What does induction mean? - Chapter 4

Preface

The first chapters deal with the fact that scientific knowledge is derived from facts, how these facts can be established and its criticisms. This chapter deals with the derivation of theory and science from those facts.   The interpretation that scientific knowledge is formed by first establishing the facts and then establishing the corresponding theory has been shown to be incorrect. In this chapter, we will explore how to interpret the concept of 'derive' into a more logical meaning instead of a temporal/physical one. It is important to determine to what extent the facts confirm the theory. The statement that theory can be derived logically from facts cannot hold. This becomes clear as we consider some basic characteristics of logical reasoning.

What does baby logic mean?

Logic is about establishing facts that should logically follow from other facts. If the premises are true, then the conclusion must also be true. This would then be a logically valid argument. If the premises are true, everything that is logically derived from it is true. The most important thing is that the reasoning is correct/valid and not whether the premises are true. All that logic can offer is that as the premises are true and the argument is valid, then the conclusion must be true. However, the question of whether or not the premises are true cannot be answered with mere logic. An argument can contain perfect logical deduction, even if it contains a false premise.

Can scientific laws be derived from facts?

An example:

Premises:

1. Iron expands when it is heated.
2. Copper expands when it is heated.
3. Steel expands when it is heated.

Conclusion:

All metals expand when heated.

This reasoning is logically invalid. It is, of course, true that all metals expand. It does not follow from the premises that metal will never shrink when heated. This is how we distinguish deductive from inductive reasoning. We speak of valid deductive reasoning when conclusions are derived from a number of facts. Inductive reasoning (which is the example above) is based on a finite number of facts, from which a general conclusion is drawn.  Inductive reasoning never contains logical validity, because inductive reasoning can never exclude that something else may have happened.

What makes an inductive proof valid?

The interpretation of facts on which science is based on can never be deductive. This event must always be inductive. The reliability of inductive reasoning requires the following conditions:

  1. A large number of observations must be made in order to form the basis of generalization;

  2. The observations must be repeated under a large number of different conditions;

  3. None of the accepted observation statements may conflict with the derived general law (one of the other observations)

Condition three is essential as it becomes the principle of induction. The principle of induction states that:

"If a large amount of Cs is observed under a wide variety of conditions, and all observed Cs have property D without exception, then each C always has property D".

Problems arise, namely:

  • In regards to statement 1: What exactly is a large quantity?

  • In regards to statement 2: What is a relevant deviation in circumstances (how many/what type of conditions must you control?)

  • In regards to statement 3: there would be hardly any scientific knowledge if we were to follow the rule that there must be no known exceptions.

What other problems with regard to inductivism are there?

Inductivism can be described as the position in which scientific knowledge is derived from observable facts of inductive reasoning. The followers of inductivism are called inductivists. There are even more problems with inductivism:

  • With inductivism, the problem of the observation requirement plays a major role. For example, in DNA research, not everyone can perceive DNA, because the potential observer needs very specific knowledge for this.

  • Testing scientific laws against theories is debatable, among other things because of the use of formulas. As a result, the measurements that provide evidence for the laws are inaccurate, however, the laws contained in formulas are accurate.

  • The validity of inductivism within itself is debatable. Namely, if we take the following premises:

    • The induction principle works in situation C

    • The induction principle works in situation D

    • Conclusion: The induction principle always works, so this reasoning is itself inductive reasoning. Circular reasoning thus arises.

Why is inductivism attractive?

Because we need the knowledge to see facts and to classify them into important and unimportant facts, we cannot clearly deduce knowledge from those facts. Since induction has a predictive value (with the aid of observation and knowledge, these predictions are plausible), it is very attractive. In general, scientific explanations and predictions can be compiled as follows:

Premises:

  • Laws and theories

  • Initial conditions

Conclusion:

  • Statements and predictions.

Access: 
Public
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Check how to use summaries on WorldSupporter.org


Online access to all summaries, study notes en practice exams

Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Starting Pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
  2. Use the menu above every page to go to one of the main starting pages
  3. Tags & Taxonomy: gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
  4. Follow authors or (study) organizations: by following individual users, authors and your study organizations you are likely to discover more relevant study materials.
  5. Search tool : 'quick & dirty'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject. The search tool is also available at the bottom of most pages

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study (main tags and taxonomy terms)

Field of study

Comments, Compliments & Kudos:

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Promotions
vacatures

JoHo kan jouw hulp goed gebruiken! Check hier de diverse studentenbanen die aansluiten bij je studie, je competenties verbeteren, je cv versterken en een bijdrage leveren aan een tolerantere wereld

Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
1637