Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 5

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Verschillende tumoren van het zenuwstelsel

Er wordt bij deze tumoren onderscheid gemaakt tussen primaire en secundaire tumoren. De primaire tumoren ontstaan vanuit de hersenen, zenuwen en omgevende structuren zelf. Bij de secundaire tumoren gaat het om de metastasen in het zenuwstelsel, waarvan de primare tumor ergens anders in het lichaam is gelegen. De primaire tumoren kennen een incidentie van ongeveer 10 per 100.000 personen en meer dan de helft hiervan is kwaadaardig.

 

Ook kan er op anatomische gronden een onderverdeling gemaakt worden tussen intrinsieke en extrinsieke tumoren. Intrinsieke tumoren zijn de tumoren die zich binnen de begrenzing van de pia mater bevinden. Het gaat hierbij dus om tumoren die zich bevinden in de grote en kleine hersenen, hersenstam, verlengde merg en ruggenmerg. Deze tumoren gaan uit van zenuwcellen, hun uitlopers, niet-neuronale ondersteunende cellen (gliacellen) en afweercellen, mesenchymale cellen (zoals in de wand van bloedvaten) en metastasen. De extrinsieke tumoren bevinden zich buiten de pia mater en gaan uit van weefsels die het zenuwstelsel omgeven zoals het bot en de hersenvliezen en vanuit de weefsels die niet tot de hersenen gerekend worden, zoals de hypofyse. Weer een andere indeling maakt onderscheid tussen tumoren van het centrale zenuwstelsel aan de ene kant en tumoren van het perifere zenuwstelsel aan de andere kant. De meest voorkomende tumoren zijn de gliomen (neuro-epitheliale tumoren), de tumoren van de perifere zenuwen (schwannomen en neurofibromen), de meningeomen en de metastasen.

 

Over de pathogenese van primaire hersentumoren is nog maar weinig bekend. Wel bestaat er een relatie tussen het ontstaan ervan en schedelbestraling. Bijna altijd treedt een hersentumor sporadisch op, dus zonder dat er directe aanwijzingen bestaan op een verhoogde kans op hersentumoren in de familie. Wel zijn er enkele erfelijk overdraagbare aandoeningen bekend waarbij er een sterk verhoogd risico op hersentumoren bestaat. Voorbeeld hiervan zijn neurofibromatosis type 1 en 2, de ziekte van Von Hippel-Lindau en het syndroom van Turcot, het syndroom van Li-Fraumeni en het syndroom van Cowden. Er bestaat geen bewijs voor een relatie tussen hersentumoren en elektromagnetische straling afkomstig van telefoons en hoogspanningsmasten.

 

Hersentumoren

Symptomen van hersentumoren kunnen, op basis van het onderliggende pathofysiologische mechanisme, worden onderverdeeld in drie groepen:

  • Stoornissen in de prikkelgeleiding van neuronaal weefsel leidend tot epilepsie.

  • Verstoring van de neuronale functie ten gevolge van compressie of aantasting van neuronaal weefsel. Dit leidt tot ischemie en neurologische uitval.

  • Verhoging van de intracraniële druk leidend tot symptomen van hoofdpijn, misselijkheid en verschillende graden van bewustzijnsdaling.

 

Intrinsieke tumoren in het hersenparenchym veroorzaken vaker epileptische verschijnselen dan extrinsieke tumoren. Een eerste epileptische aanval zonder andere neurologische verschijnselen is dan altijd een reden voor verdere diagnostiek. Zowel intrinsieke als extrinsieke tumoren zullen naarmate de grootte verder toeneemt meer compressie uitoefenen op het omliggende hersenweefsel, met als gevolg een verstoring in de microcirculatie. Hierdoor kunnen specifieke neurologische uitvalsverschijnselen optreden, sterk afhankelijk van de plaats van de tumor Mede afhankelijk van de groeisnelheid kan de groeiende tumor zorgen voor intracraniële drukverhoging. De symptomen die hierbij kunnen voorkomen zijn hoofdpijn, misselijkheid, braken en bewustzijnsdaling. Ook kan er een beeld van inklemming ontstaan. Het is echter meestal niet alleen de tumor zelf die zorgt voor de ruimte inname: compressie van het hersenweefsel geeft namelijk aanleiding tot oedeem. Ook kan de liquorstroom worden geblokkeerd, met als gevolg een ophoping van deze liquor in de erboven gelegen ruimten. Ook hierdoor kan de druk toenemen.

 

Voor het stellen van de diagnose is radiologische beeldvorming essentieel: er dient een MRI te worden gemaakt (sensitiever dan een CT). Het maken van een CT-scan kan sneller, vandaar dat dit in de praktijk vaak eerder gebeurd. Beide onderzoeken moeten worden uitgevoerd met en zonder intraveneuze toediening van een contrastmiddel. De mate van contrast in de tumor, omliggend oedeem, de lokalisatie en het aspect geven een eerste idee van de aard van het proces. Hierna moet er histopathologisch een definitieve diagnose worden gesteld. Steeds vaker wordt er ook moleculair weefselonderzoek uitgevoerd. Afhankelijk van de lokalisatie van de tumor kan het weefsel worden verkregen via tumorresectie, debulking of een biopsie.

 

Neuro-epitheliale hersentumoren

Tumoren van neuro-epitheliale oorsprong zijn de volgende:

  • Gliomen: astrocytaire, oligodendrogliale en ependymale tumoren

  • Embryonale tumoren: primaire neuro-ectodermale tumoren (PNET) van het centrale zenuwstelsel, zoals het medullablastoom

  • Zeldzame tumoren.

Hieronder zullen deze verder uitgewerkt worden.

 

Gliomen zijn de meest voorkomende primaire hersentumoren bij volwassenen. Deze tumoren ontstaan uit het gliale steunweefsel in de hersenen. Er is hier ook weer onderscheid te maken in drie groepen, afhankelijk van het oorspronkelijke type gliacel: astrocytomen, oligodendrogliomen en ependymomen.

  • Het astrocytoom is het meest voorkomende glioom en wordt in vier graden ingedeeld:

    • Het astrocytoom graad 1 kent als meest voorkomende vorm het pilocytair astrocytoom. Dit is een tumor die vooral bij kinderen voorkomt, relatief benigne is en waarbij de patiënt na volledige operatieve verwijdering als genezen wordt beschouwd.

    • De graden 2, 3 en 4 zijn diffuus infiltratieve tumoren met een oplopende mate van groeisnelheid. Hierbij is graad 2 laaggradig en zijn de graden 3 en 4 hooggradig. Ongeveer 50% van alle gliomen valt onder graad 3 en 4. Deze tumoren kunnen niet compleet verwijderd worden. Ze vertonen een sterke neiging tot migratie.

    • Binnen deze groep kan ook weer onderscheid worden gemaakt tussen primair en secundair. Het secundaire type ontstaat vanuit een laaggradig of anaplastisch astrocytoom dat maligne progressie heeft ondergaan, vaak door mutaties in het p53 of IDH1-gen. Het primaire type ontstaat echter spontaan en kent zelden mutaties in deze genen, maar juist vaak mutaties in de epidermale groeifactorreceptor.

  • Oligodendrogliomen vormen ongeveer 30% van alle gliomen. Ze tonen een diffuus infiltratieve groeiwijze en ze worden in twee graden ingedeeld: laaggradig (met een lage groeisnelheid en vaak radiologisch goed herkenbare calcificaties in de tumor) en anaplastisch (kan goed reageren op chemotherapie).

  • Ependymale tumoren zijn vrij zeldzaam bij volwassenen, maar komen wat vaker voor bij kinderen. Meestal tonen deze tumoren een relatie met de wand van het ventrikelsysteem of de canalis centralis van het ruggenmerg. Voorkeurslokalisatie bij kinderen is in de bodem van het vierde ventrikel.

 

Neurochirurgie is de eerste stap in de behandeling van gliomen. Op deze manier wordt weefsel verkregen voor histologisch onderzoek en worde klachten verminderd. In het geval van een graad 1 astrocytoom is totale resectie van de tumor voldoende. Bij diffuse gliomen van graad 2, 3 en 4 is dit echter niet mogelijk vanwege de aanwezigheid van infiltrerende tumorcellen in het omliggende hersenweefsel. Er bestaat dan ook een indicatie voor aanvullende behandeling.

Het laaggradig astrocytoom kan ook voor een conservatieve behandeling worden gekozen. De tumor strekt zich vaak uit over een groot deel van de cerebrale hemisfeer. Het klinisch beeld kan vele jaren onveranderd blijven. Er wordt dan een wait-and-scan beleid ingesteld. Wanneer de tumor maligne progressie toont, kan alsnog voor behandeling worden gekozen (chirurgie, radio- of chemotherapie)

 

Het wel of niet verrichten van een resectie van een glioom met een hoge maligniteitsgraad is vooral afhankelijk van de lokalisatie van de tumor. Vooral diepgelegen tumoren geven bij operatie veel morbiditeit, de kans op beschadiging van belangrijke hersenstructuren is groot. In deze gevallen kan de diagnose worden gesteld met behulp van een naaldbiopt. Bij een goede algemene conditie en neurologische toestand van de patiënt kan er aanvullende behandeling met radiotherapie of chemotherapie worden gegeven.

 

Adjuvante radiotherapie is geïndiceerd bij maligne gliomen van graad 3 en 4. Radiotherapie bij laaggradige gliomen is effectief bij klachten en symptomen, eerdere aanvang van de radiotherapie heeft echter geen invloed op de overleving. De precisie van radiotherapie is in de laatste jaren sterk toegenomen dankzij technologische ontwikkelingen: betere lokalisatie, hogere conformaliteit, uitrusting met beeldvormende apparatuur en de protonenbestraling.

 

Daarnaast wordt er in toenemende mate gebruik gemaakt van chemotherapie bij de behandeling van hersentumoren. Het geven van chemotherapie na de radiotherapie verbeterd de overleving. De meeste overlevingswinst wordt gevonden bij relatief jonge patiënten (<60 jaar) met een goede conditie. Bij de relatief goed chemotherapiegevoelige graad 3 gliomen wordt chemotherapie na radiotherapie gegeven. Ook bij graad 2 gliomen is er een duidelijke rol weggelegd voor chemotherapie. Verder wordt het gebruikt bij recidieven en vaak is dit de enige resterende behandelingsmogelijkheid. Het resultaat is beperkt.

 

De levensverwachting is niet erg gunstig. Het glioblastoom is een zeer kwaadaardige tumor en kent ondanks alle behandeling nog steeds een zeer slechte prognose. Met de huidige standaardbehandeling (operatieve resectie gevolg door een combinatie van radiotherapie en chemotherapie) is de mediane overleving ongeveer 15 maanden. De belangrijkste prognotische factoren zijn de conditie en leeftijd van de patiënt.

 

De prognose van een astrocytoom en oligodendroglioom graad 3 is afhankelijk van de histologie. De standaardbehandeling hierbij bestaat uit een resectie gevolg door radiotherapie en eventueel chemotherapie.

 

De prognose van de zeldzamere laaggradige gliomen is aanzienlijk gunstiger en de belangrijkste prognostische factoren hierbij zijn de grootte en histologie van de tumor en de leeftijd en neurologische conditie van de patiënt.

 

Helaas komen er bij hersentumoren vaak cognitieve problemen voor. Dit kan veroorzaakt worden door de tumor zelf, door de ermee gepaard gaande epilepsie, de medicatie tegen de epilepsie en door de behandeling van de tumor. Vooral radiotherapie is hiervoor berucht.

 

Embryonale tumoren bestaan uit beperkt gedifferentieerde en vaak kleine cellen. De tumorcellen vertonen vaak overeenkomsten met elementen in verschillende stadia van de embryogenese. Deze tumoren worden ook wel aangeduid als primitieve neuro-ectodermale tumoren (PNET), maar meestal wordt de classificatie gebruikt aan de hand van de locatie van de tumor. Zo worden dergelijke tumoren in het cerebellum medulloblastomen genoemd. Deze komen vaak voor op kinderleeftijd, zijn zeer kwaadaardig en hebben een sterke neiging zich te verspreiden via de liquor. De primaire behandeling bestaat uit chirurgie, gevolg door chemotherapie en/of radiotherapie. De prognose is mede afhankelijk van het histologische subtype. Van alle primaire hersentumoren op kinderleeftijd bestaat een derde deel uit medulloblastomen.

Onder de zeldzame tumoren vallen de tumoren van het neuronale weefsel en van neuronale cellen. Deze tumoren hebben een trage groei en een goede prognose (door complete resectie). Deze tumoren zijn waarschijnlijk zo zeldzaam doordat neuronale cellen onder normale omstandigheden niet of nauwelijks delen.

 

Tumoren van de craniale en perifere zenuwen

De tumoren die uitgaan van perifere zenuwen kunnen meestal in drie typen worden ingedeeld: schwannomen, neurofibromen en neurofibrosarcomen (malignant peripheral nerve sheath tumors).

  • Schwannomen kunnen voorkomen in alle perifere zenuwen. Ze vormen vaak een excentrisch in de zenuw gelegen en goed afgrensbare massa die de zenuw wegdrukt maar niet altijd hoeft te beknellen. Het is een goedaardige tumor die het liefst bij de nervus vestibularis zit. De tumor wordt dan ook wel een brughoektumor genoemd. Kleinere tumoren worden behandeld met een hoge-dosis stereotactische bestraling, omdat hiermee vaak een groeistilstand wordt bereikt. Grotere tumoren kunnen niet op deze manier worden behandeld en moeten operatief worden verwijderd. Bij neurofibromatose type 2 is er een sterk verhoogde kasn op schwannnomen.

  • Neurofibromen ontstaan meestal in cutane zenuwtakken en minder vaak in de grotere perifere zenuwen. Ze vormen in de zenuw vaak een fusiforme massa, waarbij de tumorcellen kriskras door de axonen doorgroeien. Ze worden vooral geassocieerd met de ziekte van Von Recklinghausen (neurofibromatose type 1). De tumoren worden neurochirurgisch verwijderd, waarbij de zenuw vaak moet worden opgeofferd.

  • Neurofibrosarcomen (MPNSTs) zijn zeer maligne tumoren, die niet altijd duidelijk zijn geassocieerd met een zenuw. Vaak gaat het om een maligne progressie van neurofibromen. MPNSTs worden nabehandeld met allerlei vormen van chemotherapie, radiotherapie en experimentele behandelingen. Curatie is echter tot op heden dikwijls niet mogelijk.

 

Meningeomen

Meningeomen zijn met 30% van de primaire intracraniële tumoren na de gliomen de meest voorkomende primaire hersentumoren. Deze tumor kent een incidentie van 2,6 per 100.000 en treedt meestal op tussen de 40 en 70 jaar. Vrouwen worden vaker op een latere leeftijd getroffen dan mannen, maar het komt wel vaker voor bij vrouwen. Dit geldt zeker wanneer de vrouw een voorgeschiedenis heeft met een mammacarcinoom. Meningeomen gaan uit van arachnoidale/meningotheliale cellen zoals voorkomend op de arachnoïdale villi. Dit verklaart meteen dat meningeomen soms intraventriculair voorkomen. De enige bekende externe risicofactor is ioniserende straling. De tumoren kunnen allerlei receptoren tot uitdrukking brengen, die zijn geassocieerd met een proliferatieve respons op steroidhormonen. Ze hebben de neiging om gedurende de zwangerschap sneller te groeien. Histologisch wordt er gekeken naar het aantal mitosen, ingroei in hersenweefsel, necrose, hoge celrijkdom en patroonloze groeiwijze. Er wordt onderscheid gemaakt in drie verschillende typen: typisch, atypisch en anaplastisch (maligne).

 

De meeste meningeomen zijn asymptomatisch en worden per toeval ontdekt. De klachten die het zou kunnen geven, bestaan uit focale of gegeneraliseerde epileptische aanvallen of langzaam progressieve neurologische uitvalsverschijnselen. Deze laatste hangen sterk samen met de lokalisatie van de tumor.

De klinische verdenking kan worden bevestigd aan de hand van een CT- of MRI-onderzoek. Hierbij is er vaak een typisch beeld zichtbaar met een scherp begrensde en homogene tumor, die een nauwe relatie kent met de dura ter plaatse. Onscherpe grenzen, veel omgevend oedeem, uitstulpingen en niet-homogene aankleuring geven aanwijzingen voor agressief gedrag.

 

Meningeomen zijn in de meerderheid van de gevallen goedaardig en studies naar het natuurlijke beloop tonen aan dat deze tumoren vaak langzaam of niet groeien. Bij asymptomatische patiënten wordt er dan ook vaak afgewacht. Hierbij wordt na een half jaar tot één jaarbeeldvormend onderzoek verricht om zo het biologische gedrag vast te leggen.

Meningeomen die leiden tot klachten, aantoonbaar groeien, infiltreren of veel omgevend hersenoedeem veroorzaken moeten worden verwijderd. Hierbij wordt er een totale resectie nagestreefd. Dit is echter niet altijd mogelijk. De resttumor kan dan aanvullend worden bestraald. Soms wordt er gekozen voor een stereotactische bestraling.

 

De prognose van goedaardige meningeomen is meestal gunstig. Radiotherapie is effectief, maar de vraag is wanneer dit is geïndiceerd.

 

Metastasen

20-40% van alle patiënten met een solide tumor ergens in het lichaam ontwikkelt een hersenmetastase.

Deze metastasen ontstaan hematogeen, maar binnen het centrale zenuwstelsel kan ook verspreiding ontstaan via de liqour. De incidentie wordt geschat op 5-8 per 100.000 inwoners per jaar.

 

Het grootste deel (70%) is afkomstig van primaire longtumoren, 15% is afkomstig van een mammacarcinoom en 10% van een melanoom. Andere tumoren die geregeld uitzaaien naar de hersenen zijn tumoren van de tractus digestivus, het niercelcarcinoom en de schildkliercarcinomen. Er kan hierbij sprake zijn van enkelvoudige metastase, maar meestal is er sprake van multipele metastasen. Bij een behoorlijk deel van de patiënten (10-25%) is de primaire tumor ten tijde van de diagnose hersenmetastase nog niet bekend. Er wordt gesproken van een solitaire hersenmetastase wanneer er bij goed aanvullend onderzoek in de rest van het lichaam geen aanwijzingen worden gevonden voor primaire tumoren.

 

De keuze van behandeling is afhankelijk van het aantal metastasen, de tumoractiviteit buiten de hersenen en de conditie en levensverwachting van de patiënt. Meer dan de helft van deze patiënten zal sterven door systemische ziekteactiviteit. Patiënten met een enkele metastase en zonder tumoractiviteit elders in het lichamen kunnen worden behandeld met een combinatie van resectie en aanvullende radiotherapie. Bij patiënten met maximaal drie hersenmetastasen kleiner dan 3,5 cm kan er ook stereotactische radiotherapie worden gegeven. Bij patiënten met meer dan drie hersenmetastasen, een slechte conditie en tumoractiviteit elders in het lichaam wordt een kort en intensief bestralingsschema aanbevolen, waarbij de gehele hersenen worden bestraald.

 

Bij patiënten met een kleincellig longcarcinoom is de kans op hersenmetastasen zeer hoog en wordt er profylactische hersenbestraling geadviseerd, indien er complete remissie is bereikt van de longtumor.

Bij de behandeling speelt radiotherapie dus een grote rol en in enkele situaties wordt er ook neurochirurgische resectie toegepast.

 

De prognose van patiënten met een hersenmetastase is vrijwel altijd erg ongunstig. De mediane overleving na bestraling is vier tot zes maanden en afhankelijk van de leeftijd, klinische conditie en de aanwezige tumoractiviteit. Alleen bij patiënten met een solitaire tumor kan resectie gevolg door radiotherapie een langer durende overleving geven van gemiddeld een jaar.

 

Spinale tumoren

De spinale tumoren worden ingedeeld op basis van lokalisatie in epiduraal, intraduraal-extramedullair en intramedullair. De meeste epidurale tumoren zijn metastasen van andere primaire tumoren in het lichaam, terwijl de intradurale tumoren vaak primair zijn. De gemiddelde incidentie varieert tussen de 0,8-2,5 per 100.000 per jaar.

Wanneer spinale tumoren zo groot worden dat ze bijna het gehele spinale kanaal vullen, ontstaat er drukverhoging binnen dit kanaal. Dit leidt tot rugpijn die erger wordt bij platliggen. Door compressie van zenuwwortels en het ruggenmerg kan een langzaam (progressieve) dwarslaesie ontstaan.

  • De intradurale, extramedullaire tumoren zijn meestal zenuwschedetumoren en meningeomen, maar ook andere typen zoals lipomen en teratomen kunnen voorkomen. De meningeomen ontstaan vanuit de arachnoidale cellen en de tumor zit vaak stevig gefixeerd aan de laterale dura. Verreweg de meeste meningeomen komen voor op thoracaal niveau. Een zenuwschedetumor heeft echter een sterke voorkeur voor de dorsale sensibele zenuwwortels en deze komen langs de gehele wervelkolom voor. De lipomen komen voort uit een ontwikkelingsstoornis.

  • Tot de intramedullaire tumoren behoren de gliomen (vooral astrocytomen en ependymomen) en de vasculaire tumoren. De astrocytomen komen vaker voor bij mannen, bij voorkeur op middelbare leeftijd. De voorkeurslokalisatie bij volwassenen is thoracaal en bij kinderen en adolescenten juist cervicaal. De spinale ependymomen ontstaan uit ependymale celresten die zijn gelegen in het filum terminale of in het centrale kanaal. Ongeveer de helft van deze tumoren ontstaat op het niveau van de cauda equina. Ze komen vaker voor bij mannen met een gemiddelde leeftijd van 40 jaar. Vaak breiden de tumoren zich uit over meerdere segmenten en daarnaast kan metastasering via de liquor optreden. Vasculaire malformaties en vaattumoren maken ongeveer 5-10% uit van alle spinale ruimte-innemende processen. Onder de vaattumoren vallen de goedaardige hemangioblastomen (50% op thoracaal niveau, leidend tot gevoelsstoornissen en radiculaire pijn) en de maligne zeer zeldzame angiosarcomen.

 

Door een of meerdere wervelbogen te verwijderen is het spinale kanaal vanaf dorsaal goed toegankelijk en kan een intraspinale tumor goed operatief worden benaderd. In principe wordt er naar gestreefd om de tumor zo compleet mogelijk chirurgisch te verwijderen. Hierbij is het veiliger om de tumor eerst uit te hollen. Na de resectie kan de neurologische functie soms bij benigne afwijkingen geheel herstellen. Postoperatieve radiotherapie lijkt alleen zinvol te zijn na een incomplete resectie van een astrocytoom. Na complete verwijdering van een meningeoom of een schwannoom is aanvullende behandeling niet meer nodig. De prognose van een maligne en hooggradig glioom is somber.

Neurologische Oncologie

Algemeen

De oncologie van het zenuwstelsel (neuro-oncologie) omvat primaire tumoren, metastasen, neveneffecten van cytostatische behandeling en radiotherapie en bepaalde paraneoplastische syndromen. Meningeomen zijn de meest voorkomende goedaardige tumoren binnen de schedel en het spinale kanaal. Van de kwaadaardige hersentumoren komt het glioom het meeste voor, met een sterk wisselende maligniteitsgraad. Gliomen van het ruggenmerg zijn echter zeldzaam. Intracraniële tumoren geven symptomen afhankelijk van de locatie waar ze zich bevinden. Er kan sprake zijn van hogere cerebrale functie-uitval, motorische uitval, sensibele uitval en hemianopsie. De uitval is langzaam progressief. Naast focale uitvalsverschijnselen ontstaan ook vaak epileptische insulten en verschijnselen door ruimte-inname door de tumor, zoals een gedaald bewustzijn, diffuse (ochtend)hoofdpijn en soms papiloedeem bij een gestoorde liquorcirculatie. Uiteindelijk ontstaan ook hersenstamafwijkingen. Extra- of intramedulaire tumoren geven symptomen als lokale rugpijn, segmentale sensibele en motorische uitval, piramidebaanstoornissen en sensibele stoornissen onder het niveau van de tumor. De symptomen beginnen vaak asymmetrisch.

