Van Cel tot Molecuul: Samenvattingen, uittreksels, aantekeningen en oefenvragen - UL
- 2814 keer gelezen
John Dalton, bekend van de atoomtheorie, observeerde dat sommige afwijkingen te maken hebben met geslachtsgebonden overerving. Kleurenblindheid wordt bijvoorbeeld nog steeds onder het Daltonisme benoemd. In 1900 was Mendel’s theorie weer opgedoken en dit betekende het begin van de medische genetica. Ik 1902 werd de recessieve overerving ontdekt. In 1908 kwam de nieuwe term een ‘stofwisselingziekte’ die vaak genetisch bepaald was. Later werd er een onderscheid gemaakt tussen enkel gen, chromosomaal, multifactoriële en polygene erfelijkheid.
De bestudering van genetisch materiaal werd mogelijk gemaakt door elektroforese en chromatografie. De nieuwe technieken fluorescent in-situ hybridization (FISH) en comparative genomic hybridization (CGH) maakte cytogenetica en moleculaire genetica mogelijk. Francis Galton introduceerde het regressiecoëfficient, een maat voor hoeveel overeenkomsten er zijn tussen familieleden. Sommige genetische fouten zijn ontstaan tijdens de mitose of meiose. Dit leidt tot numerieke afwijkingen.
Vele aandoeningen erven niet over volgens de wetten van Mendel. Deze aandoeningen hebben waarschijnlijk verschillende factoren die bijdragen aan de tot standkoming van de ziekte. Ze heten daarom ook wel multifactorieel. Er wordt er vanuit gegaan dat omgevingsfactoren, tezamen met vele genen een kwetsbaarheid veroorzaken die normaal verdeeld is in de omgeving. Er is dus ook sprake van een polygene oorzaak (meerdere genen spelen een rol).
Mensen verschillen gemiddeld 0,1% van andere mensen op de wereld. Deze 0,1% maakt dat de ene persoon kwetsbaarder voor ziekte is dan de andere. Door het gebruik van SNPs (single-nucleotide polymorphisms) om de verschillende genen die bijdragen aan ziekte te onderzoeken, zijn nu vele loci aangewezen.
Polygene overerving is het erven van vele verschillende genen op verschillende loci die allemaal een klein beetje bijdragen aan het ontstaan van de ziekte. Er is dus sprake van accumulatie. Verschillende kenmerken van mensen vertonen een distributie in de algemene populatie die lijkt op een normale verdeling. Door middel van een berekening kan aangetoond worden dat de normaal verdeling veroorzaakt wordt door polygeniciteit. Correlatie ondersteunt de theorie ook.
In de praktijk blijkt echter dat omgevingsfactoren ook invloed hebben op verschillende kenmerken. Ook kan het zijn dat bepaalde genen een dominant effect hebben. Dit is te zien aan het feit dat nakomelingen van ouders die in de extremen zitten, een regressie naar het gemiddelde laten zien.
Liability is een enkele entiteit (gen of omgevingsfactor) die bijdraagt aan een multifactoriële aandoening. Hoe meer liabilities, hoe meer kans er is op de aandoening. Het aantal liabilities moet echter wel boven een grenswaarde (threshold) uitkomen waardoor de aandoening zich uit. De liability kan niet individueel vastgesteld worden, maar wel door middel van de incidentie in een groep en statistiek.
Het Liability/threshold model geeft een simpele uitleg voor wat er gezien wordt bij familiaire overervingen. Dit is dat de meest aangedane patiënt de meeste aangedane familieleden heeft, omdat deze de meeste liabilities hebben. De familieleden die het dichtste bij de aangedane patiënt staan, hebben het grootste risico maar verdere familieleden hebben snel lagere risico’s. Wanneer iemand meerdere familieleden heeft met de aandoening, heeft hij/zij zelf ook een groter risico.
En als laatste, wanneer de aandoening voornamelijk bij mannen voorkomt, heeft een vrouw met de aandoening een grotere kans op kinderen met de aandoening (en andersom), omdat de vrouw zo veel liabilities heeft dat de kinderen ook een groter risico hebben.
Heritability is het deel van de etiologie die aan genetische factoren toegeschreven kan worden (dus erfelijkheid). Het is het aandeel van de totale variatie in fenotype bij een aandoening die veroorzaakt wordt door accumulatie van genetische variatie. Wanneer de heritability een grotere waarde heeft, is de rol van genetische factoren dus ook groter (ten opzichte van omgevingsfactoren). De waarde van de heritability wordt bepaald door onderzoek naar familieleden ten opzichte van de normale verdeling. Hoe groot de kans is om de aandoening te krijgen binnen de familie, wordt bepaald door te kijken naar de ratio tussen het risico van broers en zussen en de incidentie in de algemene populatie.
