Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>
Deze samenvatting is gebaseerd op het studiejaar 2013-2014.
- Essential cell biology, hoofdstuk 5: DNA and chromosomes
- Essential cell biology, hoofdstuk 9: How genes and genomes evolve
- Essential cell biology, hoofdstuk 18: The cell division cycle
- Essential cell biology, hoofdstuk 19: Sex and genetics
- Elements of medical genetics, hoofdstuk 3: Chromosomes and cell division
- Elements of medical genetics, hoofdstuk 6: Developmental genetics
- Elements of medical genetics, hoofdstuk 18: Chromosome disorders
Essential cell biology, hoofdstuk 5: DNA and chromosomes
Niet pagina 174-176
In genen ligt de informatie opgeslagen die iets zegt over de persoonlijke kenmerken van een persoon en een bepaalde groep. Deze informatie wordt miljoenen keren van moeder- naar dochtercel overgegeven, zonder dat er uiteindelijk veel veranderingen zijn ontstaan.
Chromosomen zijn draadachtige structuren die in celkernen zitten. Ze worden zichtbaar tijdens de celdeling. Chromosomen bestaan uit DNA en eiwitten. Het DNA bevat de erfelijke informatie en de eiwitten spelen voornamelijk een rol in de verpakking en regulatie van de DNA-moleculen.
Een deoxyribonucleïnezuur-molecuul (DNA) bevat twee lange polynucleotide ketens. Beide strengen zijn opgebouwd uit 4 soorten nucleotiden. De twee strengen worden bij elkaar gehouden door waterstofbruggen tussen deze nucleotiden. Nucleotiden zijn opgebouwd uit een fosfaatgroep, een suikergroep en een base. Deze suikergroep bestaat uit een ring van 5 koolstofatomen, met daaraan 1 of meerdere fosfaatgroepen en een stikstofbase. De 4 verschillende basen zijn:
- Adenine (A)
- Cytosine (C)
- Guanine (G)
- Thymine (T)
De nucleotiden zitten aan elkaar vast doordat de suiker- en de fosfaatgroep met elkaar binden. Er ontstaat zo een soort “ruggengraat” met om en om steeds suiker en fosfaat. De twee strengen worden bij elkaar gehouden doordat de basen waterstofbruggen vormen. Door de manier waarop de nucleotiden gerangschikt zijn, ontstaat er een chemische polariteit. Dit wordt aangegeven door te verwijzen naar een 3’-kant (waar de hydroxylgroep zit) en een 5’-kant (waar de fosfaatgroep zit).
De twee polynucleotide ketens worden in een dubbele helix bij elkaar gehouden door de vorming van waterstofbruggen tussen de nucleotiden van de strengen. Hierdoor zitten de basen aan de binnenkant van de helix, en de suiker- en fosfaatgroepen aan de buitenkant. De basen binden echter niet willekeurig: A en T zitten altijd aan elkaar en C en G ook. Dit wordt een basenpaar genoemd. De twee basen van elk basenpaar passen goed bij elkaar omdat ze complementair zijn. De twee strengen lopen antiparallel, waardoor ze een tegenovergestelde polariteit hebben. De strengen krullen om elkaar heen en creëren de dubbele helix. Per hele bocht in de helix zitten 10 basenparen. De twee strengen zijn dus complementair. Dit is erg belangrijk voor de replicatie en reparatie van het DNA.
Elke base in het DNA kan gezien worden als een letter, alle letters samen zorgen voor een bepaalde code die voor iedereen anders is. Organismen verschillen van elkaar doordat de DNA-moleculen andere volgorden van nucleotiden hebben en hierdoor dus verschillende boodschappen bevatten.
Genen bevatten de instructies voor het produceren van eiwitten. Het DNA bevat de codes voor de eiwitten die geproduceerd moeten worden. Dit wordt gedaan door transcriptie, waarbij RNA wordt gevormd, en translatie, waarbij eiwitten worden gemaakt. De complete informatie van het DNA in een orangisme wordt het genoom genoemd.