 

Benigne intracraniële tumoren

Meningeomen zijn de vaakst voorkomende benigne tumoren van het centraal zenuwstelsel en zijn goed voor 15% van alle intracraniële tumoren. Ze kunnen overal uit de hersenvliezen ontstaan en ze gaan uit van de meningotheliale cellen in de arachnoïdea. Op een CT-scan of middels MRI met intraveneus contrast zie je een sterk aankleurende goed afgrensbare tumor uitgaande van de hersenvliezen. Ze gaan soms gepaard met een sterke oedeemvorming, waardoor de presentatie subacuut kan zijn bij een tumor die al jaren aanwezig is. De behandeling bestaat, waar mogelijk, primair uit een totale chirurgische excisie. Wanneer een radicale resectie niet mogelijk is, zal bij een deel van de patiënten na verloop van tijd opnieuw tumorgroei optreden. Er zijn aanwijzingen dat postoperatieve bestraling dit risico verkleint. Hypofysetumoren zijn tumoren die uitgaan van de adenohypofyse. Er kan door de ligging nabij het chiasma opticum bitemporale gezichtsuitval plaatsvinden. 80% van de tumoren zorgt daarnaast voor endocrinologische verschijnselen zoals amenorroe en galactorroe bij een prolactinoom, reuzengroei bij een groeihormoonproducerend adenoom en het syndroom van Cushing bij een corticotropine producerende tumor. Ongeveer 20% van de hypofysetumoren is niet endocrien actief. De prolactinomen kunnen sterk afnemen in grootte door middel van bromocriptine, maar bij de andere typen is een chirurgische behandeling aangewezen. Het vestibulaire schwannoom of aucusticusneuroom is een tumor uitgaande van de schwanncellen of de endoneurale fibroblasten van de N.Vestibularis. Vestibulaire schwanomen zijn soms een uiting van Neurofibromatose Type 2, maar ze kunnen ook sporadisch voorkomen. De symptomen bestaan uit gehoorverlies en oorsuizen. Tevens kunnen door uitbreiding van de tumor in de brughoek een perifere facialisparese, dysfagie en sensibiliteitsstoornissen optreden. Middels MRI is de tumor goed zichtbaar te maken. De behandeling bestaat uit stereotactische radiotherapie. Het craniofaryngioom is een tumor die ontstaat uit faryngeaal epitheel. Dit epitheel kan na de embryologische ontwikkeling achterblijven in het gedeelte van de hersenen boven het sella turcica. De symptomen zijn bij kinderen groeistoornissen en bij volwassenen seksuele functiestoornissen. De diagnose wordt gesteld na het zien van het typische beeld op de MRI: een verkalkte tumor van de hypothalamus, het chiasma opticum, of het gebied rond het 3e ventrikel. De behandeling is operatief en bij incomplete resectie volgt radiotherapie. Het hemangioblastoom is een tumor die uitgaat van bloedvaten en vaak in het cerebellum voorkomt. De symptomen zijn ataxie, nystagmus en verschijnselen behorende bij een obstructiehydocephalus door obstructie van het 4e ventrikel. De tumor is radiologisch te zien als een sterk aankleurende, vaatrijke laesie en vaak in combinatie met een cyste. Hemangioblastomen komen zowel sporadisch voor als in combinatie met andere tumoren bij de ziekte van Von Hippel-Lindau. De therapie bestaat uit chirurgie.

 

Maligne intracraniële tumoren

De vaakst voorkomende primaire maligniteiten in de hersenen zijn gliomen. Binnen deze groep vallen de frequent voorkomen astrocytomen, tumoren uitgaande van de astroglia, en de minder frequent voorkomende oligodendrogliomen, uitgaande van de oligodendroglia, mengvormen van deze twee typen (oligoastrocytomen) en de zeldzame ependymomen die uitgaan van ventrikelependym. De meest agressieve vorm van het glioom noemt men het glioblastoom. Deze kent een snelle invasieve groei, sterke oedeemvorming, necrose en vaatnieuwvorming en is dus het meest maligne type. Gliomen zijn op MRI lastig te onderscheiden van onder andere hersenmetastasen, een hersenabces of een infarct en daarom moet er voor de diagnose altijd gebiopteerd worden of resectie plaatsvinden. De behandeling bestaat uit chirurgie, meestal gevolgd door radiotherapie, chemotherapie of beide. Meestal wordt er pas met radiotherapie begonnen wanneer tumorprogressie is waargenomen. Oligodendrogliomen zijn bij beeldvormend onderzoek vaak verkalkt en kunnen worden behandeld met cytostatica. Tumoren die uitgaan van het ventrikelependym worden na resectie verder behandeld met bestraling. Bij gliomen en andere hersentumoren wordt daarnaast vaak ook symptomatische behandeling gegeven. Ze kunnen namelijk aanleiding geven tot oedeemvorming, wat in sterke mate kan bijdragen aan de klinische verschijnselen zoals hoofdpijn, neurologische uitval en epilepsie. Medullablastomen zijn tumoren die vooral bij kinderen voorkomen. Ze bevinden zich doorgaans in de vermis van het cerebellum. Het medullablastoom kan via de liquor cerebrospinalis uitzaaien naar de wervelkolom en een enkele keer ook naar het beenmerg. De intensieve behandeling bestaat naast chirurgie en radiotherapie ook uit chemotherapie. Primaire cerebrale lymfomen komen meestal voor bij immunodefficiënte patiënten. Er bevinden zich vaak multipele tumoren in het cerebrum. De standaardbehandeling is chemotherapie. Dit wordt vaak gecombineerd met radiotherapie.

 

Primaire tumoren van en nabij het ruggenmerg

Primaire tumoren van het ruggenmerg (myelum) zijn zeldzame, uiterst langzaam groeiende en laaggradige astrocytomen of ependydomen. De klachten bestaan uit lokale rugpijn, soms radiculaire pijn en neurologische uitvalsverschijnselen door invasie en compressie van de intramedullaire structuren en secundaire syringomyelie. De tumoren kunnen gezien worden op een MRIscan. De therapie bestaat uit radicale chirurgie. Hierbij kunnen ependymomen in het algemeen vaker radicaal worden verwijderd dan de astrocytomen met hun invasieve groei. Het is niet duidelijk of er postoperatieve radiotherapie moet plaatsvinden.

In het wervelkanaal buiten het ruggenmerg komen meningeomen, neurofibromen en schwannomen voor. Ze kunnen aanleiding geven tot ruggenmergcompressie en radiculaire klachten.

 

Tumoren van de perifere zenuwen

Tumoren van de perifere zenuwen zijn schwannomen en neurofibromen, uitgaande van de schwanncellen en endoneurale fibroblasten. De locatie is meestal centraal, dus binnen de schedel of het wervelkanaal. Bij patiënten met neurofibromatose type I komen multipele tumoren voor. De overgrote meerderheid van deze tumoren is goedaardig. Maligne tumoren van de perifere zenuwen zijn de zeer zeldzame neurofibrosarcomen

 

Bij twee derde van alle patiënten met een maligniteit buiten het zenuwstelsel doen zich in de loop van de ziekte neurologische verschijnselen voor. Meest voorkomend zijn hoofdpijn, rugpijn en stoornissen van het bewustzijn of de hogere cerebrale functies. De meest uiteenlopende neurologische verschijnselen kunnen zich echter voordoen. De oorzaken hiervan variëren van onschuldig tot zeer ernstig en in iets minder dan de helft van de gevallen is de oorzaak een metastase.

 

Metastasen

Metastasen komen voornamelijk voor in het cerebrum, cerebellum, de hersenstam, de thoracale en lumbale wervels en de arachnoïdale ruimten. Hersenmetastasen zijn de doodsoorzaak voor ruim 1 op de 5 kankerpatiënten. Bij ongeveer twee derde van deze patiënten hebben de hersenmetastasen geen neurologische verschijnselen gegeven. Mensen met een onbehandelde hersenmetastase leven na de diagnose nog gemiddeld één maand, behandeld loopt de overleving op tot drie à vier maanden. Het merendeel van de patiënten overlijdt niet door de hersenmetastase zelf, maar door de gevolgen van systemische metastasering. Hersenmetastasen zijn meestal afkomstig van bronchuscarcinomen, mammacarcinomen en melanomen, maar in principe kan nagenoeg elke maligniteit naar de hersenen uitzaaien. 80% van de hersenmetastasen zit in het cerebrum. 50% van de hersentumoren bestaat uit slechts één laesie. Hersenmetastasering treedt op via de bloedbaan en wordt in veel gevallen voorafgegaan door metastasen in de longen. De symptomen van hersenmetastasen zijn hetzelfde als die van primaire hersentumoren. Op een MRI zijn er goed omschreven, ronde contrastgekleurde laesies, omgeven door oedeem zichtbaar. Met MRI kan de diagnose worden bevestigd, maar wanneer er sprake is van een solitaire laesie is de differentiaal diagnose uitgebreid. Als er sprake is van vijf of meer metastasen, dan is een totale schedelbestraling de aangewezen behandeling. Hiermee neemt het tumorvolume meestal af en soms verdwijnt de afwijking zelfs geheel. Dit wordt meestal gecombineerd met een kortdurende behandeling met corticosteroïden die de oedeemvorming verminderen. Hiermee kan bij de meeste patiënten een goede palliatie worden verkregen. Wanneer er minder dan vijf kleinere metastasen aanwezig zijn en wanneer de patiënt in een redelijke conditie verkeert, dan is stereotactische bestraling van deze afwijkingen geïndiceerd. Als een patiënt één hersentumor heeft, wordt hij soms chirurgisch of stereotactisch behandeld.

Veel tumoren metastaseren naar het skelet. Epidurale (wervel)metastasen kunnen door groei richting de dura of door wervelinzakking aanleiding geven tot wortelcompressie, ruggenmergcompressie of het cauda equina syndroom. Zonder behandeling zal er doorgaans een totale dwarslaesie of een volledig caudasyndroom optreden. Symptomen zijn rugpijn, radiculaire pijn, sensibiliteitsstoornissen, motorische stoornissen en sfincterstoornissen. Bij het neurologische onderzoek moet er speciaal worden gelet op paresen, veranderingen in de spiertonus en sensibiliteitsstoornissen. Met botscintigrafie kunnen de metastasen worden aangetoond. Het effect op de structuren in het wervelkanaal kan het beste worden gevisualiseerd met MRI. De behandeling van epidurale (wervel)metastasen bij patiënten met een bekende primaire tumor bestaat uit focale radiotherapie, vaak met corticosteroïden. Soms wordt besloten tot laminectomie (het chirurgisch verwijderen van één of meer wervelbogen), bijvoorbeeld als de primaire tumor niet bekend is. Meningeale metastasen zijn meestal afkomstig van mammacarcinomen, longcarcinomen, melanomen en van hematologische maligniteiten. De uitzaaiing kan makkelijk vanuit de meningen doorgroeien in het myelum of het cerebrum. Als de meningen vol komen te zitten van metastasen, spreekt men van meningitis carcinomatosa. Hersenzenuwen en spinale wortels kunnen door de tumor worden geïnfiltreerd en door de lokalisatie in de hersenvliezen kunnen de tumorcellen tevens in de liquor terechtkomen. De symptomen zijn afhankelijk van de locatie van de metastase(n) en het klinische beeld is dan ook sterk variabel. In de hersenen gaat het vaak om hoofdpijn, cognitieve stoornissen, bewustzijnsdalingen, epileptische aanvallen en/of hersenzenuwuitval. In het wervelkanaal bestaan de klachten uit nek en/of rugpijn, radiculaire uitvalsverschijnselen en pijn en zelfs uit een compleet caudasyndroom. Beeldvorming is middels MRI en de diagnose wordt zeker gesteld door het aantonen van tumorcellen in de liquor. Bij één metastase wordt er vaak behandeld met focale radiotherapie. Het is echter gebruikelijker om intrathecale chemotherapie toe te passen. Hierbij kunnen complicaties zoals bloedingen, infecties en draindisfuncties optreden. De behandeling heeft cognitieve functiestoornissen als bijwerking, zeker in combinatie met radiotherapie van de schedel. Steeds vaker wordt er daarom ook systemische chemotherapie als behandeling gegeven

 

Tumoringroei

Longtumoren en axillaire lymfekliermetastasen van bijvoorbeeld een mammacarcinoom kunnen ingroeien in de plexus brachialis. Colon- en rectumcarcinomen, gynaecologische maligniteiten, retroperitoneale maligniteiten en lymfomen kunnen de plexus lumbosacralis ingroeien. Mensen ervaren hevige pijn in één arm of been, in combinatie met sensibiliteitsverlies, dysesthesieën en spierzwakte. Bij patiënten die al eerder in het gebied van de plexus zijn bestraald, kunnen deze verschijnselen ook passen bij een door de bestraling geïndiceerde plexopathie. Deze onderscheidt zich van een plexopathie door tumoringroei doordat pijn hierbij doorgaans niet op de voorgrond staat. De behandeling van plexusingroei is allereerst gericht op pijnbestrijding. Hierbij kan radiotherapie een belangrijke rol spelen.

 

Paraneoplastische syndromen

Hieronder worden neurologische syndromen verstaan die optreden bij patiënten met kanker en die niet het gevolg zijn van infecties, metastasen, bijwerkingen van chemotherapie en radiotherapie en deficiënties. Vaak manifesteert een paraneoplastisch syndroom zich voordat de primaire tumor is aangetoond. Kleincellige bronchuscarcinomen, mammacarcinomen, ovarium- of testiscarcinomen, hodgkinlymfomen, melanomen, thymomen en neuroblastomen kunnen paraneoplastische syndromen veroorzaken. De neurologische syndromen hebben soms te maken met kruisreacties van antilichamen tegen tumorcellen, die elementen van normale neuronen aanvallen. Een goed voorbeeld hiervan is het Eaton-Lambertsyndroom, waarbij antilichamen afwijkingen veroorzaken in de presynaptische calciumkanalen van de neuromusculaire overgang. Bij het stellen van de diagnose paraneoplastisch syndroom moet een andere oorzaak voor de verschijnselen worden uitgesloten, daarnaast kan in het serum en de liquor gezocht worden naar specifieke antilichamen. De neurologische afwijkingen kunnen soms verbeteren als de primaire tumor wordt behandeld, maar meestal is de schade irreversibel.

 

Een overzicht van de paraneoplastische syndromen

Hijdra, Koudstaal, Roos, Neurologie, Elsevier gezondheidszorg, Maarssen, 3e druk 2003, blz 221, tabel 11.4

Paraneoplastische cerebellaire degeneratie

  • Subacuut cerebellair syndroom

Paraneoplastische limbische encefalitis

  • Delier of dementiesyndroom

Paraneoplastische necrotiserende myelopathie

  • Partiële of totale dwarslaesie

Paraneoplastische aandoeningen van het perifere zenuwstelsel

  • Verschillende typen polyneuropathieën

  • Polymyositis

  • Myastheensyndroom van Eaton-Lambert

 

Neurologische behandelingscomplicaties

Systemische chemotherapeutica kunnen in de regel niet over de bloedhersenbarrière en geven daardoor meestal geen neurotoxiciteit. Deze neurotoxiciteit kan wel optreden als de cytostatica intrathecaal worden toegediend. Bij de toediening van onder andere cisplatine komt soms diffuse encefalopathie voor, met een verlaagd bewustzijn, verwardheid en epileptische insulten. De klachten verdwijnen meestal binnen enkele weken. Ook kan het polyneuropathie veroorzaken van vooral de sensibele zenuwen. Een hogere dosis zorgt voor meer klachten en de klachten verergeren na het stoppen met cytostatica nog even. Het herstel is vaak onvolledig. 5-FU kan een cerebellair syndroom veroorzaken. Radiotherapie op het cerebrum kan in de acute fase hoofdpijn, misselijkheid en sufheid als gevolg hebben. De oorzaak hiervan is waarschijnlijk een toename van vasogeen hersenoedeem. Dit kan goed worden behandeld met corticosteroïden. Binnen een paar maanden na de bestraling kan er encefalopathie optreden met langzaam progressieve focale verschijnselen. MRI toont hierbij een toename van oedeem en tekenen van demyelinisatie. Het beloop is doorgaans gunstig. Laat optredende encefalopathie kan jaren na de radiotherapie voorkomen en kan focaal zijn met neurologische uitvalsverschijnselen of diffuus met achteruitgang van cognitieve functies. Dit treedt vaker op bij patiënten die whole-brain-radiotherapy hebben ondergaan wegens hersenmetastasen. Bij focale bestraling zoals bij gliomen is het schadelijke langetermijneffect meestal gering.

 

Aanvullend onderzoek bij hersentumoren

CT is een beeldvormende techniek waarbij een bundel röntgenstralen van alle kanten door een vlak van de schedel wordt gezonden. De detector bevindt zich daarbij steeds tegenover de röntgenbuis en ontvangt de niet door het weefsel geabsorbeerde straling. Door alle metingen te combineren ontstaat een absorptiewaarde voor één pixel (een vierkantje van +/- 1mm) binnen de schedel. Alle pixels samen geven een plakje intracranieel weefsel weer. Meestal kiest men voor een transversale snederichting. De computerinstellingen zijn zo dat bot wit wordt weergegeven, de hersenen grijs en de liquor zwart. Tumoren zijn te zien op de CT als ze een abnormale dichtheid hebben, als ze structuren verdrukken, als ze veel bloedvaten gevormd hebben of als ze calcificaties bevatten. Intraveneuze contrastvloeistof kan ook toegepast worden en een bloedhersenbarrièrebeschadiging aan het licht brengen.

MRI is een techniek waarbij gebruik wordt gemaakt van de eigenschap van protonen (H+deeltjes) om als magneetjes te functioneren. In de MRI-scanner bevindt zich een sterk magnetisch veld, waar de patiënt ingelegd wordt. Alle protonen in het lichaam gaan zich nu in dezelfde richting opstellen. Vervolgens wordt een radiofrequent signaal uitgezonden, dat ervoor zorgt dat alle protonen gaan trillen. Nadat het radiofrequente signaal stopt, vallen de protonen terug in hun positie, waarbij ze een weefselspecifieke hoeveelheid energie uitzenden. Deze energie wordt gedetecteerd en er kan een T1-gewogen opname van gemaakt worden. Het signaal is hoog als waterstof gebonden is in complexe moleculen (zoals het vette myeline) en laag in ongebonden watermoleculen (bijvoorbeeld de liquor). Een T2-gewogen opname wordt gemaakt aan de hand van het uit fase raken van protonen ten opzichte van elkaar. Waterhoudend weefsel geeft nu juist een hoog signaal. MRI-scans kunnen in elke richting gemaakt worden.

Bepaalde aandoeningen zijn beter te zien op een CT-scan dan op een MRI-scan en vice versa. Zo zijn bot, maar ook plaques in de witte stof bij MS beter te zien op een CT-scan. Bij MRI wordt geen ioniserende straling gebruikt, waardoor het onderzoek als onschadelijk wordt beschouwd. Pacemakers en andere losse magnetiseerbare voorwerpen in het lichaam vormen een contra-indicatie voor MRI. Ook claustrofobie kan een probleem opleveren in een MRI-scanner.

 

Als iemand verdacht wordt van een hersentumor, maakt men een CT- of MRI-scan met en zonder contrast. De MRI is het meest sensitief van de twee, maar de specificiteit is laag. De differentiatie tussen verschillende tumoren, een abces en een hematoom is niet altijd mogelijk. Met deze technieken kunnen de tumor, het omringende oedeem, verplaatsing van intracraniële structuren en hydrocefalus zichtbaar worden gemaakt. Bij verdenking op een intra- of extramedullaire spinale tumor, doet men een MRI.

Biopsie is nodig om een histologische diagnose te stellen en het beleid te bepalen. Er kan een CT-geleid boorgat worden gemaakt, maar soms is het nodig om craniotomie of laminectomie te doen.

De screening voor een primaire tumor bij een hersenmetastase bestaat uit een lichamelijk onderzoek, een CT-thorax en een mammogram.

Liquoronderzoek kan vaak uitsluitsel geven over meningeale metastasering.

 

Behandeling van tumoren in het zenuwstelsel

Bij tumoren van het zenuwstelsel zijn de behandelingsmogelijkheden vergelijkbaar met die in de algemene oncologie.

Operatie: benigne tumoren kunnen vaak totaal verwijderd worden. Een uitzondering vormen de gliomen, deze zijn niet scherp af te grenzen van het normale weefsel. Bij gliomen neem je daarom zoveel mogelijk tumorweefsel mee. Na niet-radicale chirurgie wordt vaak radiotherapie gegeven.

Radiotherapie: er wordt op de tumor en het omliggende weefsel bestraald. Ook inwendige bestraling is soms een optie. Verschillende opties zijn dan ook focale bestraling, bestraling van de gehele schedelinhoud en stereotactische bestraling.

Chemotherapie: dit wordt gecombineerd met radiotherapie gegeven bij medullablastomen en intracerebrale lymfomen. Chemotherapie wordt ook gegeven bij recidief gliomen. De toediening kan via lumbale punctie gedaan worden.

Symptoombestrijding: zowel benigne als maligne tumoren kunnen gepaard gaan met vasogeen hersenoedeem en dit kan sterk bijdragen aan de klinische verschijnselen. Verschillende mogelijkheden van symptoombestrijding zijn corticosteroïden bij vasogeen hersenoedeem en anti-epileptica bij insulten.

 

Het centrale zenuwstelsel

De functionele eenheid van het centrale zenuwstelsel in het neuron. De rijpe neuronen zijn niet in staat om zich te delen, zodat zelfs destructie van een klein aantal neuronen, essentieel voor een specifieke functie, kan leiden tot ongeneeselijke neurologische stoornissen. De stamcellen in het brein vormen een potentieel mechanisme voor herstel na schade.

De neuronen variëren onderling in grootte en structuur binnen het zenuwstelsel en regio’s. Dit hangt samen met verschillen in de synaptische transmissie en differentiatie van de axonen en dendrieten. De mechanismen van reacties op beschadiging van de neuronen vertonen overeenkomsten met die van cellen in andere weefsels. De principiële patronen van schade aan neuronen zijn als volgt:

  • Acute neuronale schade (rode neuronen): dit verwijst naar een spectrum aan veranderingen die samengaan met acute ischemie en hypoxie of acute insulten. Het reflecteert celdood ofwel door necrose, ofwel door apoptose.

  • Subacute en chronische neuronale schade: dit verwijst naar neuronale sterfte, dat optreedt als een resultaat van progressieve ziekte. Dit wordt bijvoorbeeld gezien bij ALS. Er is hierbij verlies van cellen, vaak van enkele specifieke functioneel gerelateerde groepen neuronen. Veelal gaat het om celdood door apoptose.

  • Axonale reactie: verwijst naar de reactie in het cellichaam wat zorgt voor regeneratie van het axon. Dit wordt het beste gezien in de voorhoorncellen van het ruggenmerg wanneer deze motorneuronen worden beschadigd of doorgesneden. Er treedt verhoogde eiwitsynthese op.

  • De schade aan de neuronen kan geassocieerd zijn met veel verschillende subcellulaire veranderingen in de organellen en het cytoskelet van het neuron. Zo kunnen neuronale inclusies optreden als gevolg van veroudering of door virale infecties.

