Causality is central to developmental psychology, psychologists do not only want to identify developmental risks but also to understand mechanisms by which development can be fostered. But sometimes certain conditions or characteristics can't be assigned randomly. So, causal inference - inferring causal relationships - is difficult. An association alone do not reveal causal relationships. The last 30 years have produced superior methods for moving from association to causation. The aim of this article reflects the current state of developmental psychology and is guided by four premises:
- Causal inference is essential to accomplishing the goals of developmental psychologists. Causal inference should be the goal of developmental research in most circumstances.
- In many analyses, psychologists unfortunately are attempting causal inference but doing so hardly, that is, based on many implicit and implausible assumptions.
- The assumption should be identified explicit and checked empirically and conceptually.
- Developmental psychologists will recognize the central importance of causal inference and naturally embrace the methods available.
This article also wants to promote broader thinking about causal inference and the assumptions on which it rests. But a characteristic of the broader literature, is that methodologists in different fields also differ substantially.
What is the confusion in current practice?
All the articles now lack in one of two directions: both are dissatisfying and potentially misleading. The authors hold causal inference as unattainable. A second group of authors embrace causality, there researchers often rely on the longitudinal nature of their data to make the leap form associations to causality. But authors often leave this assumptions unstated or may unaware of the assumptions themselves. There are also some authors who straddle the two groups, these authors often stray into interpretations of what are associations. But, the situation creates a swamp of ambiguity in which confusion thrives. This 'counterfactual' lies at the heart of causal inference.
Why causal inference?
Causal thinking and therefor causal inference are unavoidable. One can support this claim in three ways:
- A major goal of psychology is to improve the lives of humanity. Much of developmental science is devoted to understanding processes that might lead to interventions to foster positive development.
- Causal analysis is unavoidable, because causal thinking is unavoidable.
- If a researcher resists the urge to jump from association to causality, other researchers seem willing to do so on his or her behalf.
How is causal inference the goal of Developmental psychology?
It is not the case that causal relationships can never be established outside of random assignment, but they cannot be inferred from associations alone. This research is used to make causal inference as plausible as possible. As part of the proper use of this tools, the researcher should identify the key assumptions on which they rest and their plausibility in any particular application. But what is credible or plausible is not without debate. This paper cannot resolve this issue, but its broader purpose is to establish plausible causal inference as the goal of empirical research in development psychology.
What are the two frameworks for causal inference?
There are two frameworks that are useful for conducting causal inference, and two conceptual tools that are especially helpful in moving from associations to causal relationships. The first involves directed acyclic graph (DAG). This assists researchers in identifying the implications of a set of associations for understanding causality and the set of assumptions under which those associations imply causality.
What is the DAG?
Computer scientists are also interested in causality, or in particular, in identifying the circumstances under which the association can be interpreted as causal. A DAG comprises variables and arrows linking them. It is directed in a sense that the arrows represent causal relationships. The model assumes a certain correspondence between the arrows in the graph and the relationships between the variables. If you can't trace a path from one variable to another variable, then the variables are not associated. This is the Markov assumption 'the absence of a path implies the absence of a relationship'. A key structure of the DAG is structural stability: an intervention on one component of the model does not alter the broader structure. It also has a preference for simplicity and probabilistic stability.
The DAG looks like a path diagram but has some distinguish features:
- The DAG is not linear or parametric.
- It contains no bidirectional arrows implying simultaneity
- The essence of the DAG can be grasped by thinking about three variables X,Y and Z. You can think about Z as a common cause of X and Y, about Z as a common effect of X and Y, and about Z as a mediator of X on Y.
The usefulness of the DAG is perhaps the most apparent when more than three variables are involved, especially when one is unmeasured (think about an unobserved determinant of the mediator).
Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>
Contributions: posts
Spotlight: topics
Online access to all summaries, study notes en practice exams
- Check out: Register with JoHo WorldSupporter: starting page (EN)
- Check out: Aanmelden bij JoHo WorldSupporter - startpagina (NL)
How and why use WorldSupporter.org for your summaries and study assistance?
- For free use of many of the summaries and study aids provided or collected by your fellow students.
- For free use of many of the lecture and study group notes, exam questions and practice questions.
- For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
- For compiling your own materials and contributions with relevant study help
- For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.
Using and finding summaries, notes and practice exams on JoHo WorldSupporter
There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.
- Use the summaries home pages for your study or field of study
- Use the check and search pages for summaries and study aids by field of study, subject or faculty
- Use and follow your (study) organization
- by using your own student organization as a starting point, and continuing to follow it, easily discover which study materials are relevant to you
- this option is only available through partner organizations
- Check or follow authors or other WorldSupporters
- Use the menu above each page to go to the main theme pages for summaries
- Theme pages can be found for international studies as well as Dutch studies
Do you want to share your summaries with JoHo WorldSupporter and its visitors?
- Check out: Why and how to add a WorldSupporter contributions
- JoHo members: JoHo WorldSupporter members can share content directly and have access to all content: Join JoHo and become a JoHo member
- Non-members: When you are not a member you do not have full access, but if you want to share your own content with others you can fill out the contact form
Quicklinks to fields of study for summaries and study assistance
Main summaries home pages:
- Business organization and economics - Communication and marketing -International relations and international organizations - IT, logistics and technology - Law and administration - Leisure, sports and tourism - Medicine and healthcare - Pedagogy and educational science - Psychology and behavioral sciences - Society, culture and arts - Statistics and research
- Summaries: the best textbooks summarized per field of study
- Summaries: the best scientific articles summarized per field of study
- Summaries: the best definitions, descriptions and lists of terms per field of study
- Exams: home page for exams, exam tips and study tips
Main study fields:
Business organization and economics, Communication & Marketing, Education & Pedagogic Sciences, International Relations and Politics, IT and Technology, Law & Administration, Medicine & Health Care, Nature & Environmental Sciences, Psychology and behavioral sciences, Science and academic Research, Society & Culture, Tourisme & Sports
Main study fields NL:
- Studies: Bedrijfskunde en economie, communicatie en marketing, geneeskunde en gezondheidszorg, internationale studies en betrekkingen, IT, Logistiek en technologie, maatschappij, cultuur en sociale studies, pedagogiek en onderwijskunde, rechten en bestuurskunde, statistiek, onderzoeksmethoden en SPSS
- Studie instellingen: Maatschappij: ISW in Utrecht - Pedagogiek: Groningen, Leiden , Utrecht - Psychologie: Amsterdam, Leiden, Nijmegen, Twente, Utrecht - Recht: Arresten en jurisprudentie, Groningen, Leiden
JoHo can really use your help! Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world
984 | 1 |
Add new contribution