Elke menselijke cel bevat ongeveer 2 meter aan DNA, terwijl de celkern maar een diameter heeft van 5-8 µm. In eukaryotische cellen zijn de lange DNA-moleculen verpakt in chromosomen, wat ervoor zorgt dat deze lange strengen in de celkernen passen. Bacteriën dragen hun genen in een rond DNA-molecuul. Dit wordt wel nog steeds een chromosoom genoemd, maar verschilt veel van de chromosomen in eukaryotische cellen.
In iedere cel zitten 2 kopieën van elk chromosoom, met uitzondering van de geslachtscellen en speciale, gedifferentieerde cellen zoals volwassen rode bloedcellen. Van elk paar is 1 chromosoom van de moeder en 1 van de vader. Dit worden homologe chromosomen genoemd. Het enige niet-homologe chromosomenpaar is de X en Y bij een jongen.
DNA-hybridisatie is een techniek die wordt gebruikt voor het vergelijken van chromosomen. Doordat de chromosomen in verschillende kleuren worden ‘geverfd’, kunnen ze worden onderscheiden en verdeeld worden in paren. Een karyotypering is wanneer er de volle set van chromosomen wordt weergegeven.
Een gen is een segment van het DNA dat de instructie bevat voor het aanmaken van een bepaald eiwit. Dit kan ook een instructie zijn voor het aanmaken van een RNA-molecuul als eindproduct. Het DNA van eukaryoten bevat ook grote stukken DNA die geen belangrijke functie lijken te hebben, ook wel junk-DNA. Verschillende soorten organismen hebben enorme verschillen in het DNA. Sommigen hebben veel kortere strengen dan andere soorten, anderen verschillen in hoe het DNA is verdeeld over de chromosomen.
Om een functioneel chromosoom te vormen, moeten de DNA-moleculen een celcyclus doorlopen. De twee fasen die in dit hoofdstuk aan de orde komen, zijn de interfase en de mitose. Tijdens de interfase zijn de chromosomen lange, dunne draden, die niet goed te zien zijn. Tijdens de mitose zijn de chromosomen zeer sterk gecondenseerd (gespiraliseerd). Hierdoor nemen de chromosomen minder ruimte in en gaat de verdeling van de chromosomen over de dochtercellen sneller.
De celkern wordt omgeven door het celmembraan (in het Engels: nuclear envelope), dat gevormd wordt door 2 membranen. Hierin zitten nucleaire poriën die betrokken zijn bij actief transport. Het celmembraan wordt ondersteund door de nucleaire lamina, een netwerk van proteïne filamenten die een dunne laag vormen. In de celkern liggen de chromosomen. Alle chromosomen hebben hierin een eigen ‘ligplaats’, zodat ze niet in elkaar verstrengeld raken.
Er zijn 2 typen eiwitten die binden aan het DNA om eukaryotische chromosomen te vormen. Eén daarvan is een histon. Histonen vormen nucleosomen. Je kunt het vergelijken met een kralenketting. De ketting is het DNA, en de kralen zijn de nucleosomen. Het DNA dat tussen 2 nucleosomen in ligt heet linker-DNA. Een nucleosoom bestaat uit een kern van 8 histonen (een octameer) waar een stuk DNA van 147 basenparen lang omheen gewikkeld zit. Deze ‘ketting’ heet een chromatinedraad en heeft ongeveer 1/3 van de lengte van het DNA. Omdat de histonen positief geladen zijn binden ze goed met de negatief geladen fosfaatgroepen van het DNA. Meestal wordt het DNA nog op andere manieren gecondenseerd. Er zijn verschillende niveaus van condensatie, zie hiervoor figuur 5-25, op bladzijde 187.