  • Er zijn daarnaast verschillende degeneratieve aandoeningen van het zenuwstelsel bekend. Sommige hiervan zijn geassocieerd met inclusies binnen het cytoplasma, terwijl andere abnormale vacuolen tonen. Kleine oligomeren zijn hierbij de kritieke mediatoren van de schade.

 

De astrocyten functioneren als metabole buffers en ontgifters binnen het brein. Daarnaast dragen ze bij aan de barrières die controle uitoefenen op de uitwisseling van macromoleculen tussen het bloed, de liquor en het brein. Wanneer de astrocyten direct worden beschadigd, kunnen ze reageren door zwelling van het cytoplasma.

In tegenstelling tot de astrocyten, nemen de oligodendrocyten en ependymen niet deel aan de actieve respons op schade in het centrale zenuwstelsel. Ze kennen een meer gelimiteerd repertoire aan functies. De oligodendrocyten omhullen de uitlopers en vormen myeline. Schade aan deze cellen leidt dan ook tot demyelinisatie. De ependymale cellen zijn epitheelcellen die zijn gelegen in de ventrikels.

Daarnaast bestaan er ook nog microglia. Dit zijn cellen afkomstig van het mesoderm en ze dienen als macrofagen in het centrale zenuwstelsel.

 

Het brein en het ruggenmerg zijn omgeven door de schedel, de wervellichamen en de dura mater. Gegeneraliseerd oedeem van het brein, een toegenomen liquor volume (hydrocefalus) en focaal geëxpandeerde massa’s kunnen leiden tot verhoging van de intracraniële druk. Afhankelijk van de mate aan drukverhoging, de snelheid van optreden van deze drukverhoging en de onderliggende laesies variëren de consequenties van lichte neurologische verschijnselen tot de dood.

Cerebraal oedeem (hersenparenchymoedeem) kent twee principiële typen:

  • Vasogeen oedeem: veroorzaakt door een verstoring in de bloed-hersenbarrière en een verhoogde vasculaire permeabiliteit. Hierdoor kan vloeistof zich verplaatsen vanuit het intravasculaire compartiment naar de intercellulaire ruimtes van het brein. Het kan zowel gelokaliseerd als gegeneraliseerd voorkomen.

  • Cytotoxisch oedeem: dit is een vermeerdering van de intracellulaire vloeistof, dat secundair is aan schade aan de neuronen, de gliacellen of het celmembraan van het endotheel. Het kan optreden bij iemand met een ischemisch of hypoxisch insult of bij metabole schade.

 

In de praktijk hebben aandoeningen die gepaard gaan met gegeneraliseerd oedeem meestal zowel elementen van vasogeen oedeem als cytotoxisch oedeem. Bij gegeneraliseerd oedeem vlakken de gyri af, vernauwen de sulci en worden de ventriculaire holten dichtgedrukt. Wanneer het brein uitzet, bestaat er de kans op herniatie.

 

De plexus choreoïdeus in het ventriculaire systeem produceert de liquor cerebrospinalis. Normaal gesproken kan dit goed circuleren. Hydrocefalus refereert naar de accumulatie van excessieve liquor in het ventriculaire systeem. Meestal is dit het gevolg van een verminderde stroming en resorptie van de liquor, slechts zelden is overproductie de oorzaak. Meer liquor in het ventrikel zorgt voor expansie van de ventrikels. Hierdoor kan de intracraniële druk toenemen.

Wanneer het volume van het brein toeneemt tot voorbij het limiet, toegestaan door compressie van venen en verplaatsing van de liquor, zal de druk in de schedel toenemen. De meest voorkomende oorzaken zijn massa effecten zoals bij oedeem, tumoren, abcessen en bloedingen. Een gevolg kan verminderde perfusie van het brein zijn, met als gevolg exacerbatie van het oedeem. Wanneer de expansie erg groot is, kan er herniatie optreden. Verschillende vormen van herniatie zijn subfalcine herniatie, transtentoriale herniatie en tonsillaire herniatie.

 

Tumoren van het centrale zenuwstelsel

De incidentie van tumoren in het centrale zenuwstelsel intracraniaal is ongeveer 10-17 per 100.000 personen en de incidentie van spinale tumoren is 1-2 per 100.000 personen. Ongeveer de helft tot driekwart van deze tumoren zijn primaire tumoren, de rest zijn metastasen. Pathologisch kan er onderscheid worden gemaakt tussen benigne en maligne, maar in de kliniek wordt dit ook nog beïnvloed door relatief unieke eigenschappen van hersentumoren. Ook de benigne tumoren kunnen namelijk levensbedreigend zijn wegens hun lokalisatie, bijvoorbeeld wanneer ze leiden tot verdrukking van de hersenstam. Zelfs bij zeer maligne tumoren is metastasering naar buiten het centrale zenuwstelsel zeldzaam. Wel kan de tumor zich gemakkelijk uitbreiden via de liquor naar hersenen en ruggenmerg. Wanneer er sprake is van een recidief tumor, dan heeft deze over het algemeen een hogere graad dan de primaire tumor. De belangrijkste klassen van tumoren zullen worden besproken.

 

Gliomen zijn de meest voorkomende benigne tumoren. Hieronder vallen de astrocytomen, de oligodendrogliomen en de ependymomen.

  • Astrocytomen: de twee belangrijke categorieën van de astrocytomen zijn de infiltrerende astrocytomen de niet-infiltrerende astrocytomen, waarvan de meest voorkomende de pilocytaire astrocytomen zijn. Deze tumoren hebben verschillende histologische kenmerken, verspreiding in het brein, een andere leeftijd van optreden en kennen een verschillende kliniek.

    1. Ongeveer 80% van de primaire hersentumoren bij volwassenen zijn infiltrerende astroctyomen. Ze komen meestal voor in de cerebrale hemisferen, maar kunnen ook optreden in het cerebellum, de hersenstam en het ruggenmerg. Het wordt meestal gevonden bij mensen tussen de 40 en 60 jaar en de meest voorkomende symptomen zijn hoofdpijn, focale neurologische uitvalsverschijnselen en insulten. Deze tumoren vertonen een spectrum aan histologische differentiatie: van diffuse astrocytomen, anaplastische astrocytomen tot glioblastomen. Dit heeft invloed op de kliniek en prognose. Verschillende genetische veranderingen correleren met de progressie van de tumoren van een lage naar een hoge graad. Dit is onderdeel van het natuurlijke beloop van de ziekte bij vele patiënten. De zeer maligne vorm (glioblastoom) komt voor in twee klinische settings: als nieuwe laesie bij oudere patiënten (primair glioblastoom) en bij jongere patiënten een voorgeschiedenis van een laaggradig astrocytoom (secundair glioblastoom). Deze beide kennen verschillende mutaties, die leiden tot een verstoring in dezelfde pathways. Hierdoor worden de groei en overleving van de tumorcellen gestimuleerd. De presenterende symptomen bij een infiltrerend astrocytoom hangen deels af van de lokalisatie van de tumor en de groeisnelheid. De prognose van patiënten met maligne glioblastomen is erg somber, ondanks alle behandelingen. Goed gedifferentieerde diffuse astrocytomen echter kunnen lang statisch blijven of slechts langzame progressie vertonen. Hierbij is de gemiddelde overleving van de patiënten veel langer.

    2. Pilocytaire astrocytomen: deze worden van de andere typen onderscheiden door pathologische kenmerken en hun relatief goedaardige gedrag. Ze komen typisch voor bij kinderen en jonge volwassenen. Ze komen meestal voor in het cerebellum, maar kunnen ook op andere plaatsen voorkomen: 3e ventrikel, optische zenuwen en cerebrale hemisferen. Vaak gaat het om cysteuze tumoren. Wanneer ze solide zijn, kunnen ze goed omgrensd zijn en minder vaak zijn deze infiltratief. Necrose en mitosen zijn zeldzaam. De tumoren groeien erg langzaam en kunnen in het cerebellum worden behandeld middels resectie. Het kan zowel sporadisch voorkomen als bij NF1.

    3. Pleomorfe xanthoastrocytomen: dit is een tumor die meestal voorkomt in de temporale lob bij kinderen en jongvolwassenen, die een voorgeschiedenis hebben met insulten. Het gaat meestal om een laaggradige tumor, die bestaat uit neoplastische en bizarre astrocyten, die soms veel vet bevatten.

    4. Hersenstam gliomen: dit is een klinische subgroep van de astrocytomen en komt vooral voor bij mensen rond de 20 jaar. In deze groep maken deze tumoren ongeveer 20% van de primaire hersentumoren uit.

  • Oligodendrogliomen omvatten 5-15% van alle gliomen en komen het meeste voor bij mensen rond de 50-60 jaar. Patiënten kunnen een voorgeschiedenis hebben van meerdere jaren van neurologische klachten. Vaak gaat het hierbij om insulten. De afwijkingen worden het meeste gevonden in de cerebrale hemisferen en kennen een voorkeur voor de witte stof. Het zijn goed omgrensde en gelatineuze grijze massa’s, meestal met cysten, focale bloedingen en calcificaties. Calcificatie komt in ongeveer 90% van de gevallen voor. De onderliggende moleculaire abnormaliteiten en de histologie kunnen onderscheid maken tussen astrocytomen en oligodendrogliomen. Deze moleculaire veranderingen kunnen een implicatie vormen voor de effectiviteit van behandeling. Over het algemeen hebben patiënten met een oligodendroglioom een betere prognose dan patiënten met een astrocytoom. Wanneer er sprake is van een anaplastische tumor, is de prognose slechter.

  • (anaplastische) oligoastrocytomen zijn neoplasmata die bestaan uit verschillende gebieden van astrocytomen en oligodendrocytomen.

  • Ependymomen komen het meeste voor langs het ventriculaire systeem. Deze is namelijk bekleed met ependym. Ook komen ze voor in het spinale kanaal. Bij patiënten tot 20 jaar komen deze tumoren het meeste voor rond het vierde ventrikel en vormen ze 5-10% van alle primaire hersentumoren. Bij ouderen is een dergelijke tumor meestal gelokaliseerd in het ruggenmerg. Tumoren op deze plek zijn vaak gerelateerd aan neurofibromatosis type 2 (NF2). De ependymomen in de fossa posterior worden meestal manifest door secundaire hydrocefalus door progressieve obstructie van het vierde ventrikel. Deze tumoren kennen de slechtste overleving. De klinische uitkomst van spinale en compleet verwijderde supratentoriale ependymomen is beter. Daarnaast kunnen er ook verschillende andere tumoren voorkomen die continuïteit hebben met het ependym. Met uitzondering met de zeldzame carcinomen van de plexus choreoïdus, gaat het hierbij om benigne of laaggradige afwijkingen. De lokalisatie kan echter een probleem vormen. Voorbeelden hiervan zijn de subependymomen, de papillomen van de plexus choreoïdus en de colloïde cysten van het derde ventrikel. Deze kunnen leiden tot een hydrocefalus.

 

Neuronale tumoren

De meest voorkomende tumor van het zenuwstelsel dat rijpe neuronen bevat, is het ganglioglioom. De meeste van deze tumoren groeien langzaam, maar de gliale component kan anaplastisch worden. De progressie kan dan snel zijn. Laesies die bestaat uit componenten van gliacellen en neuronen presenteren zich meestal door insulten. Deze kunnen worden gecontroleerd door operatieve behandeling.

 

Dysembryoplastische neuroepitheliale tumoren zijn zeldzame laaggradige tumoren die voorkomen op kinderleeftijd en zich meestal presenteren met insulten. Na operatieve resectie hebben deze tumoren een relatief goede prognose.

 

Centrale neurocytomen zijn typisch laaggradige neuronale neoplasmata die worden gevonden in het ventriculaire systeem.

 

Slecht gedifferentieerde neoplasmata

Sommige tumoren tonen slechts weinig of geen gelijkenis met rijpe cellen van het zenuwstelsel. Daarom worden deze omschreven als slecht gedifferentieerd of embryonaal. Meest voorkomend is het medullablastoom. Deze tumor komt voornamelijk bij kinderen voor (20% van de hersentumoren bij kinderen) en exclusief in het cerebellum. Neuronale en gliale markers kunnen tot expressie komen, maar meestal is de tumor grotendeels ongedifferentieerd. Bij kinderen zijn deze tumoren gelokaliseerd in de middellijn van het cerebellum, bij ouderen juist meer lateraal. Door snelle groei kan de flow van liquor worden geblokkeerd, leidend tot een hydrocefalus. Er kunnen mutaties in verschillende genen worden gevonden. De tumor is zeer maligne en de prognose van onbehandelde patiënten is somber. Deze tumoren zijn echter erg gevoelig voor radiotherapie. Door een combinatie van chirurgie en bestraling kan de kans op overleving sterk worden verbeterd. Tumoren met een gelijke histologie en een slechte differentiatie kunnen ook worden gevonden in het cerebrum. Deze afwijkingen staan bekend als supratentoriale primitieve neuro-ectodermale tumoren.

 

Atypische teratoide/rhabdoide tumoren zijn zeer maligne tumoren bij jonge kinderen die optreden in de fossa posterior en de supratentoriale compartimenten. Bijna alle tumoren worden gevonden bij kinderen jonger dan 5 jaar en de meeste patiënten hebben na het stellen van diagnose nog slechts minder dan een jaar te leven. Karakteristiek is de aanwezigheid van rhabdoidcellen. Het zijn grote afwijkingen met een neiging zich te verspreiden over het oppervlak van het brein.

 

Andere tumoren van het parenchym

  • Primaire lymfomen zijn de meest voorkomende neoplasmata van het zenuwstelsel bij immuungecomprimiteerde personen. Het is meestal multifocaal aanwezig in het parenchym. De meeste zijn van B-cel origine. De cellen in bijna alle lymfomen zijn latent geïnfecteerd met het Epstein-Barr virus. Het zijn agressieve tumoren met een slechte respons op chemotherapie (slechter dan bij perifere lymfomen). Secundaire lymfomen (metastasen) komen zelden voor. Intravasculaire lymfomen komen voor in de hersenen, samen met afwijkingen in andere gebieden van het lichaam. Het kan leiden tot wijdverspreide microscopische infarcten.

  • Primaire tumoren van de geslachtscellen komen voor op de middellijn van het brein. Het zijn tumoren die voorkomen bij jonge patiënten: 90% treedt op binnen de eerste 20 levensjaren. De bron van deze geslachtscellen binnen de hersenen is niet bekend: ze kunnen naar het zenuwstelsel migreren of uitgaan van cellen die over zijn gebleven na de ontwikkeling. De tumoren tonen veel overeenkomsten met de tumoren in de gonaden. Ook kan het gaan om metastasen.

  • Tumoren van de epifyse bestaan uit pineocyten die kenmerken bevatten van neuronale differentiatie. Er bestaan zowel goed gedifferentieerde laesies (pineocytomen, vaker bij volwassenen) als hooggradige afwijkingen (pineoblastomen, vaker bij kinderen).

 

De meningeomen zijn voornamelijk goedaardige tumoren die optreden bij volwassenen. Ze ontstaan vanuit de meningotheliale cellen van het arachnoïd en vaak zijn ze aangrenzend aan de dura mater. Radiotherapie vormt een belangrijke risicofactor. De meeste meningeomen hebben een relatief laag risico op recidivering of agressieve groei. Er bestaan echter ook atypische en anaplastische meningeomen, die gepaard gaan met een hogere groeisnelheid en meer kans op een recidief. De meeste kunnen gemakkelijk worden gescheiden van het brein, maar sommige zullen het weefsel infiltreren. Deze tumoren komen vaker voor bij patiënten met neurofibromatosis type 2. Het zijn meestal langzaam groeiende afwijkingen die gepaard gaan met vage niet gelokaliseerde symptomen of met focale afwijkingen door compressie. Vaak brengen ze receptoren voor progesteron tot expressie, waardoor ze sneller groeien tijdens de zwangerschap.

 

Metastasen (meestal carcinomen) vormen ongeveer een kwart tot de helft van alle intracraniële tumoren. Meestal komen deze metastasen voor bij primaire tumoren in de longen, mammae, huid (melanomen), nieren en de tractus gastro-intestinalis. Ook in de meningen worden vaak metastasen waargenomen. Soms is een hersenmetastase de eerste manifestatie van de ziekte. Meningeale carcinomatosis wordt voornamelijk gezien bij primaire carcinomen van de longen en mammae.

Naast directe en gelokaliseerde effecten kunnen er paraneoplastische syndromen optreden. Het belangrijkste onderliggende mechanisme is de ontwikkeling van een immuunrespons tegen tumorantigenen, die een kruisreactie aangaat met antigenen die voorkomen in het centrale of perifere zenuwstelsel. Voorbeelden van dergelijke syndromen zijn limbische encefalitis, oogbewegingsstoornissen en subacute cerebellaire degeneratie. Ook het perifere zenuwstelsel kan zijn aangedaan. Voorbeelden hierbij zijn subacute sensorische neuropathie en het syndroom van Lambert-Eaton myasthenia.

 

Perifere tumoren

Deze tumoren ontstaan vanuit de cellen van de perifere zenuwen, zoals de Schwanncellen, fibroblasten en perineurale cellen. Dergelijke tumoren kunnen voorkomen in de dura mater en langs de perifere zenuwen, doordat er een omschakeling plaatsvindt van myelinisatie door oligodendrocyten (centraal) en door Schwanncellen (perifeer).

  • De benigne tumoren die ontstaan vanuit de Schwanncellen heten Schwannomen en deze leiden tot symptomen door lokale compressie van de betrokken zenuw en aanliggende structuren (zoals ruggenmerg en hersenstam). Ze komen voor bij NF2, maar kunnen ook sporadisch optreden. Maligne ontaarding is erg zeldzaam, maar een lokaal recidief kan volgen na incomplete resectie.

  • Neurofibromen kunnen voorkomen als discrete gelokaliseerde massa’s (meestal cutaneuze of solitaire neurofibromen) of als een infiltrerende laesie die groeit en expandeert in de perifere zenuw (plexiforme neurofibromen). Het komt vaker voor bij NF1. Huidafwijkingen groeien als nodulen en gaan soms gepaard met hyperpigmentatie. Het risico op maligne transformatie is klein. De plexiforme tumoren echter kunnen leiden tot significante neurologische uitvalsverschijnselen, kunnen moeilijk te verwijderen zijn door de intraneurale verspreiding en hebben een significante potentie op maligne transformatie.

  • Malignant peripheral nerve sheath tumors (neurofibrosarcomen) zijn zeer maligne en lokaal invasieve tumoren. Vaak komen er meerdere recidieven of zelfs metastasen voor. Ze komen meestal voor in associatie met grote en middelgrote zenuwen en dus minder vaak met kleinere distale zenuwen en craniale zenuwen. Vaak treden de tumoren sporadisch op, maar in ongeveer de helft van de gevallen is er sprake van NF1.

Access: 
Public

Image

This content is also used in .....

Celbiologie - Geneeskunde - Bundel

Notes bij Gezonde en Zieke Cellen 1 (2015-2016)

Notes bij Gezonde en Zieke Cellen 1 (2015-2016)

Deze aantekeningen zijn gebaseerd op 2015-2016

Week 1

Hoorcollege 1: Cellen zijn er in vele soorten en maten (21-9-2015)

De cel is de kleinste organische eenheid in het lichaam en wordt afgesloten door een membraan. In de cel zitten verschillende organellen met een eigen functie, die ook omhuld worden door een membraan. De verschillende organellen die zich in de cel bevinden zijn de celkern, het golgi apparaat, het peroxisoom, het lysosoom, de mitochondria, vesicels en het endoplasmatisch reticulum. Door middel van aankleuren kunnen onder de microscoop de verschillende onderdelen van de cel en de aanwezige eiwitten duidelijker zichtbaar worden gemaakt. Cellen zijn heel dynamisch door de eiwitten in de cel. Er zijn verschillende soorten cellen met verschillende vormen en maten. Een spiercel ziet er anders uit dan een epitheelcel. Ook hebben fibroblasten bijvoorbeeld een hele andere functie dan spiercellen. Fibroblasten zijn cellen van het bindweefsel die collageen produceren en dus stevigheid geven aan weefsels, terwijl spiercellen voor beweging zorgen. Cellen vermenigvuldigen, sterven en specialiseren zich en daarnaast werken ze samen met en communiceren ze met andere cellen. De cel bestaat voor een groot gedeelte uit water en is een goed oplosmiddel voor polaire stoffen. De mens bestaat voor 70% uit water. Hydrofiele stoffen zijn stoffen die goed oplosbaar zijn in water en hydrofobe stoffen lossen niet op in water. Water is belangrijk, omdat het een oplosmiddel is voor hydrofiele (polaire) stoffen. Water is zelf ook een polair molecuul, wat betekent dat de negatieve en positieve lading in het molecuul niet gelijk verdeeld zijn. Water verdrijft polaire (hydrofobe) stoffen, zoals bijvoorbeeld vet. De cel maakt gebruik van amfipathische/amfifiele stoffen, die aan de ene kant een polaire kop en aan de andere kant een apolair (hydrofobe) staart (vetzuur) hebben. De amfipatsche stoffen kunnen met elkaar micellen vormen. Er ontstaat als het ware een bolletje doordat de hydrofobe staarten bij elkaar gaan zitten en de hydrofiele koppen zich naar buiten keren. Deze koppen gaan interacties aan met het water.

De opbouw van een celmembraan ziet er ongeveer hetzelfde uit. Zowel binnen als buiten de cel is een polaire omgeving waar de polaire koppen interacties mee aangaan. De koppen keren zich naar buiten en de apolaire staarten steken naar elkaar toe. Hierdoor ontstaat er een dubbele laag. De cel communiceert met de buitenkant (extracellulaire ruimte) door middel van eiwitten die door de membranen heen steken. Het deel van het eiwit dat zich in het celmembraan bevindt is hydrofoob. De cel bestaat naast 70% water uit 30% chemische stoffen. Dit zijn voornamelijk eiwitten, DNA, RNA, lipiden en suikers, dit zijn macromoleculen. Deze stoffen bestaan uit subunits, die gepolymeriseerd worden en zo lange ketens vormen. Bij eiwitten bijvoorbeeld zijn de subunits de 20 aminozuren. Voor DNA en RNA zijn er 4 nucleotiden. De losse subunits worden met covalente.....read more

Access: 
Public
Notes bij Gezonde en Zieke Cellen 1 (2014-2015)

Notes bij Gezonde en Zieke Cellen 1 (2014-2015)

Deze aantekeningen zijn gebaseerd op 2014-2015

Week 1

Hoorcollege 1

De cel is de kleinste organische eenheid in het lichaam en wordt afgesloten door een membraan. In de cel zitten verschillende organellen (bijvoorbeeld de celkern) met een eigen functie, die ook omhuld worden door een membraan. Door middel van aankleuren kunnen onder de microscoop de verschillende onderdelen van de cel en de aanwezige eiwitten duidelijker zichtbaar worden gemaakt. Cellen zijn heel dynamisch door de eiwitten in de cel. Er zijn verschillende soorten cellen met verschillende vormen en maten. Een spiercel ziet er anders uit dan een epitheelcel.

De cel bestaat voor een groot gedeelte uit water en is een goed oplosmiddel voor polaire stoffen. De mens bestaat voor 70% uit water. Water verdrijft echter vet, een hydrofobe stof. De cel maakt gebruik van amfipathische/amfifiele stoffen, die aan de ene kant een polaire kop en aan de andere kant een apolair (hydrofobe) staart (vetzuur) hebben. De amfipatsche stoffen kunnen met elkaar micellen vormen. Er ontstaat als het ware een bolletje doordat de apolaire staarten bij elkaar gaan zitten en de polaire koppen zich naar buiten keren. Deze gaan interacties aan met het water.

