisch AMP (cAMP), en fosfolipase C is verantwoordelijk voor de productie van inositol trifosfaat en diacylglycerol. Deze kleine intracellulaire signaalmoleculen worden ook wel second messengers genoemd. First messengers zijn de extracellulaire signaalmoleculen die door receptoren in het plasmamembraan worden herkend.
De α-eenheid van een geactiveerd G-eiwit activeert in veel gevallen het enzym adenylyl cyclase. Omdat het G-eiwit adenylyl cyclase stimuleert, wordt dit eiwit Gs genoemd. Geactiveerd adenyl cyclase stimuleert de productie van cyclisch AMP. Hierbij wordt ATP dat zich in de cel bevindt omgezet in cyclisch AMP. Cyclisch AMP activeert op zijn beurt weer een kinase (PKA, cyclic AMP dependent protein kinase). Geactiveerd PKA katalyseert de fosforylering van bepaalde intracellulaire eiwitten, waardoor deze eiwitten geactiveerd worden. In de cel is tevens een enzym aanwezig dat cyclisch AMP omzet in normaal AMP. Dit enzym heet cyclisch AMP fosfodiesterase. cAMP wordt enorm snel door dit enzym afgebroken, waardoor de concentratie cAMP afhankelijk van extracellulaire signalen snel kan stijgen of dalen.
Sommige G-eiwitten activeren het membraangebonden eiwit fosfolipase C. Geactiveerd fosfolipase C splitst een lipidemolecuul dat onderdeel is van het plasmamembraan af. Dit molecuul is een inositol fosfolipide, een fosfolipide met een inositolsuikergroep aan de kop gebonden. Door de acties van fosfolipase C kan zo inositol 1,4,5-trifosfaat (IP3) en diacylglycerol (DAG) ontstaan.
IP3 verspreidt zich in het cytosol en DAG blijft in het plasmamembraan. IP3 verplaatst zich naar het ER en gaat daar een binding aan met Ca2+-kanalen. Deze worden geopend en Ca2+ verlaat via deze kanalen het ER en gaat het cytosol in. Hierdoor stijgt de concentratie vrije calciumionen in het cytosol sterk. Deze stijging is een signaal voor andere eiwitten.
DAG activeert een enzym dat zich van het cytosol naar het plasmamembraan verplaatst, het enzym protein kinase C (PKC). Dit eiwit heeft een binding met Ca2+ nodig om actief te worden. In actieve staat kan dit eiwit een aantal intracellulaire eiwitten fosforyleren.
Ca2+
De Ca2+-concentratie in de cel is bijzonder laag in vergelijking met de Ca2+-concentratie in de extracellulaire vloeistof en de vloeistof in het ER. Dit verschil wordt in stand gehouden door pompen die Ca2+ actief het cytosol uitpompen. Hierdoor ontstaat er een elektrochemische gradiënt voor Ca2+ over het plasmamembraan en ER-membraan. Wanneer een signaal de Ca2+-kanalen opent, stroomt Ca2+ het cytosol in. Dit veroorzaakt responsen bij bepaalde Ca2+-bindende eiwitten in het cytosol.
Een van deze eiwitten is calmoduline. Wanneer Ca2+ zich bindt aan calmoduline verandert calmoduline van vorm, waardoor het in staat is om met doeleiwitten in de cel een interactie aan te gaan. Hierdoor wordt de activiteit van deze eiwitten beïnvloed. Een belangrijke groep doeleiwitten zijn de Ca2+/calmodulin-dependent protein kinases (CaM-kinases). Deze kinases worden geactiveerd door een binding met calmoduline waaraan Ca2+ gebonden is en oefenen invloed uit op andere processen in de cel door bepaalde eiwitten te fosforyleren.
Een van de snelste reacties in het lichaam die met behulp van GPCRs plaatsvindt, is de reactie van het oog op fel licht. De details van deze reactie zijn bestudeerd bij de fotoreceptorcellen in het oog die verantwoordelijk zijn voor het zien van zwart-witte beelden bij schemerige belichting. Het licht wordt in deze cellen waargenomen door rhodopsine, een G-eiwitgekoppelde lichtreceptor.