Er zijn meerdere manieren waarop eukaryotische cellen de structuur van chromatine snel kunnen aanpassen. Een chromatine-remodelleringscomplex is hier 1 van. Er wordt hierbij gebruik gemaakt van de energie die vrijkomt bij de hydrolyse van ATP. Hiermee kan de positie van het DNA dat om nucleosomen is gewikkeld, worden veranderd. Dit complex kan DNA ook losmaken van de nucleosomen, waardoor het beter bereikbaar wordt voor bepaalde eiwitten. Een andere manier is het veranderen van de chemische structuur van de histonen, door het toevoegen van acetyl-, fosfaat- of methylgroepen.
De sterkst gecondenseerde vorm van chromatine in de interfase heet heterochromatine. Dit is ongeveer 10% van een interfase chromosoom. Het meeste DNA dat geen genen bevat is meestal permanent gecondenseerd tot heterochromatine. Dit gebeurt ook met ongeveer 85% van 1 van de X-chromosomen van een vrouw. Hierdoor is dit dus inactief gemaakt. In elke cel wordt willekeurig 1 van de X-chromosomen hiervoor uitgekozen.
DNA dat niet zo sterk gecondenseerd is heet euchromatine. In deze vorm kunnen genen tot expressie komen en kan het DNA gedupliceerd worden.
Essential cell biology, hoofdstuk 9: How genes and genomes evolve
Pagina 315-317, 320-321
Het menselijk genoom bestaat uit 3,2 x 109 basenparen, die verdeeld zijn over 22 autosomen en 2 heterosomen. Mensen verschillen ongeveer 1 op de 1000 basenparen met elkaar. Met uitzondering van eeneiige tweelingen hebben geen 2 mensen hetzelfde DNA.
Opmerkelijk is dat maar een heel klein deel van het menselijke genoom daadwerkelijk codeert voor eiwitten. Het grootste gedeelte van ons DNA bestaat uit niet-coderende, evolutionaire overblijfselen. Het tweede opvallende kenmerk is dat een gen uit gemiddeld 29.000 basenparen bestaat, terwijl er maar 1.300 nodig zouden zijn op basis van de gemiddelde lengte van een eiwit (430 aminozuren).
Daarnaast is het ook verrassend dat het menselijke genoom relatief weinig genen bevat. De schatting is dat er ongeveer 25.000 genen zijn en dat scheelt niet veel met de aantallen van veel simpelere multicellulaire dieren.
Tot slot wijst de nucleotidesequentie van het menselijke genoom erop dat de informatie zich in een staat van wanorde bevindt. De belangrijke stukjes met informatie zitten verstopt tussen allerlei ‘junk’ delen.
Essential cell biology, hoofdstuk 18: The cell division cycle
Pagina 609-613
Cellen kunnen hun inhoud kopiëren en zich vervolgens delen. De cyclus van duplicatie en deling wordt de celcyclus genoemd. De details van deze cyclus verschillen per organisme, maar de hoofdlijnen zijn universeel. Om twee genetisch identieke dochtercellen te produceren moet het DNA van elk chromosoom in zijn geheel gekopieerd worden en daarna moeten de gerepliceerde chromosomen verdeeld of gesegregeerd worden over de dochtercellen.
De celcyclus van eukaryoten is onderverdeeld in vier fases. Onder een microscoop zijn de twee gebeurtenissen in de cyclus die het best zichtbaar zijn de mitose (hier deelt de nucleus) en de cytokinese (hier splitst de cel). Deze twee processen samen vormen de M-fase van de celcyclus. In een typische cel van een zoogdier duurt de M-fase maar ongeveer een uur.
De periode tussen de ene M-fase en de volgende wordt de interfase genoemd. De interfase wordt onderverdeeld in de G1-fase (G = gap, interval tussen het voltooien van de M-fase en het begin van de S-fase), de S-fase (S = synthese, DNA wordt gerepliceerd), en de G2 –fase (interval tussen eind van de S-fase en begin van de M-fase). Tijdens de gap-fases zorgt de cel ervoor dat het interne en externe milieu geschikt is voor de S-fase en de mitose. Tijdens de hele interfase is de cel bezig met de transcriptie van genen, het synthetiseren van eiwitten en het toenemen in massa. Het eerste zichtbare signaal dat een cel in de M-fase is aangekomen, is de condensatie van de chromosomen. De gedupliceerde chromosomen zijn dan zichtbaar onder de lichtmicroscoop.