De opbouw van een celmembraan ziet er ongeveer hetzelfde uit. Zowel binnen als buiten de cel is een polaire omgeving waar de polaire koppen interacties mee aangaan. De koppen keren zich naar buiten en de apolaire staarten steken naar elkaar toe. Hierdoor ontstaat er een dubbele laag. De cel communiceert met de buitenkant (extracellulaire ruimte) door middel van eiwitten die door de membranen heen steken. Het deel van het eiwit dat zich in het celmembraan bevindt is hydrofoob.

De cel bestaat naast 70% water uit chemische stoffen. Dit zijn voornamelijk eiwitten, DNA, RNA, lipiden en suikers. Deze stoffen bestaan uit subunits, die gepolymeriseerd worden en zo lange ketens vormen. Bij eiwitten bijvoorbeeld zijn de subunits de 20 aminozuren. Voor DNA en RNA zijn er 4 nucleotiden. De losse subunits worden met covalente bindingen aan elkaar gekoppeld. De eenheden worden aan elkaar gekoppeld onder afsplitsing van water (condensatiereactie). De covalente verbindingen binnen een molecuul kunnen verbroken worden onder invloed van water (hydrolysereactie). De losse moleculen die ontstaan tijdens een condensatiereactiegaan ook een interactie.....read more

Access: 
Public
Samenvatting week 4 (GZC I)

Samenvatting week 4 (GZC I)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Hoorcollege 1

 

Primaire weefsels in ons lichaam zijn sociale verbanden van cellen die weefsels vormen. Ons lichaam kent vier primaire weefseltypen. De eerste zijn de epithelia: de cellulaire dekweefsels die de buitenkant van het lichaam en alle holten in het lichaam bekleden. Epitheelcellen grenzen heel nauw aan elkaar en zijn met stevige junctions verbonden. Epitheel staat vaak bloot aan slijtage, er is daarom veel celvernieuwing. Darmepitheel is eenlagig epitheel, de epidermis is een meerlagig epitheel.

 

De tweede groep van weefsels wordt gevormd door de bind- en steunweefsels en bloed. Dit weefsel bestaat uit cellen die in het algemeen omringd worden door een extracellulaire matrix, die zij zelf produceren. Een extracellulaire matrix bestaat uit weefselvloeistof, vezels en andere eiwitten, die door bijvoorbeeld fibroblasten worden gemaakt. Bindweefsel is veel luchtiger weefsel dan epitheel. De cellen zijn niet zo nauw verbonden met elkaar als in epitheel weefsel en communiceren daarom ook anders. Mesenchym: Embryonale term voor bindweefsel.Tot de bind- en steunweefsels behoren ook ons kraakbeen, bloed en onze botten. Het is een familie, omdat de cellen in deze weefsels erg op elkaar lijken met betrekking tot de productie van de belangrijkste extracellulaire matrixcomponenten zoals collageen en elastine. Maar ze zijn toch gespecialiseerd, want in bindweefsel is de extracellulaire matrix veel vloeibaarder dan in been waar het collageen juist voor een harde substantie zorgt.

 

De derde weefselgroep wordt gevormd door spierweefsel. Dit is onder te verdelen in skeletspierweefsel, hartspierweefsel en glad spierweefsel.
De vierde primaire weefselgroep is het zenuwweefsel. Zenuwweefsel bestaat uit neuronen met lange uitlopers en gliacellen. Tussen de cellen is zeer weinig extracellulaire matrix aanwezig. Zenuwcellen zijn heel specifiek door de lange uitlopers die synaptische contacten met elkaar maken.

 

Hoe ontstaan de verschillende weefsels in ons lichaam?
Er zijn in ons lichaam 200 verschillende soorten celtypen, die allemaal uit dezelfde embryonale stamcellen ontstaan. Embryonale stamcellen zijn omnipotent, dus kunnen ze aanleiding geven tot het ontstaan van alle mogelijke cellen in ons lichaam.

 

Verschillen Epitheel en Bindweefsel

Epitheel en bindweefsel zijn elkaars tegenpolen qua weefsels. Ze hebben een verschillend cytoskelet, verschillende vormen van communicatie, een verschillende extracellulaire matrix en een andere manier van bewegen. Alle weefsels bestaan uit cellen en door hen geproduceerde extracellulaire matrix (bevat componenten, zoals eiwitten en vezels). Per weefsel kunnen deze componenten en de hoeveelheid extracellulaire matrix echter sterk verschillen.
 

 

Epitheel

Het epitheel weefsel ontstaat uit alle drie de kiembladen. Uit de blastocyst ontstaan drie belangrijke kiembladen: het endoderm (waar je verteringskanaal uit gevormd wordt), het mesoderm (waar je bindweefsel, been, spieren, vetcellen en je bloedvatendotheel gevormd wordt) en het ectoderm (waar je epidermis en je centrale zenuwstelsel uit gevormd wordt). Door deze verschillend oorsprongen.....read more

Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 5

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 5

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Verschillende tumoren van het zenuwstelsel

Er wordt bij deze tumoren onderscheid gemaakt tussen primaire en secundaire tumoren. De primaire tumoren ontstaan vanuit de hersenen, zenuwen en omgevende structuren zelf. Bij de secundaire tumoren gaat het om de metastasen in het zenuwstelsel, waarvan de primare tumor ergens anders in het lichaam is gelegen. De primaire tumoren kennen een incidentie van ongeveer 10 per 100.000 personen en meer dan de helft hiervan is kwaadaardig.

 

Ook kan er op anatomische gronden een onderverdeling gemaakt worden tussen intrinsieke en extrinsieke tumoren. Intrinsieke tumoren zijn de tumoren die zich binnen de begrenzing van de pia mater bevinden. Het gaat hierbij dus om tumoren die zich bevinden in de grote en kleine hersenen, hersenstam, verlengde merg en ruggenmerg. Deze tumoren gaan uit van zenuwcellen, hun uitlopers, niet-neuronale ondersteunende cellen (gliacellen) en afweercellen, mesenchymale cellen (zoals in de wand van bloedvaten) en metastasen. De extrinsieke tumoren bevinden zich buiten de pia mater en gaan uit van weefsels die het zenuwstelsel omgeven zoals het bot en de hersenvliezen en vanuit de weefsels die niet tot de hersenen gerekend worden, zoals de hypofyse. Weer een andere indeling maakt onderscheid tussen tumoren van het centrale zenuwstelsel aan de ene kant en tumoren van het perifere zenuwstelsel aan de andere kant. De meest voorkomende tumoren zijn de gliomen (neuro-epitheliale tumoren), de tumoren van de perifere zenuwen (schwannomen en neurofibromen), de meningeomen en de metastasen.

 

Over de pathogenese van primaire hersentumoren is nog maar weinig bekend. Wel bestaat er een relatie tussen het ontstaan ervan en schedelbestraling. Bijna altijd treedt een hersentumor sporadisch op, dus zonder dat er directe aanwijzingen bestaan op een verhoogde kans op hersentumoren in de familie. Wel zijn er enkele erfelijk overdraagbare aandoeningen bekend waarbij er een sterk verhoogd risico op hersentumoren bestaat. Voorbeeld hiervan zijn neurofibromatosis type 1 en 2, de ziekte van Von Hippel-Lindau en het syndroom van Turcot, het syndroom van Li-Fraumeni en het syndroom van Cowden. Er bestaat geen bewijs voor een relatie tussen hersentumoren en elektromagnetische straling afkomstig van telefoons en hoogspanningsmasten.

 

Hersentumoren

Symptomen van hersentumoren kunnen, op basis van het onderliggende pathofysiologische mechanisme, worden onderverdeeld in drie groepen:

  • Stoornissen in de prikkelgeleiding van neuronaal weefsel leidend tot epilepsie.

  • Verstoring van de neuronale functie ten gevolge van compressie of aantasting van neuronaal weefsel. Dit leidt tot ischemie en neurologische uitval.

  • Verhoging van de intracraniële druk leidend tot symptomen van hoofdpijn, misselijkheid en verschillende graden van bewustzijnsdaling.

 

Intrinsieke tumoren in het hersenparenchym veroorzaken vaker epileptische verschijnselen dan extrinsieke tumoren. Een eerste epileptische aanval zonder andere neurologische verschijnselen is dan altijd een reden voor verdere diagnostiek. Zowel intrinsieke als extrinsieke.....read more

Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 4

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 4

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

HC 8 – Colorectaal carcinoom

 

Het colorectaal carcinoom leidt tot een aanzienlijke mortaliteit in de westerse wereld. Het is de 2e doodsoorzaak ten gevolge van kanker in Nederland, met 10.000 nieuwe gevallen per jaar. De 5-jaarsoverleving is 40-45%. De incidentie zal de komende jaren verder stijgen. Men verwacht dat er in 2015 14.000 nieuwe gevallen zullen zijn. Iedereen heeft een levenslang risico op het colorectaal carcinoom (CRC) van 5-6%.

 

Een coloncarcinoom ontwikkelt zich uit een poliep. De overgang van poliep naar CRC zal gemiddeld in een periode van 10 tot 15 jaar na het optreden van de poliep plaatsvinden. 30-50% van alle­ volwassenen in Nederland ontwikkelt adenomateuze poliepen, en ongeveer 10% van deze poliepen zal zich ontwikkelen tot een CRC. In de ontwikkeling van de normale situatie naar een poliep en uiteindelijk naar een carcinoom treden mutaties op in het DNA. Meestal treedt de ontwikkeling van normaal darmslijmvlies naar poliep op door een mutatie in het APC-gen (tumorsuppressorgen). Deze poliep ontwikkelit zich verder tot een carcinoom door een mutatie in het p53 gen(het verlies van apoptose met als gevolg ongeremde groei).

 

25% van de poliepen komen voor in rectum, 25% in het sigmoïd, 20% in het colon descendens, 10% in het colontransversum, 10% in het colon ascendens en 10% in het caecum. Linkszijdige carcinomen komen dus vaker voor dan rechtzijdige carcinomen. In totaal zijn 70% van de coloncarcinomen linkszijdig.

 

De kans dat een persoon een poliep ontwikkelt neemt toe met de leeftijd. Ook het voorkomen van coloncarcinoom neemt toe met de leeftijd. Het verwijderen van een poliep leidt tot een reductie in het risico op een CRC. Je verwijderd de afwijking, nog voordat het kanker is geworden. De poliep kan endoscopisch verwijderd worden, dit heet poliepectomie. De manier van verwijderen is afhankelijk van de soort poliep. Wanneer de poliep een duidelijke steel heeft, kan er een metale lis omheen gelegd worden. Vervolgens wordt de steel doorgebrand door stroom door deze lis te laten gaan. De poliep kan vervolgens voor histologisch onderzoek/pathologisch onderzoek worden aangeboden. Wanneer er sprake is van een poliep zonder steel wordt de mucose met behulp van een blauwe kleurstof.....read more

Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 3

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 3

Deze samenvatting van de colleges is gebaseerd op het studiejaar 2013-2014.

HC 6 – Urologische tumoren

Van de urologische tumoren komt prostaatkanker het meest voor. In de onderstaande tabel staan de urologische tumoren op volgorde van voorkomen.

 

Tumor

Soort

Incidentie

Prostaatkanker

Adenocarcinoom

10.000

Blaaskanker

Overgangsepitheelcarcinoom

4500

Nierkanker

Niercelcarcinoom

1500

Testistumoren

Kiemceltumoren

600

Peniskanker

plaveiselcelcarcinoom

120

 

Een prostaat heeft ongeveer de grootte van een walnoot en weegt ongeveer 20-25 gram. Vaak zal de prostaat bij oudere mannen vergroten. Dit verschijnsel wordt benigne prostaat hyperplasie genoemd. Er kunnen dan obstructieve en irritatieve klachten ontstaan. Onder obstructieve klachten vallen: moeite met op gang komen (hesitatie), slappe straal, onderbroken mictie, gevoel niet helemaal leeg te plassen. Onder irritatieve klachten vallen: toegenomen frequentie mictie (vaker dan om de 2 uur), imperatieve drang (moeite om uit te stellen) en nycturie (’s nachts naar de wc moeten).

 

Andere oorzaken waarbij deze klachten van de lagere urinewegen kunnen ontstaan zijn: sclerose van de blaashals, strictuur van de urethra of meatus urethra stenose.

 

De prostaat bestaat uit een centraal gebied met fibreus weefsel en een perifeer gebied met vooral klierbuisjes. Deze klierbuisjes maken vloeistoffen die in de urethra kunnen worden uitgestoten (bijmenging voor bevruchting). Bij vergroting van de prostaat zal de urethra vernauwen. Hierdoor moet de blaas meer kracht leveren om de urine te lozen. Er ontstaat blaashypertrofie. Later kan urineretentie ontstaan.

 

Er is een centrale zone, een perifere zone, een transitionele zone of peri-urethrale zone en een anterieure zone. Carcinomen ontwikkelen zich met name in de perifere zone. Hierdoor ontbreken bij carcinomen in eerste instantie de mictie klachten. Er is niet direct obstructie van de urethra. In een later stadium kan dit echter wel optreden. In de transitionele zone ontstaat met name hyperplasie.

 

Wanneer een patiënt zich op het spreekuur meld met klachen van de lagere urine wegen kunnen de volgende testen zinvol zijn:

  • Urine sediment/kweek

  • Rectaal toucher

  • Plasdagboek

  • Flow meting en residu na meting

  • .....read more
Access: 
Public
Samenvatting week 2 (GZC I)

Samenvatting week 2 (GZC I)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Hoorcollege 2

 

De cel is de kleinste eenheid van leven. Er zijn veel verschillende cellen (ca. 200) in ons lichaam. De mens heeft ongeveer 1x1014 cellen. De cel vormt een onderdeel van het organismen. Terwijl er ook organismen zijn die uit slechts één cel bestaan, denk aan bacteriën, schimmels, gisten en parasieten. Celbiologie is belangrijk, omdat je moet weten hoe een gen tot een genproduct leidt in zijn natuurlijke omgeving (de cel). Op die manier is te achterhalen waar een storing (mutatie) zit en zo de mogelijke oorzaak van een ziekte opsporen om er vervolgens geneesmiddelen tegen te ontwikkelen. Cellen zijn heel dynamisch. Zij kunnen zich bewegen en zijn ook in staat om te eten, denk daarbij aan een macrofaag die een bacterie opeet. Verder zijn ze in staat te reproduceren, te communiceren en dood te gaan. De cellen kunnen zichtbaar worden gemaakt met behulp van een microsoop. Er zijn verschillende soorten microscopen, waaronder de lichtmicroscoop. Om in een cel te kunnen kijken en de organellen goed te zien is een elektronenmicroscoop nodig. Onder een elektronenmicroscoop kunnen echter geen levende cellen bekeken worden.

 

Organellen vormen membraanomgeven eilandjes in de cel met een eigen micro-milieu en specifieke functie. Ze worden gevormd en in stand gehouden door een constante aanvoer van nieuwe eiwitten. Transport van nieuw aangemaakte eiwitten naar het juiste organel is van levensbelang voor de cel. Een aantal onderdelen van de cel zijn:

  • Cytosol: gelachtige basissubstantie van de cel

  • Cytoplasma=cytosol + organellen

  • Celkern (nucleus): bevat DNA en wordt omgeven door een kernenvelop. De kern speelt een rol bij de aanmaak van mRNA en vormt de opslagplaats voor het genetisch materiaal.

 

Transport van eiwitten die naar de kern moeten

De kern is helemaal omgeven door een dubbel membraan waarin zich poriën bevinden. Deze kanaaltjes spelen een rol bij het transport van stoffen de kern in en uit. De nucleaire lamina die net onder de binnenste kernmembraangelegen, zorgen voor stevigheid. Een klein deel van de eiwitten die in de het cytosol geproduceerd worden,is bestemd voor de kern. Het eiwit zelf bevat een codein hun aminozuurvolgorde die de informatie bevat voor de eindbestemming. In het geval dat het eiwit naar de kern moet, bevat het een code, genaamd nuclear localization signal. Door een receptoreiwit, nuclear transport receptor, wordt deze code herkend. De receptor kan aan het eiwit binden en zo komt het eiwit via een kernporie de kern binnen. Ran-GTP (schakelaar) bindt aan het eiwitcomplex en verdringt daarmee het kerneiwit uit de receptor. De receptor gebonden aan het GTP gaan uit de kern.In het cytosol wordr GTP naar.....read more

Access: 
Public
Samenvatting week 1 (GZC I)

Samenvatting week 1 (GZC I)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Hoorcollege 1

 

De cel is de kleinste organische eenheid in het lichaam en wordt afgesloten door een membraan. In de cel zitten verschillende organellen (bijvoorbeeld de celkern) met een eigen functie, die ook omhuld worden door een membraan. Door middel van aankleuren kunnen onder de microscoop de verschillende onderdelen van de cel en de aanwezige eiwitten duidelijker zichtbaar worden gemaakt. Cellen zijn heel dynamisch door eiwitten die dit veroorzaken.

 

De cel bestaat voor een groot gedeelte uit water en is een goed oplosmiddel voor polaire stoffen. De mens bestaat voor 70% uit water. Water verdrijft echter vet, een hydrofobe stof. De cel maakt gebruik van amfipathische/amfifiele stoffen, die aan de ene kant een polaire kop en aan de andere kant een apolair (hydrofobe) staart (vetzuur) hebben. . De amfipatsche stoffen kunnen met elkaar micellen vormen. Er ontstaat als het ware een bolletje doordat de apolaire staarten bij elkaar gaan zitten en de polaire koppen zich naar buiten keren. Deze gaan interacties aan met het water,

De opbouw van een membraan om de cel ziet er ongeveer hetzelfde uit. Zowel binnen als buiten de cel is een polaire omgeving waar de polaire koppen interacties mee aangaan. De koppen keren zich naar buiten en de apolaire staarten steken naar elkaar toe. Er ontstaat een dubbele laag. De cel communiceert met de buitenkant (extracellulaire ruimte) door middel van eiwitten die door de membranen heen steken. Het deel van het eiwit dat zich in het celmembraan bevindt is hydrofoob.

 

De cel bestaat naast 70% water uit chemische stoffen. Dit zijn voornamelijk eiwitten, DNA, RNA, lipiden en suikers. Deze stoffen bestaan uit subunits, die gepolymeriseerd worden en zo lange ketens vormen. Bij eiwitten bijvoorbeeld zijn de subunits de 20 aminozuren. Voor DNA en RNA zijn er 4 nucleotiden. De losse subunits worden met covalente bindingen aan elkaar gekoppeld. De ontstane ketens vormen een molecuul. De losse moleculen gaan ook een interactie met elkaar aan door middel van non-covalente bindingen.
Eiwitten
Een aminozuur bestaat uit een centraal C-atoom, een carboxylgroep en een aminogroep. Aan het centrale C-atoom zit een specifieke zijketen. Deze zijketens hebben een verschillend karakter, zoals hydrofoob, hydrofiel, zuur, base. Deze specificiteit van de zijketens zorgt uiteindelijk voor de eigenschappen van een eiwit. De aminozuurvolgorde is gecodeerd in het DNA. Het vormt de primaire structuur van een eiwit.

 

De aminozuren worden door peptidebindingen (covalente bindingen) aan elkaar gekoppeld. De peptidebinding is stijf en vlak, dus niet vrij draaibaar. Tussen de carboxylgroep en de aminogroep ontstaat namelijk een soort dubbele binding, doordat.....read more

Access: 
Public
Samenvatting week 5 (GZC I)

Samenvatting week 5 (GZC I)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Hoorcollege 1

 

Een primaire tumor ontstaat op een bepaalde locatie en is vaak goed behandelbaar. Een secundaire tumor ontstaat na metastase. De kankercellen van de primaire tumor verspreiden zich door het lichaam, waar door er ook op andere plekken tumoren ontstaan.. Een tumor ontstaat uit 1 cel. Deze cel is vaak een stamcelachtige cel. De kankercel ontstaat door een bepaalde mutatie, die ervoor zorgt dat een stamcel alleen maar dochtercellen produceert die zich niet differentiëren, maar alleen maar blijven delen. Deze cellen zijn pluripotent. Een andere optie is dat deze stamcel alleen maar stamcellen als dochtercellen produceert. Het gevolg is een ongeremde groei, waardoor een tumor ontstaat.
Er zijn twee soorten tumoren, goedaardige (= beligne) en kwaadaardige (=maligne). Het verschil daartussen is dat de kwaadaardige tumor in het omringende weefsels infiltreert en niet meer gelokaliseerd is. Behandeling is veel moeilijker, omdat de kankercellen door het lichaam worden verspreid via de bloedvaten en/of lymfevaten. Hierdoor ontstaan er op verschillende plaatsen tumoren. De weg naar een metastaserende tumorcel is als volgt. Eerst is het een beginnende, goedaardige tumorcel. Deze gaat zich veelvuldig delen, waardoor een goedaardige tumorcel ontstaat. Nu ontstaat er in een of meerdere cellen een mutatie waardoor ze door de basale lamina heen kunnen dringen. Zij produceren bepaalde enzymen die de basale lamina plaatselijk afbreken, waardoor de tumorcellen in het onderliggen weefsel kunnen infiltreren. Om zich verder te kunnen verspreiden moeten deze cellen in staat zijn hun junctions los te laten en moeten zich kunnen bewegen door het bindweefsel. Als dit het geval is kunnen deze cellen ook in debloedvaten of de lymfevaten infiltreren. Wanneer de kankercellen in staat zijn afweerreacties te ontwijken, kunnen zij zich op andere plaatsen in het lichaam vestigen. Er treedt extravasatie op, dit is uittreding van kankercel buiten de vaten en angiogenese (groei bloed –en lymfevaten). Hierdoor kan er een nieuwe tumor ontstaan op een andere plek.

 

Een tumorcel bestaat niet alleen uit kankercellen, maar daarnaast ook uit immuun cellen, fibroblasten (cancer assistent fibroblasts) en endotheelcellen. Deze gaan een interactie met elkaar aan binnen de tumor waardoor een zeer complex geheel ontstaat. Zo zorgen de fibroblasten in een tumor er voor dat er bloedvaten worden gevormd, zodat de kankercellen worden voorzien in voedingsstoffen en zuurstof. Ook onderdrukken zij het immuunsysteem.

Helaas zijn veel tumoren pas in een laat stadium te ontdekken. Er zijn al ongeveer 108 cellen ontstaan (diameter ± 5 mm), voordat de tumor zichtbaar is in de X-ray. Vervolgens is een tumor bij ongeveer 109 cellen voelbaar (diameter ± 20-50 mm) en al bij 1012 cellen gaat de patiënt dood. Doordat tumoren pas in een laat stadium worden ontdekt, past men zeer agressieve therapieën toe, namelijk snijden, branden (radiotherapie) en vergiftigen (chemotherapie). Het.....read more

Access: 
Public
Samenvatting literatuur - Van cel tot molecuul - Geneeskunde UL - 2016/2017

Samenvatting literatuur - Van cel tot molecuul - Geneeskunde UL - 2016/2017

Deze samenvatting is gebaseerd op collegejaar 2016-2017.

Inhoud van deze samenvatting:

  • Deze samenvatting (deel 1 en deel 2) is te gebruiken bij alle verplichte hoofdstukken uit de volgende boeken voor het vak Van Cel tot Molecuul:

  1. Essential Cell Biology van Alberts et al uit 2014, namelijk onderwerpen uit hoofdstukken
    3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 17, 18, 19.