Geactiveerd rhodopsine activeert het G-eiwit transducine. De geactiveerde α-eenheid van transducine activeert een aantal intracellulaire reacties die tot gevolg hebben dat een ionkanaal in het plasmamembraan sluit. Hierdoor verandert de spanning over het celmembraan en worden er neurotransmitters afgegeven. Dit heeft tot gevolg dat er impulsen verzonden worden naar de hersenen.
Bij deze intracellulaire reacties vindt amplificatie plaats. Deze vindt alleen plaats bij schemerlicht. Wanneer het oog blootgesteld wordt aan fel licht, past het signaalsysteem zich aan en wordt de amplificatie sterk verminderd. Dit heet adaptatie. Hierbij is sprake van negatieve feedback: een intense reactie in de fotoreceptor (door fel licht) veroorzaakt een intracellulair signaal (een verandering in Ca2+-concentratie) waardoor de enzymen die verantwoordelijk zijn voor de amplificatie van het signaal geremd worden.
Enzymgekoppelde receptoren zijn transmembraaneiwitten. In plaats van contact te maken met een G-eiwit gedragen deze receptoren zich als enzym of vormen een complex met een enzym. Ze spelen een grote rol in de regulatie van groeisignalen, differentiatie, ontwikkeling en overleving van de cel. De grootste groep enzymgekoppelde receptoren bestaat uit de RTK’s (receptor tyrosine kinase). Dit zijn receptoren die een cytoplasmatisch deel bevatten dat functioneert als een tyrosine kinase, en dus tyrosines fosforyleert
In het geval van RTK’s bestaat de receptor vaak uit twee delen. Het signaalmolecuul heeft vaak de vorm van een dimeer. Wanneer de twee delen van de receptor zich koppelen aan het signaalmolecuul en zo een dimeer vormen, worden de kinasedomeinen geactiveerd, waardoor de twee delen elkaar fosforyleren. Meestal fosforyleren zij tyrosines. De gefosforyleerde tyrosines dienen als bindingsplaats voor intracellulaire signaaleiwitten. Ook deze signaaleiwitten worden gefosforyleerd en geactiveerd of functioneren als adapter. Adapters koppelen de receptor aan andere signaalmoleculen. De RTK’s activeren met name fosfolipase C en Ras.
Ras is een GTP-bindend eiwit dat met een lipidestaart aan het plasmamembraan vastzit. Ras behoort tot de monomerische GTPases, in tegenstelling tot de eerder genoemde G-eiwitten. Ras lijkt op de α-eenheid van een G-eiwit en functioneert als een moleculaire schakelaar. Het is actief bij binding met GTP en inactief bij binding met GDP. Wanneer signaalmoleculen contact maken met Ras bindt het met GTP waardoor het geactiveerd wordt. Ras schakelt zichzelf uit door GTP te hydrolyseren naar GDP.
Ras promoot in actieve staat een fosforyleringcascade. Dit houdt in dat serine/ threonine protein kinases elkaar steeds activeren. Dit systeem bevat onder andere de zogenaamde MAP-kinale signaalmodule.Hierbij wordt het uiteindelijke MAP-kinase gefosforyleerd en geactiveerd door MAP-kinase kinase. Het MAP-kinase kinase wordt op zijn beurt weer gefosforyleerd en geactiveerd door MAP-kinase kinase kinase. MAP-kinase zelf fosforyleert verschillende effectoren, waaronder enkele transcriptie regulators. Hierdoor kan celdeling gestimuleerd worden, maar ook de overleving van de cel of de celdifferentiatie kan geregeld worden.
Een van de belangrijkste RTK-processen is die waarbij het enzym phosphoinositide 3-kinase (PI 3-kinase) betrokken is. PI 3-kinase fosforyleert inositol phospholipiden in het plasmamembraan. Gefosforyleerde inositol phospholipiden functioneren als bindingsplaats voor intracellulaire signaaleiwitten. Deze signaaleiwitten kunnen elkaar dan activeren. Een voorbeeld van een intracellulair signaaleiwit dat hier kan binden is Akt. Akt zorgt voor de groei en overleving van vele celtypen door signaaleiwitten te fosforyleren en zo inactief te maken. Akt fosforyleert bijvoorbeeld het eiwit Bad en maakt dit inactief. In actieve vorm activeert Bad apoptose. Akt voorkomt dus apoptose van cellen. Ook zorgt het PI-3-kinase-Akt signaalpathway voor celgroei door het serine/threoninekinase Tor indirect te activeren. Tor stimuleert celgroei door de eiwitsynthese te stimuleren en door de eiwitafbraak af te remmen.