Om te verzekeren dat al het DNA gerepliceerd wordt, heeft een cel een controlesysteem, bestaande uit regulerende eiwitten. Dit systeem werkt via een aantal checkpoints. Op deze punten kan de celcyclus indien nodig gestopt worden. Op deze manier gaat de cyclus niet over op de volgende stap voordat de cel daar goed op voorbereid is. Eén checkpoint zit in G1 en bevestigt dat de omgeving klaar is voor celdeling, voordat de S-fase begint. Een tweede checkpoint bevindt zich in G2 en zorgt ervoor dat de mitose niet begint totdat beschadigd DNA gerepareerd is. Het derde checkpoint is tijdens de mitose en zorgt dat de gerepliceerde chromosomen goed vastzitten aan de mitotische spoel, voordat de chromosomen uit elkaar getrokken worden (zie figuur 18-3 op blz. 613).
De basale organisatie van cellen is in alle eukaryoten hetzelfde, en de cellen gebruiken dezelfde soort controlemechanismen om de celcyclus te reguleren. Hierdoor kan de celcyclus in veel verschillende organismen bestudeerd worden en geven de bevindingen een universeel beeld.
Essential cell biology, hoofdstuk 19: Sex and genetics
Pagina 652-663
Aseksuele reproductie is de meest simpele en directe vorm van reproductie en zorgt ervoor dat de nakomelingen vrijwel gelijk zijn aan de ouder. Bij seksuele reproductie vindt uitwisseling van genomen plaats, hierdoor ontstaat een nakomeling die niet hetzelfde is als de ouders of een ander organisme. Bij seksuele reproductie zijn de organismen bijna geheel diploïd. Dit betekent dat elke cel twee exemplaren van elk chromosoom bevat (1 van elke ouder).
Geslachtschromosomen verschillen van de andere chromosomen. Deze chromosomen zorgen ervoor dat iemand een man of een vrouw is. Geslachtscellen worden ook wel gameten genoemd. Deze hebben in tegenstelling tot de andere cellen een haploïd aantal chromosomen. Als twee haploïde cellen worden samengevoegd ontstaat er een diploïde cel, dit is een zygote. Een allel is een bepaalde variant van een gen, de combinatie van allelen zijn in elk individu verschillend. Een kiemlijn is de lijn waarop cellen liggen die zorgen voor de productie van geslachtscellen. De cellen die zorgen voor de productie voor de rest van de cellen worden de somatische cellen genoemd.
Het mixen van de genomen, dus het samenkomen van de 2 haploïde cellen, zorgt ervoor dat er nieuwe combinaties genen ontstaan. De nieuwe combinatie van allelen is een willekeurig proces. Dit zorgt voor evolutie, doordat ouders kinderen krijgen met verschillende gencombinaties. Als er een verandering in het milieu plaatsvindt, is er een grotere kans dat 1 van die nakomelingen het goed overleefd. Er vindt ook selectie plaats, hierdoor zullen de organismen met de ‘beste’ genen overleven en nakomelingen produceren.
Meiose is het proces waarbij het aantal chromosomen wordt gehalveerd. Er ontstaan dan haploïde cellen, bij de mens ook wel geslachtscellen genoemd. Bij meiose begint het dupliceren van de chromosomen net zoals in de gewone deling. Deze tweeling kopieën worden zusterchromatiden genoemd. Ze zitten met een centromeer aan elkaar vast. Hierna verplaatsen de paren zich naar het midden van de cel. Er ontstaan poollichaampjes met eiwitdraden. Tussen de homologe chromosomen kunnen stukken uitgewisseld worden, dit wordt crossing-over genoemd. Bivalent betekent een paar homologe chromosomen. Tijdens de meiose vindt recombinatie plaats, dit is een proces waarbij er uitwisseling in DNA plaatsvindt (door crossing-over). Wanneer de profase is afgelopen gaan de homologen uit elkaar. Verder is crossing-over belangrijk voor een goede segregatie van de homologen. Tijdens het begin van de anafase worden de twee chromosomen van elkaar afgetrokken. Doordat er bij het chiasma crossing-over heeft plaatsgevonden, zullen de homologen wanneer ze uit elkaar worden gehaald een nieuwe structuur hebben.