  2. Elements of Medical Genetics van Turnpenny uit 2011, namelijk onderwerpen uit hoofdstukken
    1, 2, 3, 6, 7, 8, 9, 17, 18, 22

  3. Medical Physiology: A Cellular And Molecular Approach van Boron & Boulpaep uit 2008, namelijk hoofdstuk 2

Celbiologie: Energie, katalyse en biosynthese (3)

Katalyse

Voordat een enzym een reactie kan katalyseren moet het enzym eerst binden aan zijn substraat. Vervolgens wordt er een product aangemaakt dat bindt aan het enzym. Wanneer dit product losraakt van het enzym kan er een volgend substraat binden. De gekatalyseerde reacties van een substraat dat een bepaald product vormt, verschillen in snelheid. De snelheid kan gemeten worden in een experiment waarbij zuivere enzymen en substraten gemixt worden onder zorgvuldige omstandigheden. Als alle enzymen gebonden zijn door substraat, is de Vmax bereikt.

De substraatconcentratie die nodig is om een enzym efficiënt te laten werken, wordt vaak gemeten met een andere parameter: Km. De Km is de substraatconcentratie waarbij het enzym op de helft van zijn maximale snelheid werkt (0,5 Vmax).

Wanneer een enzym de activeringsenergie voor de reactie Y naar X verlaagt, wordt tegelijkertijd ook de activeringsenergie voor de reactie X naar Y verlaagd met precies dezelfde hoeveelheid.

Het bestuderen van de kinetica (bewegingsleer) van een enzym (hoe snel het opereert, hoe het zich gedraagt tegenover het substraat, hoe de activiteit wordt gecontroleerd), zorgt ervoor dat we kunnen voorspellen hoe een individuele katalysator.....read more

Access: 
Public
Aanvulling Samenvatting van Cel tot Molecuul Alberts blz 372-377
Thema 2.A.3 Abnormale Celgroei week 13
Thema 2.A.3 Abnormale Celgroei week 12
Thema 2.A.2 Abnormale celgroei week 6
Summary: Essential Cell Biology (Alberts et al) - First part

Summary: Essential Cell Biology (Alberts et al) - First part

This summary is based on the 3rd edition of Essential Cell Biology from Alberts et al. The remaining chapters can be accessed when logged in and can be found here: Second part of the summary

1. Introduction to cells

Unity and diversity of cells

Cells are the fundamental units of life; all living things are made of cells. The present-day cells are believed to have evolved from an ancestral cell that excited more than 3 billion years age. Cells vary enormous in appearance and function, however all living cells have a similar basic chemistry.

With the invention of the microscope, it became clear that plants and animals are assemblies of cells, that cells can also exist as independent organisms, and that cells individually are living in the sense that they can grow, reproduce, convert energy from one form into another, respond to their environment, and so on. Although cells are varied when viewed from the outside, all living things are fundamentally similar inside. And in all living things, genetic instructions, called genes, are stored in DNA molecules. In every cell, the instructions in the DNA are read out, or transcribed, into a chemically related set of molecules made of RNA. The messages carried by the RNA molecules are in turn translated into yet another chemical form: they are used to direct the synthesis of a huge variety of large protein molecules that dominate the behaviour of the cell. In sum, the reproduction process exists of replication (DNA synthesis), transcription (RNA synthesis) and translation (protein synthesis). Unfortunately, the copying of DNA is not always perfect, and the instructions are occasionally corrupted. Later is this summary we will discuss this further.

Cells are enclosed by a plasma membrane that separates the inside of the cell from the environment. And all cells contain DNA as a store of genetic information and use it to guide the synthesis of proteins. Cells in a multicellular organism, though the all contain the same DNA, can be very different. They use their genetic information to direct their biochemical activities according to cues they receive from their environment.

Cells under the microscope

Cells of animal and plant tissues are typically 5-20 micrometer in diameter and can be seen with a light microscope, which also reveals some of their internal components (organelles). The electron microscope permits the smaller organelles and even individual molecules to be seen, but specimens require elaborate preparation and cannot be viewed alive. So, the invention of the light microscope led to.....read more

Access: 
Public
Summary: Essential Cell Biology (Alberts et al) - Second part

Summary: Essential Cell Biology (Alberts et al) - Second part

This summary is based on the 3rd edition of Essential Cell Biology from Alberts et al. The first 10 chapters are open access and can be found here: First part of the summary

11. Membrane structure

Cell membranes enable a cell to create barriers that confine particular molecules to specific compartments. The simplest bacteria have only a single membrane, the plasma membrane. Eucaryotic cells, however, contain in addition a profusion of internal membranes that enclose intracellular compartments. All cell membranes are composed of lipids and proteins and share a common general structure. The lipid component consists of many millions of lipid molecules forming a lipid bilayer. This lipid bilayer gives the membrane its basic structure and serves as a permeability barrier.

The lipid bilayer

The lipids in cell membranes combine two very different properties in a single molecule: each lipid has a hydrophilic (‘water-loving’) has and one or two hydrophobic (‘water-hating’) hydrocarbon tails. There are three major classes of membrane lipid molecules:

  1. Phospholipids
  2. Sterols
  3. Glycolipids

The most abundant lipids in cell membranes are phospholipids, and the most common type of phosphoslipid in most cell membranes is phosphatidylcholine. Molecules with both hydrophilic and hydrophobic properties are termed amphipathic. This chemical property plays a crucial part in driving these lipid molecules to assemble into bilayers. They assemble spontaneously into bilayers when placed in water, forming closed compartments that reseals of torn.

Amphipathic molecules re subject to two conflicting forces: the hydrophilic head is attracted to water, while the hydrophobic tail shuns water and seeks to aggregate with other hydrophobic molecules. This conflict is resolved by the formation of a lipid bilayer, because the hydrophilic heads face the water at each of the two surfaces of the sheet of molecules and the hydrophobic tails are all shielded from the water and lie next to one another in the interior of this ‘sandwich’. Finally, the phospholipid bilayers spontaneously close in on themselves to form sealed compartments.

The fluidity of a lipid bilayer

The lipid bilayer is fluid, and individual lipid molecules are able to diffuse within their own monolayer; they do not, however, spontaneously flip from one monolayer to the other. The two layers of the lipid bilayer have different lipid compositions, reflecting the different functions of the two faces of a cell membrane.

The fluidity of a cell membrane (the ease with which its lipid molecules move within the plane of the bilayer) is important for membrane function and has to be

.....read more
Access: 
Public
Thema 2.A.2 Abnormale celgroei week 7
Study Notes bij Van Mens tot Cel - Geneeskunde UL (2015-2016)

Study Notes bij Van Mens tot Cel - Geneeskunde UL (2015-2016)

Deze aantekeningen zijn gebaseerd op 2015-2016

HC - Bouwplan: van mens tot cel

Anatomie is van belang voor het uitvoeren van lichamelijk onderzoek. De oppervlakte anatomie is de ‘projectie op de lichaamswand’: je moet aan kunnen wijzen welke organen er op welke plek onder de huid zitten.

Anatomie is van belang bij :

  • De (algemene) bouw van organen in relatie tot hun functie

  • Samenhang van organen en orgaansystemen

  • Lichamelijk onderzoek: projectie van organen

  • Interpretatie van MRI, röntgen, CT opnamen enzovoort

We houden ons dit blok bezig met het aanleren van de algemene lichaamsbouw op verschillende niveaus:

  • Macroscopisch niveau: met het blote oog zichtbaar.

  • Microscopisch niveau: te zien met de microscoop

    • histologie (weefselleer) en cytologie (celleer).

Hierbij staat de relatie tussen een normale en afwijkende bouw en de betekenis hiervan voor het wel of niet juist functioneren van de organen en orgaansystemen centraal. Het doel van het bestuderen van de anatomie is om delen van het menselijk lichaam te leren herkennen, en om op die manier het geheel te kunnen begrijpen.

Access: 
Public
Study Notes bij Van Mens tot Cel - Geneeskunde UL (2013-2014)

Study Notes bij Van Mens tot Cel - Geneeskunde UL (2013-2014)

Deze aantekeningen zijn gebaseerd op 2013-2014

Collegeaantekeningen: Deel 1

HC Bouwplan: van mens tot cel (21 oktober 2013)

We houden ons dit blok bezig met het aanleren van de algemene lichaamsbouw op verschillende niveaus:

  • Macroscopisch niveau (met het blote oog zichtbaar).

  • Microscopisch niveau (te zien met de microscoop): histologie (weefselleer) en cytologie (celleer).

Hierbij staat de relatie tussen een normale en afwijkende bouw en de betekenis hiervan voor het wel of niet juist functioneren van de organen en orgaansystemen centraal. Het doel van het bestuderen van de anatomie is om delen van het menselijk lichaam te leren herkennen en om op die manier lichamelijk processen te begrijpen.

Thema’s

We werken dit blok aan de hand van verschillende thema’s. De eerste drie thema’s zijn bouwplan en ontwikkeling, de huid en het bewegingsstelsel. Bij het eerste thema gaan we in op de systematische anatomie, waarbij het lichaam is ingedeeld in orgaansystemen. We behandelen onder andere het ademhalingssysteem, bewegingssysteem, zenuwstelsel en circulatiestelsel. Bij de ontwikkeling gaan we in op het tot stand komen van de bouw. We gaan het er ook over hebben dat er veel mis kan gaan tijdens de ontwikkeling en over wat de sensitieve perioden zijn.

Vanaf thema 4 houden we ons bezig met de topografische anatomie: het deel van de anatomie dat het lichaam opdeelt in regio’s. De thema’s zijn borst, buik & bekken en hoofd & hals. We gaan in op de medische beeldvormende technieken waardoor we organen leren herkennen. De oppervlakte anatomie is de ‘projectie op de lichaamswand’: je moet aan kunnen wijzen welke organen er op welke plek onder de huid zitten. Dit is later van belang voor het uitvoeren van lichamelijk onderzoek.

Onderwijsvormen

Een KVC is een Klinisch Verdiepingscollege. Hierin wordt aangegeven hoe we in de kliniek gebruik kunnen maken van onze anatomische kennis.

Er zijn veel hoorcolleges waarin de stof aangeboden wordt die niet duidelijk in de kernboeken verwoord wordt, of waarin klinische verdieping wordt geboden. Ook is er elke week een Responsie College. Het is belangrijk dat je goed voorbereid naar een hoorcollege komt. Van tevoren kun je je vraag posten op het discussion board op blackboard.

Naast de colleges zijn er opdrachten die je moet maken en is er elke week een werkgroep. Daarbij zijn er deze periode practica: die zijn verplicht en mag je niet missen. Ook zijn er een aantal COO: Computer Ondersteunend Onderwijs. Als er op blackboard in het themamapje een COO staat, is dit verplicht om te maken. De COO die niet in het blokboek staan zijn de quizzen. Onder het mapje ‘overige COO’ vind je de niet-verplichte COO waar je door middel van spelletjes de anatomische kennis kunt testen.

Preclass toetsen zijn toetsen waarin je vragen.....read more

Access: 
Public
Study Notes bij Van Mens tot Cel - Geneeskunde UL (2014-2015)

Study Notes bij Van Mens tot Cel - Geneeskunde UL (2014-2015)

Deze aantekeningen zijn gebaseerd op 2014-2015.

 

Week 1

HC 1: Bouwplan: van mens tot cel (20 oktober 2014)

We houden ons dit blok bezig met het aanleren van de algemene lichaamsbouw op verschillende niveaus:

  • Macroscopisch niveau: met het blote oog zichtbaar.

  • Microscopisch niveau: te zien met de microscoop: histologie (weefselleer) en cytologie (celleer).

Hierbij staat de relatie tussen een normale en afwijkende bouw en de betekenis hiervan voor het wel of niet juist functioneren van de organen en orgaansystemen centraal. Het doel van het bestuderen van de anatomie is om delen van het menselijk lichaam te leren herkennen, en om op die manier het geheel te kunnen begrijpen.

Thema’s

We werken dit blok aan de hand van verschillende thema’s. De eerste drie thema’s zijn bouwplan en ontwikkeling, de huid en het bewegingsstelsel. Bij het eerste thema gaan we in op de systematische anatomie, waarbij het lichaam is ingedeeld in orgaansystemen. We behandelen onder andere het ademhalingssysteem, bewegingssysteem, zenuwstelsel en circulatiestelsel. Bij de ontwikkeling gaan we in op het tot stand komen van de bouw. We gaan het er ook over hebben dat er veel mis kan gaan tijdens de ontwikkeling en over wat de sensitieve perioden zijn.

Vanaf thema 4 houden we ons bezig met de topografische anatomie: het deel van de anatomie dat het lichaam opdeelt in regio’s. De thema’s zijn borst, buik en bekken, en hoofd en hals. We gaan in op de medische beeldvormende technieken waardoor we organen leren herkennen. De oppervlakte anatomie is de ‘projectie op de lichaamswand’: je moet aan kunnen wijzen welke organen er op welke plek onder de huid zitten. Dit is later van belang voor het uitvoeren van lichamelijk onderzoek.

Onderwijsvormen

Een KVC is een Klinisch Verdiepings College. Hierin wordt aangegeven hoe we in de kliniek gebruik kunnen maken van onze anatomische kennis.

Er zijn veel hoorcolleges waarin de stof aangeboden wordt die niet duidelijk in de kernboeken verwoord wordt, of waarin klinische verdieping wordt geboden. Ook is er elke week een Responsie College. Het is belangrijk dat je goed voorbereid naar een hoorcollege komt. Van tevoren kun je je vraag posten op het discussion board op blackboard.

Naast de colleges zijn er opdrachten die je moet maken en is er elke week een werkgroep. Daarbij zijn er deze periode practica: die zijn verplicht en mag je niet missen. Ook zijn er een aantal COO: Computer Ondersteunend Onderwijs. Als er op blackboard in het themamapje een COO staat, is dit verplicht om te maken. De COO die niet in het blokboek staan zijn de quizzen. Onder het mapje ‘overige COO’ vind je de niet-verplichte COO waar je door middel van spelletjes de anatomische kennis kunt testen.

Preclass toetsen zijn toetsen waarin je vragen krijgt over bepaalde onderwerpen.....read more

Access: 
Public
Study Notes bij Van cel tot molecuul - Geneeskunde UL (2013-2014)

Study Notes bij Van cel tot molecuul - Geneeskunde UL (2013-2014)

Deze aantekeningen zijn gebaseerd op 2013-2014.

Collegeaantekeningen: Deel 1

HC Inleiding blok (2 december 2013)

Tijdens dit blok komen er twee basisvakken en één klinisch vak ten sprake. Moleculaire celbiologie, genetica en klinische genetica. Tijdens dit blok wordt er gewerkt aan de competenties AWV en gezondheidsbevordering. De twee coördinatoren van dit blok zijn Prof M. Breuning en Prof T. Raap.

Dit blok bevat zeven thema’s.

1. Humane Genoom en Chromosomen
2. Mono genetische Ziekten en Overervingspatronen
3. Replicatie, Transcriptie, Repair en Recombinatie
4. Translatie en Structuur/Functie van Eiwitten
5. Metabolisme en Enzymologie
6. Membranen en Transportprocessen
7. Communicatie en Signaaloverdracht

Bij elk thema hoort een werkgroep en twee studieopdrachten. Bij elke SO-2 worden er 2 studenten uitgekozen die de casus moeten presenteren. Ook moeten zij een verslag over die casus maken. Dit verslag moet schriftelijk ingeleverd worden tijdens de werkgroep, gemaild worden naar de werkgroep docent en online ingevoerd worden in TurnItin (via blackboard). Je moet goed voorbereid naar de werkgroep komen en je kernboeken meenemen. Het verslag wat je samen met een medestudent inlevert moet beoordeelt worden met een voldoende of goed. Wanneer het verslag met een onvoldoende beoordeelt is wordt het tentamencijfer van cel tot molecuul niet vrijgegeven.

Toetsing

Op vrijdag 20 december is er een deeltentamen. Dit deeltentamen gaat over de thema’s 1 tot en met 4. Het bestaat uit 35 meerkeuzenvragen en duurt 2 uur lang.

Het eindtentamen op 17 januari gaat over alle 7 thema’s.

HC Genoom organisatie (2 december 2013)

Nucleotiden zijn de bouwstenen van het DNA. DNA bestaat uit een suikermolecuul, fosfaatgroep en een stikstofbase (guanine etc.). Deze structuur is hiernaast weergegeven. De fosfaatgroep is negatief geladen.

Een DNA-streng heeft een 5’ en een 3’ kant. Nieuwe nucleotiden bevinden zich aan de 3’ kant. Het DNA-molecuul bestaat uit een dubbele helix, dus uit 2 DNA strengen. Deze strengen zijn doormiddel van waterstofbruggen aan elkaar geketend. Tussen T en A 2 waterstofbruggen en tussen G en C 3. Bij de aanmaak van nieuw DNA wordt 1 streng gebruikt als matrijsstreng.

Het menselijk DNA kent 3 miljard basenparen, 22000 genen, 1 m lengte, 2nm dik, 3 picogram zwaar en kent 22 autosomen chromosomen en 2 geslachtschromosomen.

Spermacellen en eicellen zijn haploïd en een lichaamscel is diploïd. DNA zit verpakt in chromatine. Er zijn twee soorten chromatine: heterochromatine en euchromatine. Heterochromatine is donker, gecondenseerd, niet actief en er vindt geen DNA transcriptie plaats. Euchromatine is licht van kleur, is actief en er vindt transcriptie plaats. Een cel met een grote kern bevat meer euchromatine aangezien er meer chromatine actief zijn. 

DNA is negatief geladen. DNA bindt met positief geladen histonen om een chromatine te vormen.
Allereerst windt.....read more

Access: 
Public
Study Notes bij Van cel tot molecuul - Geneeskunde UL (2015-2016)

Study Notes bij Van cel tot molecuul - Geneeskunde UL (2015-2016)

Deze aantekeningen zijn gebaseerd op collegeweek 1 t/m 5 van het studiejaar 2015-2016.

Notes (Thema: Het Humane Genoom en Chromosomen)

HC: Inleiding blok

Tijdens dit blok komen er twee basisvakken en één klinisch vak ten sprake. Moleculaire celbiologie, genetica en klinische genetica. Tijdens dit blok wordt er gewerkt aan de competenties AWV en gezondheidsbevordering. De twee coördinatoren van dit blok zijn Prof M. Breuning en Prof T. Raap.

Dit blok bevat zeven thema’s.

1. Humane Genoom en Chromosomen
2. Mono genetische Ziekten en Overervingspatronen
3. Replicatie, Transcriptie, Repair en Recombinatie
4. Translatie en Structuur/Functie van Eiwitten
5. Metabolisme en Enzymologie
6. Membranen en Transportprocessen
7. Communicatie en Signaaloverdracht

Bij elk thema hoort een werkgroep en twee studieopdrachten. Bij elke SO-2 worden er 2 studenten uitgekozen die de casus moeten presenteren. Ook moeten zij een verslag over die casus maken. Dit verslag moet schriftelijk ingeleverd worden tijdens de werkgroep, gemaild worden naar de werkgroep docent en online ingevoerd worden in TurnItin (via blackboard). Je moet goed voorbereid naar de werkgroep komen en je kernboeken meenemen. Het verslag wat je samen met een medestudent inlevert moet beoordeelt worden met een voldoende of goed. Wanneer het verslag met een onvoldoende beoordeelt is wordt het tentamencijfer van cel tot molecuul niet vrijgegeven.

Toetsing

Het deeltentamen gaat over de thema’s 1 tot en met 4. Het bestaat uit 35 meerkeuzenvragen en duurt 2 uur lang.

Het eindtentamen gaat over alle 7.....read more

Access: 
Public
Study Notes bij Van cel tot molecuul - Geneeskunde UL (2014-2015)

Study Notes bij Van cel tot molecuul - Geneeskunde UL (2014-2015)

Deze aantekeningen zijn gebaseerd op collegeweek 2 t/m 5 van het studiejaar 2014-2015.

Collegeaantekeningen Week 1

HC Genoom organisatie

Nucleotiden zijn de bouwstenen van het DNA. DNA bestaat uit een suikermolecuul (desoxyribose), fosfaatgroep en een stikstofbase (guanine etc.). De fosfaatgroep is negatief geladen. Een DNA-streng heeft een 5’ en een 3’ kant: polariteit. Nieuwe nucleotiden worden aan de 3’ kant aangezet. In losse vorm zit bij RNA een H-groep en bij DNA OH-groep aan 3'. De fosfaatgroep zit aan 5' en de base aan 1'. Het DNA-molecuul bestaat uit een dubbele helix, dus uit 2 DNA strengen. Deze strengen zijn doormiddel van waterstofbruggen aan elkaar geketend. Tussen T en A 2 waterstofbruggen en tussen G en C 3. Bij de aanmaak van nieuw DNA wordt 1 streng gebruikt als matrijsstreng.

Het menselijk DNA kent in 3 miljard basenparen, 22000 genen, 1 m lengte, 2nm dik, 3 picogram zwaar en kent 22 autosomen chromosomen en 2 geslachtschromosomen. Dit is voor haploïde situatie. Spermacellen en eicellen zijn haploïd en een lichaamscel is diploïd. DNA zit verpakt in chromatine. Er zijn twee soorten chromatine: heterochromatine en euchromatine. Heterochromatine is donker, gecondenseerd, niet actief en er vindt geen DNA transcriptie plaats. Euchromatine is licht van kleur, is actief en er vindt transcriptie plaats. Bij euchromatine is het DNA gedecondenseerd zodat enzymen en polymerasen er beter bij kunnen. Een cel met een grote kern bevat meer euchromatine aangezien er meer chromatine actief zijn. 

DNA is negatief geladen. DNA bindt met positief geladen histonen om een chromatine te vormen.Allereerst windt het DNA zich om de histonen (2x4 eiwitten) dit vormt een

nucleïosoom. Vervolgens condenseert dit verder met behulp van een 5e histon om een chromatine fiber te vormen. Die fibers maakt dan nog loops en die loops worden gecondenseerd met als resultaat het interfase chromosoom. De meest gecondenseerde vorm van chromatine is in de metafase. Een chromosoom is vaak in de metafase afgebeeld.

Een chromosoom bestaat uit 2 chromatiden. Het punt waarop deze chromatiden aan elkaar zitten wordt het centromeer genoemd. De uiteinden van de chromosoom/chromatiden noemt men het telomeer. Wanneer het centromeer zich niet exact in het midden bevindt (submetacentrisch), heeft de chromosoom lange (Q-armen) en korte (P-armen) armen. Overigens wordt ook bij chromosomen waarbij de armen evenlang zijn (metacentrisch) P en Q armen benoemd. Dit is om onderscheid te maken en zo genlocaties te kunnen aanduiden. Hele kleine armen noemt men satelliet armen. Dit komt voor bij acrocentrische chromosomen

Chromosomen worden geclassificeerd op lengte en op de positie van het centromeer. Wanneer hieruit geen onderscheidt kan worden gemaakt wordt er gekeken naar de G-banding van de chromosoom. Deze G-banding vindt plaats in de metafase met behulp van Giemsa, vervolgens krijgt het chromosoom een uniek licht-donker bandpatroon. Dit noemt men karyotyping, een.....read more

Access: 
Public
TentamenTests bij Van Mens tot Cel - Geneeskunde UL - #1

TentamenTests bij Van Mens tot Cel - Geneeskunde UL - #1

Bevat een blokspecifiek oefententamen met antwoorden uit voorgaande collegejaren.

Oefententamen 1

1. Doormiddel van merkel lichaampjes kan men drukveranderingen en vervormingen voelen (de tastzin). Deze lichaampjes bevinden zich in de huid, maar in welk deel van de huid bevinden zich de merkel lichaampjes?