Niet alle enzym-gekoppelde receptoren werken via een complex van signaalcascades. Sommige gebruiken een meer directe weg om genexpressie te reguleren. Een van deze receptoren is het receptoreiwit Notch. Notch reguleert onder andere de ontwikkeling van zenuwcellen in het fruitvliegje. De receptor zelf functioneert hier als transcriptieregulator. Notch wordt geactiveerd door het signaalmolecuul Delta dat aan een naburige cel gebonden is. De staart van Notch scheurt door binding van Delta af en transporteert naar de kern, waar het genen activeert.
De cellen van een meercellig organisme zijn onderdeel van een zeer georganiseerde structuur. Het aantal cellen in dit organisme wordt strak gereguleerd, niet alleen door de delingssnelheid in de gaten te houden, maar ook door celdood te reguleren. Wanneer cellen niet langer nodig zijn, plegen ze zelfmoord door een intracellulair dood programma te starten. Dit proces heet dan ook geprogrammeerde celdood, hoewel het vaker apoptose wordt genoemd. De hoeveelheid geprogrammeerde celdood die plaatsvindt in volwassen weefsel, en in weefsel in ontwikkeling is verbluffend.
Tijdens de ontwikkeling van het centrale zenuwstelsel bijvoorbeeld, worden meer dan de helft van de zenuwcellen die worden geproduceerd, doodgemaakt vlak nadat ze gevormd zijn.
In een gezond volwassen lichaam worden miljarden cellen in het beenmerg elk uur vermoord. Het lijkt zonde om zoveel cellen dood te laten gaan, met name omdat de meerderheid perfect gezond is als ze hun eigen dood regelen. Welke doelen dient deze massadood dan? In sommige gevallen is het duidelijk. Muizenpoten, en onze eigen handen en voeten, worden gevormd door apoptose tijdens de embryonale ontwikkeling. Ze beginnen als een soort peddelstructuur en de vingers ontstaan alleen als de tussengelegen cellen doodgaan. In andere gevallen sterven cellen wanneer de structuur die ze vormen niet langer nodig is. Wanneer een kikkervisje in een kikker verandert, sterven de cellen in de staart die niet nodig is voor de kikker. In andere gevallen helpt celdood het aantal cellen te reguleren. In al deze gevallen wordt celdood mogelijk gemaakt door apoptose. In volwassen weefsel is de balans tussen celdood en celgroei exact. Als dit niet zo zou zijn, zou het weefsel groeien of krimpen. Wanneer een gedeelte van de lever van een volwassen rat verwijderd wordt bijvoorbeeld, neemt de productie van levercellen toe om het verschil weer goed te maken.
Tegengesteld, wanneer de rat wordt behandeld met de drug phenobarbital, wat leverceldeling stimuleert, groeit het weefsel. Wanneer de phenobarbital behandeling wordt gestopt, neemt de apoptose in de lever toe totdat het orgaan zijn oorspronkelijke grootte weer heeft. Dit gebeurt binnen een week. Op deze manier wordt de lever op een constante grootte gehouden door de regulatie van dood en geboorte.
Cellen die sterven als gevolg van een acuut trauma zwellen en barsten en vloeien hun inhoud over hun omgeving uit: dit proces wordt cel necrose genoemd. Deze uitbarsting triggert potentiële schade brengende ontstekingsreacties. In tegenstelling hiermee sterft een cel die in apoptose gaat netjes, zonder zijn buren te beschadigen. Een cel in het begin van apoptose krimpt. Het cytoskelet valt uiteen, de nucleaire envelop verdwijnt en het DNA breekt op in kleine deeltjes. Het belangrijkste is echter dat het celoppervlak verandert op zo’n manier dat het ogenblikkelijk fagocyten aantrekt, met name macrofagen. Deze cellen fagocyteren de cel in apoptose voor hij de kans krijgt zijn inhoud te laten barsten. Deze snelle verwijdering van doodgaande cellen voorkomt de schade toebrengende gevolgen van cel necrose, en staat ook toe de organische componenten van de apoptotische cel te recyclen door de cel die hem verteert.