Bij de meiose I ontstaan geen haploïde cellen, dat gebeurt tijdens de meiose II. Er ontstaan bij de meiose II weer eiwitdraden en de chromosomen gaan weer in het midden van de cel liggen. Wat er anders is dan bij meiose I, is dat de chromosomen niet weer worden verdubbeld. Er ontstaan uiteindelijk na de meiose II 4 haploïde cellen. (Zie Alberts pag. 660)
Tijdens de meiose worden echter ook fouten gemaakt. Wat veel voorkomt is non-disjunctie, dit zijn 2 homologen die niet van elkaar gaan. Hierdoor kan het zijn dat er van een bepaald chromosoom óf te veel aanwezig is, óf juist te weinig. Vele van deze embryo’s zullen dan ook niet overleven. Aneuploïdie is het groeien van een embryo met een fout aantal chromosomen.
Elements of medical genetics, hoofdstuk 3: Chromosomes and cell division
Niet pagina 45-47
DNA bestaat uit chromosomen. Deze zijn het beste zichtbaar tijdens celdeling. Elk chromosoom bestaat dan uit twee strengen, zusterchromatiden, die het resultaat zijn van DNA replicatie tijdens de S-fase van de cel. De twee chromatiden zitten aan elkaar vast in een punt dat het centromeer wordt genoemd. Het centromeer verdeelt een chromosoom in een q-arm (lange arm) en p-arm (korte arm). Het uiteinde van een chromosoom wordt een telomeer genoemd.
Bij mensen bevat een celkern 46 chromosomen, opgebouwd uit 22 paar autosomen en één paar geslachtschromosomen (XX bij een vrouw, XY bij een man). Somatische cellen zijn diploïd (46 chromosomen), geslachtscellen haploïd (23 chromosomen). Chromatine, de combinatie van DNA en histoneiwitten die de chromosomen omvat, bestaat in twee vormen. Euchromatine kleurt licht en bestaat uit genen die actief tot uiting komen. Heterochromatine daarentegen kleurt donker en is grotendeels opgebouwd uit inactieve, niet tot uiting komend, repetitief DNA. X- en Y-chromosomen worden geslachtschromosomen genoemd. Het Y-chromosoom is veel kleiner en bevat maar een paar genen die van functioneel belang zijn. Tegenwoordig zijn er methodes om alle chromosomen van een individu te analyseren, dit heet karyotypering.
Elk weefsel met levende cellen die delen kan gebruikt worden om chromosomen te bestuderen. Meestal worden lymfocyten uit het bloed gebruikt. Er wordt dan een sample toegevoegd aan een klein volume met een voedingsmedium, wat er voor zorgt dat de T-lymfocyten gaan delen. De cellen worden 3 dagen bewaard bij 37 graden en dan wordt er colchicine toegevoegd. Hierdoor worden cellen gearresteerd tijdens de metafase, dan zijn de chromosomen het meest zichtbaar omdat ze dan het sterkst gecondenseerd zijn. Daarna wordt saline toegevoegd, waardoor de chromosomen gefixeerd worden. Meestal wordt G-banding gebruikt om individuele chromosomen te identificeren door ze te kleuren. Door de kleuring krijgt elke chromosoom een karakteristiek bandenpatroon. Bij karyotype-analyse worden de chromosomen geteld en wordt het bandpatroon van de chromosomen grondig geanalyseerd. Elk chromosoom heeft een specifiek bandenpatroon.