A: Epidermis
B: Dermis
C: Hypodermis

2. De darmen hebben verschillende liggingen, welk deel van de darmen ligt intraperitoneaal gelegen?

A: Colon ascendens
B: Colon sigmoideus
C: Rectum
D: Duodenum

3. Het colon ascendens en het duodenum liggen secundair retroperitoneaal en het rectum heeft sub peritoneale ligging. Paracelluair transport is transport van moleculen dat tussen de cellen door gaat. Welk eiwit heeft een belangrijke rol in dit paracelluaire transport?

A: Connexine
B: Integrine
C: Cadherine
D: Claudine

4. Claudine (tevens ook occludine, echter is dit niet een antwoordmogelijkheid) is een onderdeel van de tight junction. Paracelluaire transport vindt plaats langs/door de tight junctions. Nadat een bot gebroken is zijn er in het herstelproces verschillende stadia van elkaar te onderscheiden. Ook zijn er verschillende cellen aanwezig in bepaalde perioden nadat het bot gebroken is. Één type cel dat als eerste verschijnt op de plek van een botbreuk in het herstelproces is:

A: Fibroblast
B: Neutrofiele granulocyt
C: Osteoprogenitor cel
D: Chondroblast

5. Vul de juiste structuur in op de ontbrekende puntjes: … levert een bijdrage aan het maternale deel van de placenta.

A: Trophoblast
B: Epiblast
C: Decidua
D: Allantois

6. De trophoblast levert een bijdrage aan het foetale deel van de placenta. Tijdens de vorming van collageen wordt een bepaald aminozuur gehydroxyleerd, welk aminozuur wordt gehydroxyleerd bij de vorming van collageen?

A: Cysteine
B: Methionine
C: Proline
D: Glycine

7. De N. laryngeus recurrens heeft een belangrijke rol bij de aansturing en de coördinatie van het slikproces. Een enkelzijdige uitval van deze nervus heeft een kenmerkend klachtenpatroon. Welke klacht kan een enkelzijdige uitval van de N. laryngeus recurrens geven tijdens het slikken?

A: Gestoorde passage van de voedselbolus
B: Nasale regurgitatie
C: Aspiratie
D: Reflux van de maaginhoud

8. Bij aspiratie is er sprake van een verslikking. Dit komt doordat bij een enkelzijdige uitval van de N. laryngeus recurrens de stembanden niet worden aangestuurd en dus stil staan. Hierdoor kan de larynx zich niet goed sluiten. Geef de juiste omschrijving van het begrip ‘mediane halscyste’.

A: Een kieuwboog afwijking
B: Een uiting van een vergrote lymfeknoop
C: Een aanlegstoornis van de schildklier
D: Een maligne aandoening met vochtholte

9. Men spreekt van een ‘laterale halscyste’ wanneer er een afwijking in de kieuwboog is. De ondergrens van de longen verschilt bij inspiratie (inademen) en expiratie (uitademen). Op welke hoogte naast de wervelkolom bevindt zich de ondergrens van de longen bij diepe inspiratie?

A: 6e.....read more

Access: 
Public
TentamenTests bij Cel tot Molecuul - Geneeskunde UL

TentamenTests bij Cel tot Molecuul - Geneeskunde UL

Bevat een blokspecifiek oefententamen met antwoorden uit voorgaande collegejaren.

Oefententamen 1

1. Hans en Tineke willen graag een kindje. Zowel de ouders van Hans als de ouders van Tineke zijn beide drager van een autosomaal recessieve ziekte. Wat is de kans dat Hans en Tineke een gezond kind krijgen?

A: 1:4
B: 1:8
C: 1:16
D: 1:32
E: 1:64

2. Merel is een gezonde 26-jarige vrouw. Haar vader heeft daarentegen een dominante erfelijke aandoening, die zich al op kinderleeftijd uit. Merel vraagt zich af hoe groot de kans is dat zij draagster is van dit dominante gen. Deze kans is:

A: 0%
B: 25%
C: 33%
D: 50%

3. Kleurenblindheid heeft een X-chromosomale overerving. De prevalentie van kleurenblindheid is onder de Nederlandse-mannen 4%. Het percentage Nederlandse-vrouwen dat homozygoot is voor deze genen zou rond de … liggen:

A: 0,16%
B: 0,2%
C: 0,8%
D: 1,6%

4. Angelos komt bij de huisarts. Hij maakt zich zorgen, aangezien zijn zus vorige week is overleden aan een aandoening die autosomaal recessief overerft. Voor zover Angelos weet is zijn zus de eerste in de familie waarbij deze ziekte tot uiting kwam. Angelos heeft op dit moment een kinderwens en vraagt de arts hoe groot de kans is dat zijn kind het zieke gen bevat, deze kans bedraagt:

A: 1:3
B: 1:6
C: 1:8
D: 1:12

5. Een vrouw met het syndroom van down is zwanger. Hoe groot is de kans dat dit kindje ook het syndroom van down krijgt? (de kans dat de meiose bij haar partner fout gaat is verwaarloosbaar).

A: 0%
B: 33%
C: 50%
D: 75%

6. Nancy en Robert hebben beide het syndroom van Down. Zij hebben een kinderwens. Hoe groot is de kans dat zij een kindje krijgen met het syndroom van Down?

A: 0 - 12,5%
B: 12,5 - 25%
C: 25 - 50%
D: >50%

7. Susan komt bij de huisarts en verteld dat haar broer vorige week is overleden aan de gevolgen van Duchenne’s spierdistrofie. Susan vraagt hoe groot de kans is dat haar kind ook duchenne zal krijgen. Haar broer is de enige in de familie die Duchenne heeft. De dragerschapsfrequentie van Duchenne is 1:30. Hoe groot is de kans dat Susan haar kind Duchenne krijgt?

A: 1:12
B: 1:24
C: 1:48
D: 1:60

8. 3 broers hebben een bepaalde aandoening die X-gebonden wordt overerft. De moeder van deze broers heeft dit gen niet. Welke uitspraak is juist:

A: De vader heeft het X-gen met de ziekte.
B: Er is sprake van nonpenetrantie
C: Er is 3x een noveau mutatie opgetreden

9. 3 broers hebben een bepaalde aandoening die X-gebonden wordt overerft. De moeder van deze broers heeft.....read more

Access: 
Public
Oefenmateriaal bij Gezonde en Zieke Cellen 1 (GZC)

Oefenmateriaal bij Gezonde en Zieke Cellen 1 (GZC)

Bevat blokspecifiek oefenmateriaal met antwoorden uit voorgaande collegejaren.

Vragen

1. Welk van onderstaande aminozuren kan niet gefosforyleerd worden?

A. Threonine

B. Thyrosine

C. Alanine

D. Serine

 

2. Welke van onderstaande beweringen over DNA replicatie is juist?

A. Voor de werking van DNA helicase is ATP hydrolyse nodig.

B. DNA replicatie is onafhankelijk van RNA primers.

C. DNA polymerase bevat endonuclease activiteit (endonuclease activiteit is het vermogen van een enzym DNA in het midden van een keten af te breken).

 

3. Welke van onderstaande beweringen met betrekking tot DNA repair is juist?

A. DNA mismatch repair functioneert niet goed in de ziekte HNPCC.

B. DNA schade heeft geen invloed op de celcyclus.

C. Proofreading corrigeert alle fouten gemaakt tijdens DNA replicatie.

 

4. Welk DNA-repairproces is defect bij patiënten met Xeroderma pigmentosum?

A. DNA-mismatch repair

B. Het proces dat cross-links uit DNA haalt

C. Het proces dat breuken in DNA repareert

D. Het proces dat thymine dimeren uit het DNA verwijdert

 

5. Welk eiwit is verantwoordelijk voor voor ontwinding van de dubbelhelix van DNA?

A. DNA polymerase

B. DNA helicase

C. DNA ligase

D. DNA primase

 

Antwoorden

Antwoord vraag 1

C. Alanine

Uitleg

Bij het proces van fosforylering van eiwitten wordt een fosfaatgroep covalent gebonden aan een zijgroep van een aminozuur. Dit kan echter slechts bij 3 verschillende aminozuren: Serine, Threonine en Tyrosine, en dus niet bij Alanine.

 

Antwoord vraag 2

A. Voor de werking van DNA helicase is ATP hydrolyse nodig.

Uitleg

A: DNA helicase is het eiwit dat betrokken is bij de scheiding van twee DNA strengen. Tijdens dit proces moeten de waterstofbruggen tussen de tegenover elkaar liggende nucleotidebasen worden verbroken. Hiervoor is energie nodig die vrijkomt bij de hydrolyse van ATP.

B: Onjuist. DNA polymerase kan stukjes nucleotiden toe voegen aan het 3’uiteinde van een groeiende polynucleotideketen. Het is echter niet in staat om een nieuwe polynucleotide keten te beginnen. Daarom wordt eerst een stukje complementair RNA op de DNA matrijs neergelegd (RNA primers).

C. Onjuist. DNA polmyerase heeft geen endonuclease activiteit. Wel bevat DNA polymerase exonuclease activiteit. Dit is het vermogen DNA vanaf een uiteinde (en dus niet in het midden van een keten) af te breken. Van dit mechanisme wordt gebruik gemaakt bij proofreading door DNA-polymerase.

 

Antwoord vraag 3

A. DNA mismatch repair functioneert niet goed in de ziekte HNPCC.

Uitleg

A. HNPCC (Hereditair Non-Polyposis Colonrectaal Carcinoom) is een erfelijk tumorsyndroom dat wordt veroorzaakt door een afwijking in een gen dat codeert voor een mis-match-repair-eiwit. Doordat deze eiwitten niet goed functioneren, is het zelfherstellend vermogen van het DNA verminderd.

B. Onjuist. DNA schade heeft wel invloed op de celcyclus. Tijdens de checkpoints van de celcyclus wordt onder andere gekeken of DNA beschadigd is, en of wel of niet kan worden doorgegaan met.....read more

Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 1

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 1

Deze samenvatting van de colleges is gebaseerd op het studiejaar 2013-2014.

HC 1 – Introductiecollege

 

Alle afbeeldingen in deze samenvatting zijn opgenomen in de bijlage die je hieronder los kunt downloaden.

bijlage_week_1_gzc_ii.pdf

 

Normale groei van cellen is goed gecontroleerd. Een voorbeeld van normale groei is na weefselschade, of de turn-over van maagslijmvlies in het maagdarmkanaal. Een andere soort van gecontroleerde groei is aangepaste groei. De ene celsoort gaat over in de andere. Er is sprake van adaptatie. Wanneer de groei niet goed gecontroleerd is, is er sprake van autonome groei. De cellen vermenigvuldigen zich zonder dat zij reageren op de contactremming. Er is dan sprake van tumorgroei.

Groeistoornissen:
Groeistoornissen kunnen worden onderverdeel in gecontroleerde groeistoornissen en ongecontroleerde groeistoornissen. De gecontroleerde groeistoornissen worden weer verder onderverdeeld in:

  • kwantitatieve groeistoornissen. Binnen deze groei wordt onderscheid gemaakt in:

    • Hypertrofie: Het orgaan wordt groter, doordat de individuele cellen groter worden. Dit kan een pathologisch of fysiologisch proces zijn. Pathologisch: het groeien van het hart bij hypertensie of klepafwijkingen. Fysiologische hypertrofie: het groeien van de uterus bij zwangerschap en het groeien van de spieren bij bodybuilders.

    • Hyperplasie: Het orgaan wordt groter doordat de cellen zich delen. Dit kan een pathologisch of fysiologisch proces zijn. Pathhhologisch: prostaatgroei bij oudere mannen. Fysiologisch: lacterende mamma. Er kan ook een combinatie voorkomen van hyperplasie en hypertrofie.

    • Atrofie: Het orgaan wordt kleiner doordat zowel de grootte als het aantal cellen in het orgaan afneemt. Dit kan optreden als een orgaan nier meer van bloed wordt voorzien, niet meer wordt geïnnerveerd, geen hormonale beïnvloeding meer krijgt of niet meer beweegt.

    • Hypoplasie: Het orgaan is niet volledig tot ontwikkeling is gekomen. Het orgaan bevat hierdoor minder cellen dan in de normale situatie en is dus kleiner.

    • Aplasie: Het orgaan is wel aangelegd, maar niet tot ontwikkeling gekomen.

    • Agenese: Het orgaan is niet aangelegd.
       

  • Kwalitatieve groeistoornissen: Binnen deze groep wordt onderscheid gemaakt tussen:

  • Metaplasie: Een uitgerijpt gedifferentieerd weefsel gaat over in een ander uitgerijpt gedifferenteerd weefsel. Dit kan bijvoorbeeld optreden bij chronische irritatie. Er is dan sprake van een verandering in celtype, die beter bestand is tegen de stress-situatie. Deze verandering is reversibel. Een voorbeeld is de verandering van cilinderepitheel naar plaveiselepitheel in de bronchi bij roken.

  • Dysplasie: Er is sprake van abnormale rijping, waardoor het weefsel ordeloos wordt. De cellen zien er afwijkend uit. Er verlies van uniformiteit en differentiatie. Er zijn vaak meer celdelingen dan normaal. Er kan

  • .....read more
Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 2

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 2

Deze samenvatting van de colleges is gebaseerd op het studiejaar 2013-2014.

HC 3 – oncologie van de longen

 

Incidentie van longkanker is 11500 per jaar in Nederland en per jaar gaan er ook zo'n 10000 mensen dood aan longkanker. Het is de vierde meest voorkomende vorm van kanker. Het is wel de meest dodelijkste vorm. De verhouding tussen mannen en vrouwen met longkanker is 1.55:1.00. 1 op de 15 mannen krijgt longkanker voor het 75 jaar. Bij vrouwen is dit 1 op de 25.

 

Het grootste risico voor het krijgen van longkanker is roken. Zo'n 85-90% van de patiënten met longkanker hebben gerookt, of roken. Het risico op longkanker neemt ook al toe door passief roken met 19%. Er gaan in Nederland zo'n 200 mensen dood ten gevolge van passief roken. Inmiddels is het meeroken veel minder.

 

Roken is dus een risicofactor voor het krijgen van longkanker. Dit wil niet zeggen dat als je nooit gerookt heb, je geen longkanker kan krijgen. Roken verhoogt de kans op longkanker, keelkanker, blaaskanker, hart-en vaatziekten en COPD.
 

Als je het hebt over preventie, dan heb je het over het vermijden van risicofactoren. Omgevingsfactoren spelen namelijk een grote rol in het ontwikkelen van longkanker. Gedacht wordt dat genetica hierbij ook een rol speelt. Dit is echter nog niet aangetoond. Screening wordt op dit moment nog niet toegepast. Er zou bij screening gebruik kunnen worden gemaakt van een CT-thorax. Een X-thorax en sputum cytologie zijn hiervoor niet geschikt.

Er zijn twee belangrijke soorten longkanker

  • NSCLC: non small cell lung carcinoma. Het niet-kleincellig longcarcinoom

  • SCLC: small cell lung carcinoma.
     

Het is belangrijk om te weten met welke van de twee je te maken hebt voor de behandeling en de prognose.
 

Als je kijkt naar het niet-kleincellig longcarcinoom onderscheiden we het adenocarcinoom, het plaveiselcelcarcinoom en het grootcellig ongedifferentieerd carcinoom. Ook hier is het onderscheid belangrijk voor de soort therapie, met name binnen de chemotherapie.
 

In zo'n 20% van de gevallen gaat het om een kleincellig longcarcinoom. De rest is niet-kleincellig.
 

Symptomen van longkanker zijn over het algemeen zeer aspecifiek. Er kunnen klachten zijn van hoesten, kortademigheid, hemoptoë, thoracale pijn, pneumonie, gewichtsverlies, algehele malaise, koorts en gegeneraliseerde zwakte. De longtumor zelf kan geen pijn veroorzaken, want in het longweefsel zelf zitten geen pijnreceptoren. Wanneer de tumor ingroeit in de pleura kan er.....read more

Access: 
Public
Oefentoetsen bij Gezonde & Zieke Cellen 2 (GZC)

Oefentoetsen bij Gezonde & Zieke Cellen 2 (GZC)

Drie oefentoetsen, gebaseerd op 2007, 2008 & 2009. Let op: alleen de oefentoets van 2009 heeft antwoorden.

Oefentoets 1 (2009)

 

Algemene oncologie

 

1. Een voorbeeld van een tumor die overwegend hematogeen metastaseert is het:

a. mammacarcinoom

b. ovariumcarcinoom

c. niercelcarcinoom

 

2. Longmetastasen van een schildkliercarcinoom zijn een voorbeeld van metastasering via de:

a. vena pulmonalis

b. vena cava

c. vena porta

 

3. Het ontstaan van een urotheelcelcarcinoom van de blaas, is geassocieerd met

a. roken

b. Schistosoma infectie

c. asbest contact

 

4. Welke van de volgende micro-organismen kan gezien worden als een biologische verwekker van kanker?

a. Epstein-Barr-virus

b. Cytomegalie virus

c. Hepatitis A virus

 

5. Tot de meest frequente vormen van kanker bij kinderen horen:

a. melanomen

b. hersentumoren

c. longtumoren

 

6. Bij het typische incidentie-patroon van een West-Europees land , hoort een relatief lage incidentie van:

a. coloncarcinoom

b. cervixcarcinoom

c. longcarcinoom

 

Mamma

 

7. Alvorens tot een operatieve behandeling over te gaan, wordt bij de verdenking op mammacarcinoom eerst de zgn. “triple diagnostiek” verricht. Dit houdt in:

a. lichamelijk onderzoek, mammografie en echografie

b. mammografie, echografie en weefseldiagnostiek (cytologie en/of histologie)

c. lichamelijk onderzoek, mammografie/echografie en weefseldiagnostiek

 

8. Welke zenuwen komt u allemaal tegen in de oksel bij een okselklierdissectie? Geef het beste antwoord.

a. nn intercostobrachialis en n thoracicus longus

b. n axillaris, n brachialis en n thoracodorsalis

c. nn intercostobrachialis, n thoracicus longus en n thoracodorsalis

 

9. Bij een multifocaal mammacarcinoom, zonder doorgroei of infiltratie van de huid is

a. een gemodificeerde radicale mastectomie geïndiceerd

b. ablatio van de mamma in combinatie met een schildwachtklier procedure een goede behandeling

c. een mammasparende behandeling mogelijk

 

10. Er bestaan verschillende soorten mammacarcinomen. Welke komt verreweg het meeste voor?

a. invasief lobulair mammacarcinoom

b. slijmvormend adenocarcinoom

c. invasief ductaal carcinoom

 

11. Patiënte ondergaat een ablatio mammae wegens DCIS graad III. Dit is radicaal verwijderd. Welke nabehandeling zal nu volgen?

a. radiotherapie

b. hormoontherapie

c. geen

 

12. Patiënt ondergaat een segment excisie van de mamma wegens DCIS graad I. Dit is niet radicaal verwijderd. Welke nabehandeling zal nu volgen?

a. radiotherapie

b. re-excisie

c. hormoontherapie

 

Longziekten

 

13. Mediastinoscopie is belangrijk voor:

a. het vaststellen van de aard van de tumor (kleincellig of niet-kleincellig)

b. stadiering van een longcarcinoom

c. diagnostiek van perifeer gelegen longtumoren

 

14. Een patiënt met een longcarcinoom heeft een verhoogd alkalische fosfatase en hypercalciemie. In dit geval is het verstandig het standaard disseminatie onderzoek uit te breiden met:

a. een echografie of CT-scan van de bovenbuik

b. een CT-scan van de hersenen

c. een botscintigrafie

 

15. Een kleincellig longcarcinoom wordt in principe behandeld met:

a. chemotherapie

b. chirurgie

c. radiotherapie

 

16. Als co-morbiditeit bij patiënten met.....read more

Access: 
Public
Begrippen bij Gezonde & Zieke Cellen 2 (GZC)

Begrippen bij Gezonde & Zieke Cellen 2 (GZC)

Bulletpoint samenvatting voor het vak GZC II met alle belangrijke begrippen met toelichting. Gebaseerd op 2014-2015.

Bulletpoint samenvatting

.....read more

Algemeen

  • neoplasie

nieuwvorming

  • tumor

abnormale massa waarvan groei die van normale weefsels overstijgt, ongecoördineerd is en doorgaat nadat de stimulus is gestaakt

  • hamartoom

een afwijking, die histologisch de normale componenten toont van het orgaan waarin de afwijking gelokaliseerd is, maar in een abnormale rangschikking en graad van differentiatie

bron: Ned Tijdschr Geneeskd. 1990;134:481-3 naar Albrechts, die de term hamartoom voor het eerst omschreef

  • choristoom

normaal weefsel op de verkeerde locatie

  • morfie (plyo-, aniso-, poly-)

toegenomen variatie in kern (vorm, grootte, etc..)

  • hyperchromasie

kernen zijn donkerder door toegenomen hoeveelheid DNA

  • kern-cytoplasma-ratio

verhouding van kerngrootte ten opzichte van de hoeveelheid cytoplasma

  • polariteit

oriëntatie van de kernen in het cytoplasma

  • metaplasie

reversibele verandering van een celtype wordt verwisseld voor een ander als reactie op een prikkel; verandert terug als je de prikkel “weghaalt”; wanneer metaplasie sneller plaatsvindt of zonder prikkel kan dit een predispositie voor maligniteit zijn

  • hyperplasie

toename van het aantal cellen

  • dysplasie

metaplasie met polymorfie, toegenomen aantal nucleoli, meer mitose, verlies van eigenschappen, verlies van architectuur

  • differentiatiegraad

in hoeverre zie je nog het originele weefsel: goed, matig (tumor zichtbaar, maar je ziet van welk weefsel), slecht (te veel tumor om te zien van welk weefsel het afkomstig is), anaplasie/ongedifferentieerd

  • benigne vs maligne

benigne is niet invasief, niet destructief, metastaseert niet; krijgt uitgang –oom; benigne tumoren kunnen wel klinisch relevant zijn als ze andere weefsels verdrukken (kan het geval zijn bij een meningioom)

  • adenoom

tumor van slijmvliezen

  • leiomyoom

vleesboom

  • kenmerken maligniteit

invasief, destructief, lymfogene en/of hematogene metastasering; krijgen de naam –sarcoom of –carcinoom; uitzonderingen: lymfoom, mesothelioom en melanoom (zijn maligne!)

  • metastaseren

als tumorcellen in het “doelwitorgaan” een nieuwe tumor hebben gevormd spreekt men van metastase, route die wordt gevolgd:

 

bron: introductiecollege GZC II

Access: 
Public
Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Oefententamens

Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Oefententamens

Bevat leeropdrachten bij Gezonde & Zieke Cellen 2 (GZC 2), gebaseerd op 2015-2016

WEEK 1: Leeropdrachten

MTE 1 – Borstkanker

  1. Hoe is het natuurlijke beloop van borstkanker?

Aanvankelijk is er sprake van een carcinoma in situ, die kan overgaan in een maligne vorm. Wanneer dit gebeurt, is niet bekend. Borstkanker heeft veelal een lage groeifractie (cellen in celcyclus) met een verdubbelingstijd van gemiddeld ruim 200 dagen. Tumoren van 1-2 cm noemen we klinisch vroeg ontdekte carcinomen, hoewel de tumor biologisch dan al ten minste twee derde van zijn totale groei heeft ondergaan en er derhalve eerder van een late ontdekking sprake is. Lokale infiltrerende groei is het gevolg van de vermeerdering van tumorcellen in het borstklierweefsel, waarin neoplastische groei is ontstaan. De meeste tumoren worden gevonden in het laterale bovenkwadrant, waar zich het meeste mammaweefsel bevindt. Bij microscopisch onderzoek worden echter meer, veelal niet-infiltrerende, onafhankelijke carcinomen gevonden. Infiltrerende ingroei vindt plaats langs de klierbuisjes, de bindweefselstrengen en het weinig weerstand biedende vetweefsel in de borst. Tumorcellen kunnen lymfevaten en bloedvaten op dezelfde wijze als witte bloed lichaampjes penetreren. Op deze wijze kan al voor de tumor ontdekt is metastasering plaatsvinden (Van der Velde, 7e druk, 2005).