Het systeem dat verantwoordelijk is voor dit soort gecontroleerde celdood lijkt hetzelfde te zijn in alle dierlijke cellen. Apoptose wordt uitgevoerd door een familie proteases, enzymen die andere eiwitten stukknippen, die caspases heetten. De caspases worden gemaakt als inactieve voorlopers die procaspases heten, die zelf geactiveerd worden door proteolytic cleavage als respons op signalen die apoptose inleiden. De geactiveerde caspases delen, en activeren hierbij, andere leden van de familie, wat resulteert in een steeds groter wordende cascade van proteases. Ze delen ook andere eiwitten in de cel.
Eén van de caspases deelt de lamina eiwitten, die de nucleaire lamina vormen die onder de nucleaire envelop liggen. Dit zorgt de irreversibele afbraak van de nucleaire lamina. Op deze manier ontmantelt de cel zichzelf snel en schoon, en het lichaam wordt snel meegenomen en opgegeten door een andere cel. De activatie van de procaspase cascade is irreversibel wanneer hij eenmaal is begonnen, hierdoor moet dit wel goed worden gecontroleerd.
Elke cel heeft zijn eigen dood in zich liggen, inactief procaspase ligt te wachten in de cel tot het een activatie signaal krijgt. De eiwitten die deze activatie regelen zijn de Bcl-2-family eiwitten, waarbij de 2 belangrijkste Bax en Bak zijn. Deze eiwitten activeren procaspasen indirect, door de synthese van cytochrome c te regelen. Cytochrome c bindt aan bindingseiwitten, die dan een specifiek procaspase activeren. Deze geactiveerde procaspases initiëren de caspase cascades die leiden tot apoptose. Bax en bak eiwitten zijn zelf geactiveerd door andere death-promoting leden van de Bcl-2-family. Andere leden van de Bcl-2-family, inclusief Bcl-2 zelf, handelen om procaspase activiteit te onderdrukken en zo apoptose te onderdrukken. Eén manier om dat te doen is door het vermogen van Bax en Bak om vrij cytcohrome c te laten te onderdrukken. Sommige van de Bcl-2-family promoten apoptose door de activiteit van Bcl-2 en andere doodsonderdrukkende eiwitten te onderdrukken. Het intracellulaire dood programma is ook gereguleerd door signalen van andere cellen, die het death-program kunnen activeren of onderdrukken.
Traditioneel gezien zijn er vier grote weefseltypen in dierlijke cellen. Connective, epithelial, nervous en muscular weefsel, maar het grootste verschil zit tussen connective tissue en de rest. In connective tissue is de extracellulaire matrix vol en dit draagt de mechanische bagage, terwijl in ander weefsel de extracellulaire matrix leeg is. Hier liggen cellen dicht tegen elkaar aan en dragen de mechanische bagage zelf. Dierlijk connective tissue is ontzettend divers. Het kan hard en flexibel zijn, zoals de dermis op de huid, hard en bepakt, zoals bot, veerkrachtig en schok absorberend zoals kraakbeen of zacht en doorzichtig, zoals het glasvocht dat de binnenkant van het oog vult. In al deze voorbeelden is de extracellulaire matrix helemaal vol en de cellen die de matrix produceren zijn erin verspreid als rozijnen in een pudding. In al deze weefsels wordt de tensile strength, de kracht om druk en trekkrachten te weerstaan, niet door een polysaccharide als in een plant, maar door een vezelachtige eiwitstructuur, collageen geheten, geleverd. De verschillende type connective tissue danken hun specifieke karakter aan het type collageen wat ze bevatten, aan de hoeveelheid hiervan en, het belangrijkste, aan de andere moleculen die hiermee zijn verweven. Collageen wordt gevonden in alle meercellige organismen en er zijn veel verschillende soorten. Collageen is het hoofdbestanddeel van botten, pezen en huid.