FISH (Fluorescent In-Situ Hybridization) is erop gebaseerd dat een stuk enkelstrengs-DNA (een probe) kan binden met het complementaire gedeelte in een sample DNA. Bij FISH is de probe fluorescerend, waardoor hij na hybridisatie met het sample zichtbaar is.
Met CGH (Comparative Genomic Hybridization) kan een tekort of teveel aan chromosomen aangetoond worden. Test-DNA (van de patiënt) wordt rood gekleurd, normaal controle-DNA groen. De samples worden gemixt en hybridiseren met normale metafasechromosomen, en er ontstaat een mengkleur. Er verschijnt een afbeelding. Als het te testen sample meer DNA van een bepaald chromosoom bevat dan het controlesample, is die regio groener gekleurd. Andersom geldt hetzelfde, dan is er een regio roder gekleurd. Array CGH is een meer geavanceerde vorm van CGH, de fluorescentie wordt gevolgd met de computer en het kan worden toegepast om elke mogelijke vorm van een teveel of tekort aan DNA te identificeren.
Een punt op een chromosoom wordt beschreven door het nummer van het chromosoom, de arm ('p' voor de korte en 'q' voor de lange arm), de regio en de band. Vaak wordt de regio weggelaten (bijvoorbeeld: 15q12 staat voor chromosoom 15, lange arm, band 12). Een normaal karyotype van een man wordt weergegeven als 46,XY en van een vrouw als 46,XX. Bij een man met het syndroom van Down is het 47,XY+21 (+21 staat voor trisomie 21).
Celkerndeling wordt mitose genoemd. Voordat een cel de mitose ingaat, wordt elk chromosoom verdubbeld, zodat het bestaat uit twee chromatiden. Vervolgens scheiden de chromatiden en komen deze terecht in twee dochtercellen. De mitose bestaat uit de profase, prometafase, metafase, anafase en telofase. (Zie afbeelding 3.12 op blz. 38)
Tijdens het begin van de profase condenseren de chromosomen en begint de mitotische spoel te vormen. In de anafase splitst het centromeer van ieder chromosoom en de chromatiden gaan in de uiteinden van de cel liggen. In de telofase zijn de chromatiden volledig gescheiden. Het zijn nu onafhankelijke chromosomen bestaande uit een dubbele helix. Ze worden beiden omhuld door een nieuw kernmembraan. Het cytoplasma deelt zich ook en er ontstaan twee nieuwe diploïde dochtercellen.
Er wordt onderscheid gemaakt tussen numerieke en structurele chromosoomafwijkingen. Bij numerieke afwijkingen is er een teveel of tekort aan een of meer chromosomen.
Een extra chromosoom wordt een trisomie genoemd. De meeste gevallen van het syndroom van Down hebben trisomie 21. Het wordt meestal veroorzaakt doordat een paar homologe chromosomen niet goed gescheiden wordt tijdens de maternale meiose-I. Dit wordt nondisjunctie genoemd. Zeldzamer is het als nondisjunctie optreedt tijdens meiose-II en de zusterchromatiden niet uit elkaar gaan. Een fout in meiose-I zorgt ervoor dat een gameet twee homologe chromosomen heeft van één paar. Nondisjunctie in meiose-II leidt tot twee kopieën van een van de homologen van een chromosomenpaar. Nondisjunctie kan ook nog optreden tijdens een vroege mitotische deling in de ontwikkelende zygote. Dit leidt tot een of meer verschillende cellijnen, een fenomeen dat een mozaïek genoemd wordt. De oorzaak van nondisjunctie is onzeker. Het heeft waarschijnlijk te maken met de leeftijd van de moeder. (zie afbeelding 3.17 op blz. 43)
Monosomie is de afwezigheid van een chromosoom. Monosomie in een autosoom is nooit levensvatbaar. Gebrek aan een X of Y chromosoom leidt tot 45,X: het syndroom van Turner. Monosomie ontstaat door nondisjunctie of door een fout in de anafase.