  1. Wat is de invloed van behandeling op het natuurlijke beloop?

Steeds meer gegevens tonen aan dat behandeling in een vroege fase en het bereiken van een plaatselijke genezing van invloed zijn op de uiteindelijke genezingskans.

  • Chirurgie.

Er zijn twee mogelijkheden: de mammasparende operatie en de gemodificeerde radicale mastectomie. Welke het wordt, hangt af van tumorgrootte, calcificaties, het te verwachten cosmetische resultaat en de wens van de patiënt. Multicentriciteit en macroscopische irradicaliteit zijn contra-indicaties voor MST (mamma-sparende therapie). De radicale mastectomie bestaat uit een ablatio mammae inclusief een okselklierdissectie. Bij het okselkliertoilet worden de n. thoracodorsalis en de n. thoracicus longus zo mogelijk gespaard. De schildwachtklierprocedure is een geaccepteerd alternatief voor de okseldissectie. De beste resultaten worden bereikt met een combinatie van preoperatieve lymfoscintigrafie met radiocolloïd en preoperatieve injectie met patentblauw. Contra-indicaties zijn multipele tumorhaarden, tumor groter dan T2 en klinisch verdachte okselklieren. Bij een positieve schildwachtklier dient okselklierdissectie/okselkliertoilet te volgen.

  • Radiotherapie.

Reduceert het.....read more

Access: 
Public
Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Notes (1415)

Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Notes (1415)

Bevat aantekeningen bij de colleges, werkgroepen etc. gebaseerd op het studiejaar 2014-2015

WEEK 1

Deel 1 – Hoorcolleges

HC 1 – Introductiecollege

Er zijn twee soorten gecontroleerde groei van cellen: normale groei (bijvoorbeeld herstel na weefselschade of turnover van maagslijmvlies) en adaptatie. Wanneer groei ongecontroleerd is, is er sprake van autonome groei ofwel tumorgroei: cellen delen onafhankelijk van signalen uit hun milieu.

Groeistoornissen
Groeistoornissen kunnen worden onderverdeel in gecontroleerde groeistoornissen en ongecontroleerde groeistoornissen. De gecontroleerde groeistoornissen worden weer verder onderverdeeld in:

  • Kwantitatieve groeistoornissen.

    • Hypertrofie: cellen worden groter. Dit kan een pathologisch of fysiologisch proces zijn. Pathologisch: het groeien van het hart bij hypertensie of klepafwijkingen. Fysiologisch: het groeien van de uterus bij zwangerschap en het groeien van de spieren bij bodybuilders.

    • Hyperplasie: cellen vermeerderen zich. Dit kan een pathologisch of fysiologisch proces zijn. Pathologisch: prostaatgroei bij oudere mannen. Fysiologisch: lacterende mammaklieren. Er kan ook een combinatie voorkomen van hyperplasie en hypertrofie.

    • Atrofie: grootte en aantal cellen neemt af. Dit kan optreden als een orgaan niet meer van bloed wordt voorzien, niet meer wordt geïnnerveerd, geen hormonale beïnvloeding meer krijgt of niet meer beweegt.

    • Hypoplasie: er zijn weinig cellen. Een orgaan is dan niet volledig tot ontwikkeling is gekomen en kleiner van omvang.

    • Aplasie: er zijn geen cellen. Het orgaan is wel aangelegd, maar niet tot ontwikkeling gekomen.

    • Agenese: het orgaan is niet aangelegd.

  • Kwalitatieve groeistoornissen:

  • Metaplasie: een compensatiemechanisme

  • .....read more
Access: 
Public

Samenvattingen, uittreksels, aantekeningen en oefenvragen bij Gezonde en Zieke Cellen 1, 2, 3 - UU - Studiebundel

Samenvatting van Gezonde en Zieke Cellen I (GZC)

Samenvatting van Gezonde en Zieke Cellen I (GZC)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Week 3

Hoorcollege 1

Om alle processen in een cel goed te coördineren is er communicatie door middel van signalen tussen de cellen nodig. Deze communicatie heet signaaltransductie. Als een cel geen enkel signaal van zijn omgeving krijgt, sterft hij af. Als hij signalen krijgt om te delen of te differentiëren, moet hij hierop gehoorzamen. Kanker is een ziekte waarbij de cellen niet meer gehoorzamen aan de signalen. Door een ophoping aan kankercellen in een weefsel kan het desbetreffende weefsel zijn functie niet meer uitvoeren en hieraan kan de patiënt overlijden.

Als een kankercel deelt, is zijn dochtercel ook een kankercel. Dit betekent dat er een verandering in het DNA is opgetreden die zorgt voor het ongehoorzame gedrag. De belangrijkste eigenschappen van een tumor zijn: niet reageren op signaalstoffen die de groei onderdrukken, blijvende snelle groei en uitblijvende celdood. Een veel voorkomende mutatie in het DNA dat kanker als gevolg heeft is de mutatie in één van de base van het gen voor het RAS-eiwit.

Deze moleculaire schakelaar kon normaal uit- en aangezet worden. De kankercel bleek een mutatie te hebben in een bepaald gen dat ervoor zorgde dat er een blokkade optrad waardoor de moleculaire schakelaar in actieve stand, niet meer uitgezet kon worden. De schakelaar staat continu aan en krijgt voortdurend een stimulus. Normaal gesproken is het Ras-eiwit als ingeschakeld als GTP is gebonden. Zodra GTP echter veranderd in GDP doordat een fosfaatgroep is gehydroliseerd, staat het eiwit uit. Later verlaat het GDP het GTP-bindend eiwit, zodat een nieuw GTP-molecuul er aan kan koppelen om het eiwit weer te activeren. Door de mutatie kan het GTP niet een fosfaatgroep loskoppelen en blijft daardoor na de binding aan GTP in de actieve toestand. De mutatie in het gen heeft tot gevolg dat er defecten zijn in de signaaltransductie en in de celcyclus controle. De communicatie tussen de cellen vindt niet meer goed plaats. Dit leidt tot kanker. Het krijgen van kanker is een kansproces. Hoe ouder je wordt, hoe meer kans je hebt op het krijgen van kanker. Oncogenen zijn gemuteerde genen die een positieve bijdrage leveren aan het ontstaan van kanker. Tumorsuppressie genen zijn genen die het ontstaan van kanker tegenwerken. Inactiveren van deze genen draagt ook bij aan het ontstaan van kanker.

Er zijn vier verschillende vormen van celcommunicatie.

  1. Endocriene signalen: Hormonen die via de bloedbaan

  2. .....read more
Access: 
Public
Notes bij Gezonde en Zieke Cellen 1 (2015-2016)

Notes bij Gezonde en Zieke Cellen 1 (2015-2016)

Deze aantekeningen zijn gebaseerd op 2015-2016

Week 1

Hoorcollege 1: Cellen zijn er in vele soorten en maten (21-9-2015)

De cel is de kleinste organische eenheid in het lichaam en wordt afgesloten door een membraan. In de cel zitten verschillende organellen met een eigen functie, die ook omhuld worden door een membraan. De verschillende organellen die zich in de cel bevinden zijn de celkern, het golgi apparaat, het peroxisoom, het lysosoom, de mitochondria, vesicels en het endoplasmatisch reticulum. Door middel van aankleuren kunnen onder de microscoop de verschillende onderdelen van de cel en de aanwezige eiwitten duidelijker zichtbaar worden gemaakt. Cellen zijn heel dynamisch door de eiwitten in de cel. Er zijn verschillende soorten cellen met verschillende vormen en maten. Een spiercel ziet er anders uit dan een epitheelcel. Ook hebben fibroblasten bijvoorbeeld een hele andere functie dan spiercellen. Fibroblasten zijn cellen van het bindweefsel die collageen produceren en dus stevigheid geven aan weefsels, terwijl spiercellen voor beweging zorgen. Cellen vermenigvuldigen, sterven en specialiseren zich en daarnaast werken ze samen met en communiceren ze met andere cellen. De cel bestaat voor een groot gedeelte uit water en is een goed oplosmiddel voor polaire stoffen. De mens bestaat voor 70% uit water. Hydrofiele stoffen zijn stoffen die goed oplosbaar zijn in water en hydrofobe stoffen lossen niet op in water. Water is belangrijk, omdat het een oplosmiddel is voor hydrofiele (polaire) stoffen. Water is zelf ook een polair molecuul, wat betekent dat de negatieve en positieve lading in het molecuul niet gelijk verdeeld zijn. Water verdrijft polaire (hydrofobe) stoffen, zoals bijvoorbeeld vet. De cel maakt gebruik van amfipathische/amfifiele stoffen, die aan de ene kant een polaire kop en aan de andere kant een apolair (hydrofobe) staart (vetzuur) hebben. De amfipatsche stoffen kunnen met elkaar micellen vormen. Er ontstaat als het ware een bolletje doordat de hydrofobe staarten bij elkaar gaan zitten en de hydrofiele koppen zich naar buiten keren. Deze koppen gaan interacties aan met het water.

De opbouw van een celmembraan ziet er ongeveer hetzelfde uit. Zowel binnen als buiten de cel is een polaire omgeving waar de polaire koppen interacties mee aangaan. De koppen keren zich naar buiten en de apolaire staarten steken naar elkaar toe. Hierdoor ontstaat er een dubbele laag. De cel communiceert met de buitenkant (extracellulaire ruimte) door middel van eiwitten die door de membranen heen steken. Het deel van het eiwit dat zich in het celmembraan bevindt is hydrofoob. De cel bestaat naast 70% water uit 30% chemische stoffen. Dit zijn voornamelijk eiwitten, DNA, RNA, lipiden en suikers, dit zijn macromoleculen. Deze stoffen bestaan uit subunits, die gepolymeriseerd worden en zo lange ketens vormen. Bij eiwitten bijvoorbeeld zijn de subunits de 20 aminozuren. Voor DNA en RNA zijn er 4 nucleotiden. De losse subunits worden met covalente.....read more

Access: 
Public
Notes bij Gezonde en Zieke Cellen 1 (2014-2015)

Notes bij Gezonde en Zieke Cellen 1 (2014-2015)

Deze aantekeningen zijn gebaseerd op 2014-2015

Week 1

Hoorcollege 1

De cel is de kleinste organische eenheid in het lichaam en wordt afgesloten door een membraan. In de cel zitten verschillende organellen (bijvoorbeeld de celkern) met een eigen functie, die ook omhuld worden door een membraan. Door middel van aankleuren kunnen onder de microscoop de verschillende onderdelen van de cel en de aanwezige eiwitten duidelijker zichtbaar worden gemaakt. Cellen zijn heel dynamisch door de eiwitten in de cel. Er zijn verschillende soorten cellen met verschillende vormen en maten. Een spiercel ziet er anders uit dan een epitheelcel.

De cel bestaat voor een groot gedeelte uit water en is een goed oplosmiddel voor polaire stoffen. De mens bestaat voor 70% uit water. Water verdrijft echter vet, een hydrofobe stof. De cel maakt gebruik van amfipathische/amfifiele stoffen, die aan de ene kant een polaire kop en aan de andere kant een apolair (hydrofobe) staart (vetzuur) hebben. De amfipatsche stoffen kunnen met elkaar micellen vormen. Er ontstaat als het ware een bolletje doordat de apolaire staarten bij elkaar gaan zitten en de polaire koppen zich naar buiten keren. Deze gaan interacties aan met het water.

De opbouw van een celmembraan ziet er ongeveer hetzelfde uit. Zowel binnen als buiten de cel is een polaire omgeving waar de polaire koppen interacties mee aangaan. De koppen keren zich naar buiten en de apolaire staarten steken naar elkaar toe. Hierdoor ontstaat er een dubbele laag. De cel communiceert met de buitenkant (extracellulaire ruimte) door middel van eiwitten die door de membranen heen steken. Het deel van het eiwit dat zich in het celmembraan bevindt is hydrofoob.

De cel bestaat naast 70% water uit chemische stoffen. Dit zijn voornamelijk eiwitten, DNA, RNA, lipiden en suikers. Deze stoffen bestaan uit subunits, die gepolymeriseerd worden en zo lange ketens vormen. Bij eiwitten bijvoorbeeld zijn de subunits de 20 aminozuren. Voor DNA en RNA zijn er 4 nucleotiden. De losse subunits worden met covalente bindingen aan elkaar gekoppeld. De eenheden worden aan elkaar gekoppeld onder afsplitsing van water (condensatiereactie). De covalente verbindingen binnen een molecuul kunnen verbroken worden onder invloed van water (hydrolysereactie). De losse moleculen die ontstaan tijdens een condensatiereactiegaan ook een interactie.....read more

Access: 
Public
Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Notes (2015-2016)

Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Notes (2015-2016)

Bevat aantekeningen bij de colleges, werkgroepen etc. gebaseerd op het studiejaar 2015-2016

WEEK 1

HC – Introductiecollege

Er zijn twee soorten gecontroleerde groei van cellen: normale groei (bijvoorbeeld herstel na weefselschade of turnover van maagslijmvlies) en adaptatie. Wanneer groei ongecontroleerd is, is er sprake van autonome groei ofwel tumorgroei: cellen delen onafhankelijk van signalen uit hun milieu.

Groeistoornissen

Groeistoornissen kunnen worden onderverdeel in gecontroleerde groeistoornissen en ongecontroleerde groeistoornissen. De gecontroleerde groeistoornissen worden weer verder onderverdeeld in:

  • Kwantitatieve groeistoornissen.

    • Hypertrofie: cellen worden groter. Dit kan een pathologisch of fysiologisch proces zijn. Pathologisch: het groeien van het hart bij hypertensie of klepafwijkingen. Fysiologisch: het groeien van de uterus bij zwangerschap en het groeien van de spieren bij bodybuilders.

    • Hyperplasie: cellen vermeerderen zich. Dit kan een pathologisch of fysiologisch proces zijn. Pathologisch: prostaatgroei bij oudere mannen. Fysiologisch: lacterende mammaklieren. Er kan ook een combinatie voorkomen van hyperplasie en hypertrofie.

    • Atrofie: grootte en aantal cellen neemt af. Dit kan optreden als een orgaan niet meer van bloed wordt voorzien, niet meer wordt geïnnerveerd, geen hormonale beïnvloeding meer krijgt of niet meer beweegt.

    • Hypoplasie: er zijn minder

  • .....read more
Access: 
Public
Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Notes (1415)

Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Notes (1415)

Bevat aantekeningen bij de colleges, werkgroepen etc. gebaseerd op het studiejaar 2014-2015

WEEK 1

Deel 1 – Hoorcolleges

HC 1 – Introductiecollege

Er zijn twee soorten gecontroleerde groei van cellen: normale groei (bijvoorbeeld herstel na weefselschade of turnover van maagslijmvlies) en adaptatie. Wanneer groei ongecontroleerd is, is er sprake van autonome groei ofwel tumorgroei: cellen delen onafhankelijk van signalen uit hun milieu.

Groeistoornissen
Groeistoornissen kunnen worden onderverdeel in gecontroleerde groeistoornissen en ongecontroleerde groeistoornissen. De gecontroleerde groeistoornissen worden weer verder onderverdeeld in:

  • Kwantitatieve groeistoornissen.

    • Hypertrofie: cellen worden groter. Dit kan een pathologisch of fysiologisch proces zijn. Pathologisch: het groeien van het hart bij hypertensie of klepafwijkingen. Fysiologisch: het groeien van de uterus bij zwangerschap en het groeien van de spieren bij bodybuilders.

    • Hyperplasie: cellen vermeerderen zich. Dit kan een pathologisch of fysiologisch proces zijn. Pathologisch: prostaatgroei bij oudere mannen. Fysiologisch: lacterende mammaklieren. Er kan ook een combinatie voorkomen van hyperplasie en hypertrofie.

    • Atrofie: grootte en aantal cellen neemt af. Dit kan optreden als een orgaan niet meer van bloed wordt voorzien, niet meer wordt geïnnerveerd, geen hormonale beïnvloeding meer krijgt of niet meer beweegt.

    • Hypoplasie: er zijn weinig cellen. Een orgaan is dan niet volledig tot ontwikkeling is gekomen en kleiner van omvang.

    • Aplasie: er zijn geen cellen. Het orgaan is wel aangelegd, maar niet tot ontwikkeling gekomen.

    • Agenese: het orgaan is niet aangelegd.

  • Kwalitatieve groeistoornissen:

  • Metaplasie: een compensatiemechanisme

  • .....read more
Access: 
Public
Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Oefententamens

Gezonde & Zieke Cellen 2 (GZC 2) - B2 - Geneeskunde - UU - Oefententamens

Bevat leeropdrachten bij Gezonde & Zieke Cellen 2 (GZC 2), gebaseerd op 2015-2016

WEEK 1: Leeropdrachten

MTE 1 – Borstkanker

  1. Hoe is het natuurlijke beloop van borstkanker?

Aanvankelijk is er sprake van een carcinoma in situ, die kan overgaan in een maligne vorm. Wanneer dit gebeurt, is niet bekend. Borstkanker heeft veelal een lage groeifractie (cellen in celcyclus) met een verdubbelingstijd van gemiddeld ruim 200 dagen. Tumoren van 1-2 cm noemen we klinisch vroeg ontdekte carcinomen, hoewel de tumor biologisch dan al ten minste twee derde van zijn totale groei heeft ondergaan en er derhalve eerder van een late ontdekking sprake is. Lokale infiltrerende groei is het gevolg van de vermeerdering van tumorcellen in het borstklierweefsel, waarin neoplastische groei is ontstaan. De meeste tumoren worden gevonden in het laterale bovenkwadrant, waar zich het meeste mammaweefsel bevindt. Bij microscopisch onderzoek worden echter meer, veelal niet-infiltrerende, onafhankelijke carcinomen gevonden. Infiltrerende ingroei vindt plaats langs de klierbuisjes, de bindweefselstrengen en het weinig weerstand biedende vetweefsel in de borst. Tumorcellen kunnen lymfevaten en bloedvaten op dezelfde wijze als witte bloed lichaampjes penetreren. Op deze wijze kan al voor de tumor ontdekt is metastasering plaatsvinden (Van der Velde, 7e druk, 2005).

  1. Wat is de invloed van behandeling op het natuurlijke beloop?

Steeds meer gegevens tonen aan dat behandeling in een vroege fase en het bereiken van een plaatselijke genezing van invloed zijn op de uiteindelijke genezingskans.

  • Chirurgie.

Er zijn twee mogelijkheden: de mammasparende operatie en de gemodificeerde radicale mastectomie. Welke het wordt, hangt af van tumorgrootte, calcificaties, het te verwachten cosmetische resultaat en de wens van de patiënt. Multicentriciteit en macroscopische irradicaliteit zijn contra-indicaties voor MST (mamma-sparende therapie). De radicale mastectomie bestaat uit een ablatio mammae inclusief een okselklierdissectie. Bij het okselkliertoilet worden de n. thoracodorsalis en de n. thoracicus longus zo mogelijk gespaard. De schildwachtklierprocedure is een geaccepteerd alternatief voor de okseldissectie. De beste resultaten worden bereikt met een combinatie van preoperatieve lymfoscintigrafie met radiocolloïd en preoperatieve injectie met patentblauw. Contra-indicaties zijn multipele tumorhaarden, tumor groter dan T2 en klinisch verdachte okselklieren. Bij een positieve schildwachtklier dient okselklierdissectie/okselkliertoilet te volgen.

  • Radiotherapie.

Reduceert het.....read more

Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 5

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 5

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

Verschillende tumoren van het zenuwstelsel

Er wordt bij deze tumoren onderscheid gemaakt tussen primaire en secundaire tumoren. De primaire tumoren ontstaan vanuit de hersenen, zenuwen en omgevende structuren zelf. Bij de secundaire tumoren gaat het om de metastasen in het zenuwstelsel, waarvan de primare tumor ergens anders in het lichaam is gelegen. De primaire tumoren kennen een incidentie van ongeveer 10 per 100.000 personen en meer dan de helft hiervan is kwaadaardig.

 

Ook kan er op anatomische gronden een onderverdeling gemaakt worden tussen intrinsieke en extrinsieke tumoren. Intrinsieke tumoren zijn de tumoren die zich binnen de begrenzing van de pia mater bevinden. Het gaat hierbij dus om tumoren die zich bevinden in de grote en kleine hersenen, hersenstam, verlengde merg en ruggenmerg. Deze tumoren gaan uit van zenuwcellen, hun uitlopers, niet-neuronale ondersteunende cellen (gliacellen) en afweercellen, mesenchymale cellen (zoals in de wand van bloedvaten) en metastasen. De extrinsieke tumoren bevinden zich buiten de pia mater en gaan uit van weefsels die het zenuwstelsel omgeven zoals het bot en de hersenvliezen en vanuit de weefsels die niet tot de hersenen gerekend worden, zoals de hypofyse. Weer een andere indeling maakt onderscheid tussen tumoren van het centrale zenuwstelsel aan de ene kant en tumoren van het perifere zenuwstelsel aan de andere kant. De meest voorkomende tumoren zijn de gliomen (neuro-epitheliale tumoren), de tumoren van de perifere zenuwen (schwannomen en neurofibromen), de meningeomen en de metastasen.

 

Over de pathogenese van primaire hersentumoren is nog maar weinig bekend. Wel bestaat er een relatie tussen het ontstaan ervan en schedelbestraling. Bijna altijd treedt een hersentumor sporadisch op, dus zonder dat er directe aanwijzingen bestaan op een verhoogde kans op hersentumoren in de familie. Wel zijn er enkele erfelijk overdraagbare aandoeningen bekend waarbij er een sterk verhoogd risico op hersentumoren bestaat. Voorbeeld hiervan zijn neurofibromatosis type 1 en 2, de ziekte van Von Hippel-Lindau en het syndroom van Turcot, het syndroom van Li-Fraumeni en het syndroom van Cowden. Er bestaat geen bewijs voor een relatie tussen hersentumoren en elektromagnetische straling afkomstig van telefoons en hoogspanningsmasten.

 

Hersentumoren

Symptomen van hersentumoren kunnen, op basis van het onderliggende pathofysiologische mechanisme, worden onderverdeeld in drie groepen:

  • Stoornissen in de prikkelgeleiding van neuronaal weefsel leidend tot epilepsie.

  • Verstoring van de neuronale functie ten gevolge van compressie of aantasting van neuronaal weefsel. Dit leidt tot ischemie en neurologische uitval.

  • Verhoging van de intracraniële druk leidend tot symptomen van hoofdpijn, misselijkheid en verschillende graden van bewustzijnsdaling.

 

Intrinsieke tumoren in het hersenparenchym veroorzaken vaker epileptische verschijnselen dan extrinsieke tumoren. Een eerste epileptische aanval zonder andere neurologische verschijnselen is dan altijd een reden voor verdere diagnostiek. Zowel intrinsieke als extrinsieke.....read more

Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 4

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 4

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.

HC 8 – Colorectaal carcinoom

 

Het colorectaal carcinoom leidt tot een aanzienlijke mortaliteit in de westerse wereld. Het is de 2e doodsoorzaak ten gevolge van kanker in Nederland, met 10.000 nieuwe gevallen per jaar. De 5-jaarsoverleving is 40-45%. De incidentie zal de komende jaren verder stijgen. Men verwacht dat er in 2015 14.000 nieuwe gevallen zullen zijn. Iedereen heeft een levenslang risico op het colorectaal carcinoom (CRC) van 5-6%.