Collageen beslaat 25% van de totale hoeveelheid eiwitten. Het karakteristieke uiterlijk van collageen is zijn lange, stijve driedubbele helix waarin drie collageen polypeptide kettingen zijn gewonden om een andere in een touwachtige superhelix. Deze moleculen zijn verder onder te verdelen in collageen vezels, wat dunne lange kabels zijn die samen kunnen pakken in grotere collageen vezels. Andere collageen moleculen versieren de oppervlakte van collageen vezels en verbinden deze vezels met elkaar en met andere componenten in de extracellulaire matrix. De connective-tissue cellen die de matrix vormen en bewonen bestaan uit verschillende cellen. In huid, pezen en veel andere connective tissues heten ze fibroblasten, in bot heten ze osteoblasten. Ze maken en de collageen en de andere organische componenten van de matrix aan. Bijna al deze moleculen worden intracellulair gesynthetiseerd en dan uitgescheiden op de standaard manier van exocytose. Buiten de cel gaan ze samen tot grote aggregaten.
Wanneer deze samenhang te vroeg gebeurt, worden het enorme aggregaten die de cel die de materialen aanmaakt, zou verstikken. In het geval van collageen ontwijken de cellen dit risico door collageen te secreteren in een voorloper vorm, procollagen geheten. Dit heeft peptide aan beide kanten die voorkomen dat collageen met andere vezels samen kan gaan. Een extracellulair enzym wat collagenase heet, knipt deze terminale domeinen af om samengaan toe te staan nadat de moleculen in de extracellulaire ruimte zijn gekropen. Sommige mensen hebben een genetisch defect in de collagenase, zodat hun collageen vezels niet goed samen kunnen pakken. Hierdoor hebben hun huid en andere vezels een verminderde tensile strength en is heel erg rekbaar. Cellen in weefsels moeten in staat zijn het matrix af te breken, net als het te maken. Dit is essentieel voor weefselgroei, reparatie en vernieuwing. Het is ook belangrijk waar cellen die migreren heen moeten, zoals macrofagen, dat ze door het collageen netwerk heen kunnen. Matrix proteases knippen extracellulaire eiwitten die een rol spelen in veel ziekte processen, van artritis tot de afbraak van kraakbeen in aangetaste gewrichten, tot kanker, waar ze de kanker helpen normale weefsels binnen te dringen.
Om hun functie te kunnen uitoefenen, moeten collageenvezels goed gestructureerd zijn. In de huid bijvoorbeeld zijn ze verweven in een patroon met verschillende lagen, met verschillende oriëntatie om tensile strength vanuit meerdere kanten te weerstaan. In pezen, welke spieren aan bot verbinden, zijn ze gelegen in parallelle bundels langs de grootste as waarlangs druk komt.
De connective-tissue cellen sturen deze oriëntatie gedeeltelijk door het collageen in een bepaalde richting de cel uit te laten, en gedeeltelijk door het collageen in een andere vorm te organiseren. Tijdens de ontwikkeling van het weefsel werken fibroblasten aan het collageen dat ze hebben uitgescheiden, erover kruipend en eraan trekkend, om het in lagen te krijgen en het tot kabels te laten vormen. Deze mechanische functie van fibroblasten is gedemonstreerd in een celstructuur. Wanneer fibroblasten samengaan met willekeurig georiënteerd collageen, trekken de fibroblasten aan het weefsel, draaien in collageen vanuit hun omgeving en maken het compacter. Wanneer 2 kleine stukjes embryonaal weefsel wat fibroblasten bevat geplaatst zijn in de uiterste hoek van een collageen substantie, wordt het collageen in een band van lijnen georganiseerd, wat de twee uiterste embryonale gedeeltes verbindt. De fibroblasten migreren uit het embryonale weefsel. Hiertoe beïnvloeden de fibroblasten de belijning van collageen vezels, en de collageen vezels bepalen de verdeling van de fibroblasten. Op deze manier beïnvloeden fibroblasten eenzelfde rol in de organisatie van de extracellulaire matrix van een groot gebied, in het creëren van pezen, en de sterke, bepakte lagen connective tissue wat de meeste organen omwindt.