Polyploïde cellen bevatten meerdere malen het aantal chromosomen, bijvoorbeeld 69 (triploïdie) of 92 (tetraploïdie). Dit wordt vrij vaak aangetroffen bij spontane miskramen. Er zijn maar een paar levende geboorten bekend met polyploïdie en ze gingen allemaal snel na de geboorte dood. Het kan veroorzaakt worden door een fout in de meiotische deling in een eicel of zaadcel, maar ook door bevruchting van een eicel door twee zaadcellen.
Structurele afwijkingen worden veroorzaakt door het breken van chromosomen en een reorganisatie in een andere configuratie. Er zijn gebalanceerde (genetische informatie is compleet) en ongebalanceerde (genetische informatie incompleet) varianten. Bij een ongebalanceerde vorm zijn er serieuze klinische gevolgen.
Bij translocaties is genetisch materiaal is verplaatst van de ene chromosoom naar een andere. Een reciproque translocatie omvat het breken van tenminste twee chromosomen en het uitwisselen van fragmenten. Meestal blijven er 46 chromosomen en als de fragmenten ongeveer van dezelfde grootte zijn kan de translocatie alleen zichtbaar worden met een techniek als FISH. Bij gebalanceerde reciproque translocaties kunnen er problemen ontstaan in de meiose. Er kan dan een ongebalanceerde variant ontstaan, met als gevolg een miskraam of een kind met meerdere afwijkingen. (zie afbeelding 3.19 en 3.20 op blz. 45)
Bij een deletie vindt er verlies van een deel van een chromosoom plaats, wat resulteert in monosomie voor dat bepaalde segment van het chromosoom. Er wordt onderscheid gemaakt in twee niveaus: microscopische deleties (Wolf-Hirschorn en cri-du-chatsyndroom) en submicroscopische microdeleties (met behulp van FISH).
Inserties zijn wanneer een segment van één chromosoom vervangen wordt door een ander chromosoom.
Bij inversies zijn in één chromosoom twee breuken ontstaan waardoor het tussenliggende deel op een andere manier is gereorganiseerd.
Elements of medical genetics, hoofdstuk 6: Developmental genetics
Pagina 103-104
Bij vrouwen wordt één van de twee X-chromosomen geïnactiveerd. Dit gebeurt na 15 à 16 dagen zwangerschap. Een van de twee wordt in iedere cel geïnactiveerd, en vervolgens is deze ook in alle dochtercellen niet actief. Als een X-chromosoom afwijkingen vertoont, wordt deze niet geactiveerd. De inactivering wordt gereguleerd door het XIST-gen: (‘X inactivation specific transcript). Niet het gehele X-chromosom wordt inactief, er blijven genen actief op het topje van de korte arm en een aantal andere loci op andere plaatsen op de lange en korte arm (bijvoorbeeld XIST). Als dit niet zo was zouden alle vrouwen het syndroom van Turner hebben. Een inactief X-chromosoom wordt een Barr body genoemd.
Elements of medical genetics, hoofdstuk 18: Chromosome disorders
Pagina 273-278
Er zijn veel chromosomale afwijkingen, hier worden de belangrijkste behandeld.
Syndroom van Down (trisomie 21)
Deze chromosomale afwijking heeft een incidentie van ongeveer 1:1000. Er is een sterk verband tussen de incidentie van Down syndroom en de toenemende leeftijd van de moeder. Klinische kenmerken zijn oplopende oogspleten, kleine oren en een uitstekende tong. Vaak is er ook sprake van hartafwijkingen. Kinderen met Down syndroom hebben een IQ tussen de 25 en 75. Meestal ontwikkelen ze Alzheimer later in hun leven.