 

Een coloncarcinoom ontwikkelt zich uit een poliep. De overgang van poliep naar CRC zal gemiddeld in een periode van 10 tot 15 jaar na het optreden van de poliep plaatsvinden. 30-50% van alle­ volwassenen in Nederland ontwikkelt adenomateuze poliepen, en ongeveer 10% van deze poliepen zal zich ontwikkelen tot een CRC. In de ontwikkeling van de normale situatie naar een poliep en uiteindelijk naar een carcinoom treden mutaties op in het DNA. Meestal treedt de ontwikkeling van normaal darmslijmvlies naar poliep op door een mutatie in het APC-gen (tumorsuppressorgen). Deze poliep ontwikkelit zich verder tot een carcinoom door een mutatie in het p53 gen(het verlies van apoptose met als gevolg ongeremde groei).

 

25% van de poliepen komen voor in rectum, 25% in het sigmoïd, 20% in het colon descendens, 10% in het colontransversum, 10% in het colon ascendens en 10% in het caecum. Linkszijdige carcinomen komen dus vaker voor dan rechtzijdige carcinomen. In totaal zijn 70% van de coloncarcinomen linkszijdig.

 

De kans dat een persoon een poliep ontwikkelt neemt toe met de leeftijd. Ook het voorkomen van coloncarcinoom neemt toe met de leeftijd. Het verwijderen van een poliep leidt tot een reductie in het risico op een CRC. Je verwijderd de afwijking, nog voordat het kanker is geworden. De poliep kan endoscopisch verwijderd worden, dit heet poliepectomie. De manier van verwijderen is afhankelijk van de soort poliep. Wanneer de poliep een duidelijke steel heeft, kan er een metale lis omheen gelegd worden. Vervolgens wordt de steel doorgebrand door stroom door deze lis te laten gaan. De poliep kan vervolgens voor histologisch onderzoek/pathologisch onderzoek worden aangeboden. Wanneer er sprake is van een poliep zonder steel wordt de mucose met behulp van een blauwe kleurstof.....read more

Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 3

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 3

Deze samenvatting van de colleges is gebaseerd op het studiejaar 2013-2014.

HC 6 – Urologische tumoren

Van de urologische tumoren komt prostaatkanker het meest voor. In de onderstaande tabel staan de urologische tumoren op volgorde van voorkomen.

 

Tumor

Soort

Incidentie

Prostaatkanker

Adenocarcinoom

10.000

Blaaskanker

Overgangsepitheelcarcinoom

4500

Nierkanker

Niercelcarcinoom

1500

Testistumoren

Kiemceltumoren

600

Peniskanker

plaveiselcelcarcinoom

120

 

Een prostaat heeft ongeveer de grootte van een walnoot en weegt ongeveer 20-25 gram. Vaak zal de prostaat bij oudere mannen vergroten. Dit verschijnsel wordt benigne prostaat hyperplasie genoemd. Er kunnen dan obstructieve en irritatieve klachten ontstaan. Onder obstructieve klachten vallen: moeite met op gang komen (hesitatie), slappe straal, onderbroken mictie, gevoel niet helemaal leeg te plassen. Onder irritatieve klachten vallen: toegenomen frequentie mictie (vaker dan om de 2 uur), imperatieve drang (moeite om uit te stellen) en nycturie (’s nachts naar de wc moeten).

 

Andere oorzaken waarbij deze klachten van de lagere urinewegen kunnen ontstaan zijn: sclerose van de blaashals, strictuur van de urethra of meatus urethra stenose.

 

De prostaat bestaat uit een centraal gebied met fibreus weefsel en een perifeer gebied met vooral klierbuisjes. Deze klierbuisjes maken vloeistoffen die in de urethra kunnen worden uitgestoten (bijmenging voor bevruchting). Bij vergroting van de prostaat zal de urethra vernauwen. Hierdoor moet de blaas meer kracht leveren om de urine te lozen. Er ontstaat blaashypertrofie. Later kan urineretentie ontstaan.

 

Er is een centrale zone, een perifere zone, een transitionele zone of peri-urethrale zone en een anterieure zone. Carcinomen ontwikkelen zich met name in de perifere zone. Hierdoor ontbreken bij carcinomen in eerste instantie de mictie klachten. Er is niet direct obstructie van de urethra. In een later stadium kan dit echter wel optreden. In de transitionele zone ontstaat met name hyperplasie.

 

Wanneer een patiënt zich op het spreekuur meld met klachen van de lagere urine wegen kunnen de volgende testen zinvol zijn:

  • Urine sediment/kweek

  • Rectaal toucher

  • Plasdagboek

  • Flow meting en residu na meting

  • .....read more
Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 3

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 3

Deze samenvatting van de colleges is gebaseerd op het studiejaar 2013-2014.

HC 6 – Urologische tumoren

Van de urologische tumoren komt prostaatkanker het meest voor. In de onderstaande tabel staan de urologische tumoren op volgorde van voorkomen.

 

Tumor

Soort

Incidentie

Prostaatkanker

Adenocarcinoom

10.000

Blaaskanker

Overgangsepitheelcarcinoom

4500

Nierkanker

Niercelcarcinoom

1500

Testistumoren

Kiemceltumoren

600

Peniskanker

plaveiselcelcarcinoom

120

 

Een prostaat heeft ongeveer de grootte van een walnoot en weegt ongeveer 20-25 gram. Vaak zal de prostaat bij oudere mannen vergroten. Dit verschijnsel wordt benigne prostaat hyperplasie genoemd. Er kunnen dan obstructieve en irritatieve klachten ontstaan. Onder obstructieve klachten vallen: moeite met op gang komen (hesitatie), slappe straal, onderbroken mictie, gevoel niet helemaal leeg te plassen. Onder irritatieve klachten vallen: toegenomen frequentie mictie (vaker dan om de 2 uur), imperatieve drang (moeite om uit te stellen) en nycturie (’s nachts naar de wc moeten).

 

Andere oorzaken waarbij deze klachten van de lagere urinewegen kunnen ontstaan zijn: sclerose van de blaashals, strictuur van de urethra of meatus urethra stenose.

 

De prostaat bestaat uit een centraal gebied met fibreus weefsel en een perifeer gebied met vooral klierbuisjes. Deze klierbuisjes maken vloeistoffen die in de urethra kunnen worden uitgestoten (bijmenging voor bevruchting). Bij vergroting van de prostaat zal de urethra vernauwen. Hierdoor moet de blaas meer kracht leveren om de urine te lozen. Er ontstaat blaashypertrofie. Later kan urineretentie ontstaan.

 

Er is een centrale zone, een perifere zone, een transitionele zone of peri-urethrale zone en een anterieure zone. Carcinomen ontwikkelen zich met name in de perifere zone. Hierdoor ontbreken bij carcinomen in eerste instantie de mictie klachten. Er is niet direct obstructie van de urethra. In een later stadium kan dit echter wel optreden. In de transitionele zone ontstaat met name hyperplasie.

 

Wanneer een patiënt zich op het spreekuur meld met klachen van de lagere urine wegen kunnen de volgende testen zinvol zijn:

  • Urine sediment/kweek

  • Rectaal toucher

  • Plasdagboek

  • Flow meting en residu na meting

  • .....read more
Access: 
Public
Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 2

Samenvatting bij de colleges bij Gezonde & Zieke Cellen 2 (GZC), week 2

Deze samenvatting van de colleges is gebaseerd op het studiejaar 2013-2014.

HC 3 – oncologie van de longen

 

Incidentie van longkanker is 11500 per jaar in Nederland en per jaar gaan er ook zo'n 10000 mensen dood aan longkanker. Het is de vierde meest voorkomende vorm van kanker. Het is wel de meest dodelijkste vorm. De verhouding tussen mannen en vrouwen met longkanker is 1.55:1.00. 1 op de 15 mannen krijgt longkanker voor het 75 jaar. Bij vrouwen is dit 1 op de 25.

 

Het grootste risico voor het krijgen van longkanker is roken. Zo'n 85-90% van de patiënten met longkanker hebben gerookt, of roken. Het risico op longkanker neemt ook al toe door passief roken met 19%. Er gaan in Nederland zo'n 200 mensen dood ten gevolge van passief roken. Inmiddels is het meeroken veel minder.

 

Roken is dus een risicofactor voor het krijgen van longkanker. Dit wil niet zeggen dat als je nooit gerookt heb, je geen longkanker kan krijgen. Roken verhoogt de kans op longkanker, keelkanker, blaaskanker, hart-en vaatziekten en COPD.
 

Als je het hebt over preventie, dan heb je het over het vermijden van risicofactoren. Omgevingsfactoren spelen namelijk een grote rol in het ontwikkelen van longkanker. Gedacht wordt dat genetica hierbij ook een rol speelt. Dit is echter nog niet aangetoond. Screening wordt op dit moment nog niet toegepast. Er zou bij screening gebruik kunnen worden gemaakt van een CT-thorax. Een X-thorax en sputum cytologie zijn hiervoor niet geschikt.

Er zijn twee belangrijke soorten longkanker

  • NSCLC: non small cell lung carcinoma. Het niet-kleincellig longcarcinoom

  • SCLC: small cell lung carcinoma.
     

Het is belangrijk om te weten met welke van de twee je te maken hebt voor de behandeling en de prognose.
 

Als je kijkt naar het niet-kleincellig longcarcinoom onderscheiden we het adenocarcinoom, het plaveiselcelcarcinoom en het grootcellig ongedifferentieerd carcinoom. Ook hier is het onderscheid belangrijk voor de soort therapie, met name binnen de chemotherapie.
 

In zo'n 20% van de gevallen gaat het om een kleincellig longcarcinoom. De rest is niet-kleincellig.
 

Symptomen van longkanker zijn over het algemeen zeer aspecifiek. Er kunnen klachten zijn van hoesten, kortademigheid, hemoptoë, thoracale pijn, pneumonie, gewichtsverlies, algehele malaise, koorts en gegeneraliseerde zwakte. De longtumor zelf kan geen pijn veroorzaken, want in het longweefsel zelf zitten geen pijnreceptoren. Wanneer de tumor ingroeit in de pleura kan er.....read more

Access: 
Public
Oefentoetsen bij Gezonde & Zieke Cellen 2 (GZC)

Oefentoetsen bij Gezonde & Zieke Cellen 2 (GZC)

Drie oefentoetsen, gebaseerd op 2007, 2008 & 2009. Let op: alleen de oefentoets van 2009 heeft antwoorden.

Oefentoets 1 (2009)

 

Algemene oncologie

 

1. Een voorbeeld van een tumor die overwegend hematogeen metastaseert is het:

a. mammacarcinoom

b. ovariumcarcinoom

c. niercelcarcinoom

 

2. Longmetastasen van een schildkliercarcinoom zijn een voorbeeld van metastasering via de:

a. vena pulmonalis

b. vena cava

c. vena porta

 

3. Het ontstaan van een urotheelcelcarcinoom van de blaas, is geassocieerd met

a. roken

b. Schistosoma infectie

c. asbest contact

 

4. Welke van de volgende micro-organismen kan gezien worden als een biologische verwekker van kanker?

a. Epstein-Barr-virus

b. Cytomegalie virus

c. Hepatitis A virus

 

5. Tot de meest frequente vormen van kanker bij kinderen horen:

a. melanomen

b. hersentumoren

c. longtumoren

 

6. Bij het typische incidentie-patroon van een West-Europees land , hoort een relatief lage incidentie van:

a. coloncarcinoom

b. cervixcarcinoom

c. longcarcinoom

 

Mamma

 

7. Alvorens tot een operatieve behandeling over te gaan, wordt bij de verdenking op mammacarcinoom eerst de zgn. “triple diagnostiek” verricht. Dit houdt in:

a. lichamelijk onderzoek, mammografie en echografie

b. mammografie, echografie en weefseldiagnostiek (cytologie en/of histologie)

c. lichamelijk onderzoek, mammografie/echografie en weefseldiagnostiek

 

8. Welke zenuwen komt u allemaal tegen in de oksel bij een okselklierdissectie? Geef het beste antwoord.

a. nn intercostobrachialis en n thoracicus longus

b. n axillaris, n brachialis en n thoracodorsalis

c. nn intercostobrachialis, n thoracicus longus en n thoracodorsalis

 

9. Bij een multifocaal mammacarcinoom, zonder doorgroei of infiltratie van de huid is

a. een gemodificeerde radicale mastectomie geïndiceerd

b. ablatio van de mamma in combinatie met een schildwachtklier procedure een goede behandeling

c. een mammasparende behandeling mogelijk

 

10. Er bestaan verschillende soorten mammacarcinomen. Welke komt verreweg het meeste voor?

a. invasief lobulair mammacarcinoom

b. slijmvormend adenocarcinoom

c. invasief ductaal carcinoom

 

11. Patiënte ondergaat een ablatio mammae wegens DCIS graad III. Dit is radicaal verwijderd. Welke nabehandeling zal nu volgen?

a. radiotherapie

b. hormoontherapie

c. geen

 

12. Patiënt ondergaat een segment excisie van de mamma wegens DCIS graad I. Dit is niet radicaal verwijderd. Welke nabehandeling zal nu volgen?

a. radiotherapie

b. re-excisie

c. hormoontherapie

 

Longziekten

 

13. Mediastinoscopie is belangrijk voor:

a. het vaststellen van de aard van de tumor (kleincellig of niet-kleincellig)

b. stadiering van een longcarcinoom

c. diagnostiek van perifeer gelegen longtumoren

 

14. Een patiënt met een longcarcinoom heeft een verhoogd alkalische fosfatase en hypercalciemie. In dit geval is het verstandig het standaard disseminatie onderzoek uit te breiden met:

a. een echografie of CT-scan van de bovenbuik

b. een CT-scan van de hersenen

c. een botscintigrafie

 

15. Een kleincellig longcarcinoom wordt in principe behandeld met:

a. chemotherapie

b. chirurgie

c. radiotherapie

 

16. Als co-morbiditeit bij patiënten met.....read more

Access: 
Public
Begrippen bij Gezonde & Zieke Cellen 2 (GZC)

Begrippen bij Gezonde & Zieke Cellen 2 (GZC)

Bulletpoint samenvatting voor het vak GZC II met alle belangrijke begrippen met toelichting. Gebaseerd op 2014-2015.

Bulletpoint samenvatting

.....read more

Algemeen

  • neoplasie

nieuwvorming

  • tumor

abnormale massa waarvan groei die van normale weefsels overstijgt, ongecoördineerd is en doorgaat nadat de stimulus is gestaakt

  • hamartoom

een afwijking, die histologisch de normale componenten toont van het orgaan waarin de afwijking gelokaliseerd is, maar in een abnormale rangschikking en graad van differentiatie

bron: Ned Tijdschr Geneeskd. 1990;134:481-3 naar Albrechts, die de term hamartoom voor het eerst omschreef

  • choristoom

normaal weefsel op de verkeerde locatie

  • morfie (plyo-, aniso-, poly-)

toegenomen variatie in kern (vorm, grootte, etc..)

  • hyperchromasie

kernen zijn donkerder door toegenomen hoeveelheid DNA

  • kern-cytoplasma-ratio

verhouding van kerngrootte ten opzichte van de hoeveelheid cytoplasma

  • polariteit

oriëntatie van de kernen in het cytoplasma

  • metaplasie

reversibele verandering van een celtype wordt verwisseld voor een ander als reactie op een prikkel; verandert terug als je de prikkel “weghaalt”; wanneer metaplasie sneller plaatsvindt of zonder prikkel kan dit een predispositie voor maligniteit zijn

  • hyperplasie

toename van het aantal cellen

  • dysplasie

metaplasie met polymorfie, toegenomen aantal nucleoli, meer mitose, verlies van eigenschappen, verlies van architectuur

  • differentiatiegraad

in hoeverre zie je nog het originele weefsel: goed, matig (tumor zichtbaar, maar je ziet van welk weefsel), slecht (te veel tumor om te zien van welk weefsel het afkomstig is), anaplasie/ongedifferentieerd

  • benigne vs maligne

benigne is niet invasief, niet destructief, metastaseert niet; krijgt uitgang –oom; benigne tumoren kunnen wel klinisch relevant zijn als ze andere weefsels verdrukken (kan het geval zijn bij een meningioom)

  • adenoom

tumor van slijmvliezen

  • leiomyoom

vleesboom

  • kenmerken maligniteit

invasief, destructief, lymfogene en/of hematogene metastasering; krijgen de naam –sarcoom of –carcinoom; uitzonderingen: lymfoom, mesothelioom en melanoom (zijn maligne!)

  • metastaseren

als tumorcellen in het “doelwitorgaan” een nieuwe tumor hebben gevormd spreekt men van metastase, route die wordt gevolgd:

 

bron: introductiecollege GZC II

Access: 
Public
BulletPoints bij Gezonde en Zieke Cellen (GZC) 3 - Geneeskunde - B3 - UU

BulletPoints bij Gezonde en Zieke Cellen (GZC) 3 - Geneeskunde - B3 - UU

Gebaseerd op het curriculum uit 2014-2015.

Week 1

Hematologische Maligniteiten

Hematopoiese

  • De aanmaak van bloedcellen (hematopoiese) vindt met name plaats in het beenmerg, verschillende soorten bloedcellen ontstaan hierbij vanuit een pluripotente stamcel.

  • Bij volwassenen vindt hematopoiese met name plaats in het bekken, wervelkolom en sternum, bij een kind in het gehele skelet en bij een foetus met name in de lever en milt.

  • Per dag worden er 400.000.000.000 cellen in het beenmerg aangemaakt

  • De levensduur van bloedcellen:

    • leukocyten en neutrofiele granulocyt enkele dagen
    • trombocyt 7-10 dagen
    • erytrocyt 120 dagen
    • lymfocyten enkele jaren
  • In de hematopoiese wordt een myeloïde en lymfoïde reeks onderscheiden. De Myeloïde voorlopercel ontwikkeld zich tot:

    • Macrofagen  
    • Erythrocyten
    • Basofielen
    • Eosinofielen
    • Neutrofielen
    • Monocyten
    • Dendritische cellen
    • Megakaryocyt, hieruit ontstaat uiteindelijk trombocyten
  • De Lymfoïde voorlopercel ontwikkeld zicht tot:

    • Natural killer cellen

    • T-helper cellen

    • Cytotoxische T-cellen

    • B-cellen

    • Dendritische cellen

 

B-cel ontwikkeling

  • Stamcel -> precursor B-cel -> naïeve B-cel -> mantelcel -> folliculaire blast -> centroblast -> centrocyt -> marginale zone B-cel -> plasmacel of geheugen-B-cel.

    • In het beenmerg ontstaat vanuit de lymfoïde stamcel een precursor B-cel.

    • Deze cel gaat via het bloed naar de lymfeklieren (naïeve B-cel).

    • Deze naïeve B-cel komt in een primaire follikel terecht.

    • Het primaire follikel ontwikkelt zich tot een secundaire follikel na antigeencontact (antigeen presentatie door dendritische cellen).

    • De B-cel die het best past op het antigeen zal prolifereren (selectie). De rest van de B-cellen gaat in apoptose.

    • De B-cel ontwikkelt zich in het secundaire follikel van mantelcel naar folliculaire blast naar centroblast naar centrocyt naar marginale zone B-cel.

    • De marginale zone B-cel wordt een plasmacel of een geheugen-B-cel.

  • De verschillende stadia van de B-cel worden gekenmerkt door een bepaalde expressie van eiwitten op het membraan (markers): TdT, CD79a en CD20. Zie onderstaande figuur.

  • Tijdens de vorming van B-lymfocyten in het beenmerg vind genherschikking plaats om de immunogloblulinereceptor van de B-cel te vormen. Tijdens dit proces worden verschillende gensegmenten gecombineerd om een specifiek gen te vormen. Hierdoor ontstaat een hoge diversiteit aan immunoglobulines.

  • Immunoglobulines hebben dezelfde basis structuur: een lichte en een zware keten.

    • Er zijn 5 typen zware ketens (welke specifiek zijn voor IgA, IgM, IgD, IgG, IgE).

    • Er zijn 2 typen lichte ketens (kappa en labda).

  • Het immunoglobuline molecuul bestaat daarnaast uit een Fab (fragment antigen binding), een variabel gedeelte welke het antigeen bindt, en Fc (fraction cristallizable), een constant gedeelte welke de secundaire pathway na antigeen binding activeert.

.....read more
Access: 
Public
Notes bij Gezonde en Zieke Cellen (GZC) 3 - Geneeskunde - B3 - UU

Notes bij Gezonde en Zieke Cellen (GZC) 3 - Geneeskunde - B3 - UU

Gebaseerd op het curriculum uit 2014-2015.

Week 1

Hoorcollege 1.1 – Hematologie introductie

De incidentie van acute leukemie in vergelijking met solide maligniteiten:
De incidentie van solide maligniteiten is veel hoger en deze aandoeningen worden veelal poliklinisch behandeld. Verschillende vormen van leukemie komen dus minder vaak voor, maar deze ziektebeelden zijn wel vaak zwaarder/ernstiger en ze worden veelal middels ziekenhuisopname behandeld.

Hematopoiese

De aanmaak van bloedcellen vindt met name plaats in het beenmerg, verschillende soorten cellen ontstaan hierbij vanuit een pluripotente stamcel: deze cel heeft de eigenschappen dat het zichzelf kan vernieuwen (self-renewal) en dat er vanuit de stamcel meerdere andere celtypen kunnen worden gevormd. De aanmaak van deze cellen vindt bij kinderen in het gehele skelet plaats, bij volwassenen met name in het bekken, wervelkolom en het sternum en bij een foetus vindt dit met name plaats in de milt en lever. Per dag worden er 400.000.000.000 cellen in het beenmerg aangemaakt.

De levensduur van rode bloedcellen en plaatjes is kort: erytrocyt 120 dagen, leukocyten en neutrofiele granulocyt 7-10 dagen, lymfocyten enkele jaren en trombocyt 7-10 dagen. Bij patiënten kan je wel rode bloedcellen en plaatjes aanbieden middels een infuus, maar met witte bloedcellen kan dat niet.

Er kan een myeloïde en lymfatische reeks worden onderscheiden.
 

Uit de myeloïde reeks ontstaan uiteindelijk:

  • Megakaryocyt, waaruit trombocyten ontstaan

  • Dendritische cellen

  • Monocyten

  • Neutrofielen

  • Eosinofielen

  • Basofielen

  • Erythrocyten

  • Macrofagen

Uit de lymfatische reeks ontstaan uiteindelijk:

  • Natural killer cellen

  • T-helper cellen

  • Cytotoxische T-cellen

.....read more
Access: 
Public
Follow the author: Medicine Supporter
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Comments, Compliments & Kudos:

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Check how to use summaries on WorldSupporter.org

Online access to all summaries, study notes en practice exams

How and why would you use WorldSupporter.org for your summaries and study assistance?

  • For free use of many of the summaries and study aids provided or collected by your fellow students.
  • For free use of many of the lecture and study group notes, exam questions and practice questions.
  • For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
  • For compiling your own materials and contributions with relevant study help
  • For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.

Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Use the menu above every page to go to one of the main starting pages
    • Starting pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
  2. Use the topics and taxonomy terms
    • The topics and taxonomy of the study and working fields gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
  3. Check or follow your (study) organizations:
    • by checking or using your study organizations you are likely to discover all relevant study materials.
    • this option is only available trough partner organizations
  4. Check or follow authors or other WorldSupporters
    • by following individual users, authors  you are likely to discover more relevant study materials.
  5. Use the Search tools
    • 'Quick & Easy'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject.
    • The search tool is also available at the bottom of most pages

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study for summaries and study assistance

Field of study

Check the related and most recent topics and summaries:
Activity abroad, study field of working area:
Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
5279