Wanneer cellen zich op de matrix trekken en erover kruipen, moeten ze in staat zijn om zich hiermee te bevestigen. Cellen bevestigen zich niet goed aan kaal collageen. Een ander extracellulair matrix eiwit, fibronectin, is een verbindingsstuk. Een gedeelte van het molecuul bindt aan collageen en het andere gedeelte aan de cel die erover heen wil. De cel bindt aan specifieke delen in het fibronectine, door een receptor eiwit wat integrin heeft en aan het plasmamembraan vastzit. Wanneer het extracellulaire gedeelte aan fibronectine bindt, bindt het intracellulaire gedeelte aan actine filamenten. Dus, in plaats van uit het membraan te scheuren wanneer er druk is tussen de cel en de matrix, verdeelt het integrin molecuul de stress van matrix naar het cytoskelet. Spiercellen koppelen het contractiele apparaat in een soortelijke manier aan de extracellulaire matrix bij de scheiding tussen spier en pees, en stelt ze zo in staat om grote kracht te leveren, terwijl hij omlijst is door een dunne lipide dubbellaag. Integrine speelt ook een belangrijke rol in cel signalering, verbinding met de extracellulaire matrix activeert intracellulaire signalerings cascades door kinase eiwitten die samengaan met het intracellulaire einde van het integrin molecuul. Op deze manier reguleert het mechanisme dat zorgt voor verbindingen buiten de cel, ook of de cel groeit, deelt, overleeft, differentieert of deelt.
Terwijl collageen zorgt dat tensile strength weerstaan kan worden, zorgt een compleet andere groep macromoleculen in de extracellulaire matrix voor de tegengestelde functie. Hieronder valt het weerstaan van samendrukking en het dienen als ruimte opvullers. Dit zijn de proteoglycans, extracelullaire eiwitten gekoppeld aan een speciale klasse van ingewikkelde negatief polaire polysacharides, de glycosaminoglycans (GAGs). Proteoglycans zijn extreem divers van formaat, vorm en chemische lading. Veel GAG’s zijn verbonden aan één eiwit, wat op zijn beurt is gebonden aan één kant aan een andere GAG, om zo een enorm macromolecuul te creëren met een moleculair gewicht van miljoenen. In compact connective weefsel, zoals weefsel en botten, is de proportie van GAGs klein en de matrix bestaat bijna geheel uit collageen. Aan het andere uiterste, het glasvocht in het binnenste van het oog bestaat bijna geheel uit één GAG type samen met water, met een kleine hoeveelheid collageen. In het algemeen zijn GAG’s zeer hydrofiel en neigen ernaar moeilijke conformaties aan te gaan die een groot volume in verhouding tot hun massa aannemen. Ze vormen gels zelfs in kleine concentraties, hun hoeveelheid negatieve krachten trekt een wolk van stoffen aan, zoals Na+ dat osmotisch actief is en zeer grote hoeveelheden water aantrekt om in de matrix gezogen te worden. Dit zorgt voor een zwellende kracht die gebalanceerd wordt door de druk die collageen uitoefent op weefsels die tussen de proteoglycans gewoven zitten. Wanneer de matrix rijk is aan collageen en grote hoeveelheden GAGs gevangen zitten in het netwerk, zijn zowel de zwellende druk en de tegenovergestelde druk enorm. Zo’n matrix is sterk, veerkrachtig en weerbaar tegen samendrukking.
De matrix van kraakbeen wat het kniegewricht omlijnt bijvoorbeeld, heeft dit karakter. Het kan honderden kilogrammen per cm2 weerstaan. Proteoglycans voeren veel geavanceerde functies uit naast het voorzien van gehydrateerde ruimte om cellen. Ze kunnen gels van verschillende grootte maken en de dichtheid die zich als een filter gedraagt om de passering van moleculen door een extracelullair medium te regelen. Ze kunnen groeifactoren binden en genoeg eiwitten die dienen als signaal voor cellen. Ze kunnen cel migratie blokkeren, aanmoedigen of leiden door een matrix heen. Op al deze manieren beïnvloedt de matrix component het gedrag van cellen, vaak dezelfde cellen die de matrix maken, een reciproke interactie die belangrijke effecten heeft op differentiatie. Er blijft nog veel over om te leren hoe cellen het tapijt weven van de matrix moleculen en hoe de chemische berichten die ze achterlaten in hun fabriek georganiseerd zijn en handelen.