Syndroom van Patau (trisomie 13) en Edwards Syndroom (trisomie 18)
Beide hebben een incidentie van ongeveer 1:5000 en de prognose is erg slecht. De meeste gevallen eindigen in een miskraam of de kinderen gaan heel snel dood. Als ze toch langer overleven zijn er zeer ernstige leerproblemen. In 90% van de gevallen is er een hartafwijking.
Triploïdie
Triploïdie (69,XXX, 69,XXY, 69,XYY) wordt vaak aangetroffen bij miskramen, maar zelden in een levend kind. Zo’n kind heeft altijd ernstige groeiafwijkingen.
Syndroom van Klinefelter (47,XXY)
Dit syndroom, alleen voorkomend bij mannen, heeft een incidentie van 1:1000. Er is sprake van een extra X-chromosoom. Dit kan gepaard gaan met leerproblemen. Het IQ is vaak 10 tot 20 punten lager dan dat van broers en zussen. De mannen zijn meestal lang, met lange ledematen, kleine testikels en altijd onvruchtbaar.
Syndroom van Turner (45, X)
Hierbij is er maar één X-chromosoom, er ontbreekt dus een Barr body. De incidentie (alleen bij vrouwen) is laag, geschat wordt tussen de 1:5000 en 1:10000. Aan baby’s met het syndroom van Turner is vaak weinig afwijkends te zien. De twee belangrijkst medische problemen zijn een kleine gestalte en onvruchtbaarheid.
Triple-X syndroom (47, XXX)
Vrouwen met een extra X-chromosoom hebben geen afwijkend uiterlijk maar wel vaak leerproblemen. Fertiliteit is meestal normaal.
XYY-mannen
Dit karyotype wordt in verband gebracht met leerproblemen en heel soms ook met antisociaal, crimineel gedrag. Fertiliteit is normaal. Meestal zijn ze langer dan gemiddeld. Het extra Y-chromosoom ontstaat als gevolg van een nondisjunctie in de paternale meiose-II of als een nondisjunctie in de mitose van de zygote (dan ontstaat er een mozaïek).
Contributions: posts
Spotlight: topics
Online access to all summaries, study notes en practice exams
- Check out: Register with JoHo WorldSupporter: starting page (EN)
- Check out: Aanmelden bij JoHo WorldSupporter - startpagina (NL)
How and why would you use WorldSupporter.org for your summaries and study assistance?
- For free use of many of the summaries and study aids provided or collected by your fellow students.
- For free use of many of the lecture and study group notes, exam questions and practice questions.
- For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
- For compiling your own materials and contributions with relevant study help
- For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.
Using and finding summaries, study notes and practice exams on JoHo WorldSupporter
There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.
- Use the menu above every page to go to one of the main starting pages
- Starting pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
- Use the topics and taxonomy terms
- The topics and taxonomy of the study and working fields gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
- Check or follow your (study) organizations:
- by checking or using your study organizations you are likely to discover all relevant study materials.
- this option is only available trough partner organizations
- Check or follow authors or other WorldSupporters
- by following individual users, authors you are likely to discover more relevant study materials.
- Use the Search tools
- 'Quick & Easy'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject.
- The search tool is also available at the bottom of most pages
Do you want to share your summaries with JoHo WorldSupporter and its visitors?
- Check out: Why and how to add a WorldSupporter contributions
- JoHo members: JoHo WorldSupporter members can share content directly and have access to all content: Join JoHo and become a JoHo member
- Non-members: When you are not a member you do not have full access, but if you want to share your own content with others you can fill out the contact form
Quicklinks to fields of study for summaries and study assistance
Field of study
- All studies for summaries, study assistance and working fields
- Communication & Media sciences
- Corporate & Organizational Sciences
- Cultural Studies & Humanities
- Economy & Economical sciences
- Education & Pedagogic Sciences
- Health & Medical Sciences
- IT & Exact sciences
- Law & Justice
- Nature & Environmental Sciences
- Psychology & Behavioral Sciences
- Public Administration & Social Sciences
- Science & Research
- Technical Sciences
JoHo can really use your help! Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world
1081 |
Add new contribution