Er zijn meer dan 200 verschillende celtypes in het lichaam van een wervelkolom. Het grootste gedeelte van deze zijn georganiseerd in epitheel, ze zijn samengevoegd, zij aan zij, om multicellulaire sheets te vormen. In sommige gevallen is deze sheet meerdere cellagen dik, of stratified., zoals in de epidermis van de huid. In andere gevallen is deze laag slechts één cellaag dik, of simpel, zoals in de darm. De cellen kunnen lang zijn en een kolom bevatten, of een kubus zijn, of plat. Ze kunnen allemaal op elkaar lijken, of een mix van types zijn. Ze kunnen simpelweg handelen als beschermlaag, of kunnen complexe biochemische functies hebben. Ze kunnen gespecialiseerde producten zoals hormonen of melk of tranen maken. Ze kunnen ook voedingsstoffen absorberen zoals in de darmen. Ze kunnen signalen verwerken, zoals de fotoreceptoren in het oog, of de trilhaarcellen in het oor. Via deze en veel andere variaties, kan één standaard stamcel uiteindelijk uitgroeien tot zeer verschillende cellen met bijzondere functies.
De epitheel verdeling is zo gewoon, dat het vaak als normaal wordt beschouwd. Toch is het een verzameling van speciale functies en zijn deze gewoon tot een grote diversiteit van verschillende celtypen. Epitheel bedekt de externe oppervlakte van het lichaam en begrenst alle externe ruimtes, en ze moeten een vroege functie in de evolutie van multicellulaire organismen zijn geweest. Hun belang is duidelijk. Cellen samengevoegd in een epitheliale sheet creëren een grens die dezelfde significantie heeft als het multicellulaire organisme dat een plasmamembraan heeft voor één cel. Het houdt moleculen binnen en andere buiten. Het neemt voedingsstoffen op en exporteert afval. Het bevat receptoren voor signalen voor de omgeving en het beschermt de binnenkant van het organisme van het binnendringen van micro-organismes en het verlies van vloeistof.
Een laag epitheel heeft 2 gezichten: de apical surface is vrij en staat bloot aan lucht of een waterige vloeistof, terwijl de basal surface op ander weefsel rust, vaak connective tissue, waaraan het is verbonden. Ondersteunend aan de basale laag van het epitheel ligt een dunne harde laag extracellulaire matrix, die de basal lamina heet. Deze bestaat uit een speciaal collageen type (IV) en andere moleculen. Ze bevatten een eiwit wat laminine wordt genoemd en dit zorgt voor kanten die geschikt zijn voor adhesie van integrine in het plasmamembraan van epitheelcellen. Ze dienen als een verbinding die hetzelfde is als die van fibronectin in connective tissue. De apicale en basale kanten van een epitheel zijn chemisch verschillend, want ze laten een gepolariseerde interne structuur van de individuele epitheel cellen zien. Elke heeft een boven en een onderkant, welke andere eigenschappen heeft. Deze gepolariseerde structuur is cruciaal voor de epitheel functie.
Er zijn twee typen cellen, absorptive cells (opname voedingsstoffen) en globlet cells (slijmproductie) die beide gepolariseerd zijn. De absorptive cells importeren voedsel moleculen door hun basale oppervlakte in het onderliggende weefsel. Om dit te doen hebben ze verschillende membraan transport eiwitten nodig in hun apicale en basale membranen.
De goblet cells (slijmbekercellen) moeten ook gepolariseerd zijn, maar op een andere manier. Het Golgi apparaat, vesikels en het cytoskelet zijn allemaal asymmetrisch georganiseerd om dit te vervullen. Hoewel er veel vragen overblijven hoe deze organisatie wordt verkregen, is het duidelijk dat het afhangt van de scheidingen die epitheel cellen vormen met anderen en waarmee de basale lamina, welke op hun beurt de intracellulaire locatie van eiwitten controleren, de gepolariseerde structuur van het cytoplasma regelen.
Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>
In deze bundel zijn samenvattingen samengevoegd voor het vak Van Cel tot Molecuul voor de opleiding Geneeskunde, jaar 1 aan de Universiteit van Leiden
Heb je zelf samenvattingen en oefenmaterialen? Deel ze met je medestudenten!
There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.
Do you want to share your summaries with JoHo WorldSupporter and its visitors?
Main summaries home pages:
Main study fields:
Business organization and economics, Communication & Marketing, Education & Pedagogic Sciences, International Relations and Politics, IT and Technology, Law & Administration, Medicine & Health Care, Nature & Environmental Sciences, Psychology and behavioral sciences, Science and academic Research, Society & Culture, Tourisme & Sports
Main study fields NL:
JoHo can really use your help! Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world
2020 |
Add new contribution