Er zijn verschillende typen onderzoeken om de liability genen op te kunnen sporen. ‘Linkage analysis’ is goed bruikbaar bij enkele gen aandoeningen, maar lastig bij multifactoriële aandoeningen. Dit komt doordat het wiskundig lastig rekenen is met polygenen. Er kan een analyse uitgevoerd worden van aangedane broers en zussen. Wanneer een bepaald allel wordt gevonden dat vaker voorkomt in zieke kinderen dan per toeval zou kunnen, dan zou dit allel betrokken kunnen zijn bij de ziekte ontwikkeling. Ook kan er fine mapping toegepast worden. Wanneer grofweg de locus op het chromosoom bekend is, kunnen door middel van linkage disequilibrium haplotypes (door middel van SNPs) aangewezen worden. De haplotypes die verdacht zijn, worden gesequenced.
Associatie studies zijn onderzoeken waarbij een allel van aangedane mensen wordt vergeleken met gezonde mensen (case-control study). De sterkte van de associatie wordt bepaald door middel van de odds ratio. De odds ratio geeft aan hoeveel vaker de ziekte voorkomt in mensen met het specifiek onderzochte allel. Wanneer dit significant is, kan het allel ofwel veroorzakend zijn ofwel nabij het ziekteveroorzakende gen liggen.
Er zijn verschillende soorten associatiestudies uitgevoerd of bedacht. Het HapMap project is een catalogus van SNPs die aangeeft welke SNPs op welke aandoeningen kunnen duiden. Om deze catalogus te maken zijn de SNPs van vele verschillende mensen uit verschillende populaties opgespoord. Genoomwijde Associatie studies (GWA) gebruiken het complete genoom in een case control studie in plaats van één allel. Hierdoor zijn vele SNPs gevonden die associaties hebben met bepaalde aandoeningen. Een GWA heeft geen hypothese en uitkomsten geven vaak aanleiding tot nieuwe onderzoeken.
Maar omdat GWA studies zo groot zijn, moest er een nieuwe p-waarde komen om significantie aan te kunnen geven. Deze p-waarde is 5x10-8. Voor zulke lage p-waarden zijn grote onderzoeksgroepen nodig. De associatiestudies, voornamelijk GWA, zijn erg succesvol maar kunnen nog steeds van maar een klein aantal aandoeningen de heritability (deels) verklaren.
Het duizend genomen project is een project dat van 1000 mensen over de hele wereld het complete genoom in kaart wil brengen. Dit willen ze doen om de variatie tussen mensen goed in kaart (in een catalogus) te kunnen brengen. Allelen die in maar 1% van de bevolking voorkomen kunnen zo aangetoond worden. SNPs en het kopie nummer van polymorfismes (duplicaties en deleties) kunnen ook onderzocht worden.
Bij multifactoriële overerving spelen verschillende factoren, zowel in de genen als in de omgeving, een rol in het veroorzaken van aandoeningen. Genen die samen verantwoordelijk zijn voor een bepaalde eigenschap, worden polygenen genoemd. Het gaat dan bijvoorbeeld om bloeddruk of lengte. Bij polygene overerving gaat het om de overerving en expressie van een fenotype dat is vastgelegd door verschillende genen op verschillende loci, die allemaal een eigen bijdrage leveren. Hier dragen alle genen evenveel bij.
Het International HapMap project identificeert SNP (single nucleodite polymorphisms) frequenties en haplotypes (gelinkte SNP frequenties) in verschillende populaties. De HapMap databank wordt steeds uitgebreider, waardoor er meer studie mogelijk is over SNP genotypering. Een SNP is een variatie in het menselijke genoom, deze zorgen voor de variatie tussen de mensen.
Bij een genome-wide association (GWA) studie vergelijken onderzoekers varianten van het gehele genoom in een case control studie. Met deze nieuwe methode zijn er veel verbanden gevonden tussen SNP’s en bepaalde ziektes. Een groot voordeel van de GWA studies is dat ze “hypothese-vrij” zijn, er is van tevoren geen veronderstelling over of de genen bij een bepaalde ziekte betrokken zouden kunnen zijn.
Het Thousand Genomes Project is een nieuw initiatief op grote schaal, met als doel om meer variatie in menselijke genen in kaart te brengen. Hiervoor wordt sequencing gedaan van het genoom van 1000 verschillende mensen van over de hele wereld. Hiermee hoopt men meer inzicht te krijgen in de genen die betrokken zijn bij multifactoriële ziektes.
In de gezondheidszorg zijn er twee verschillende vormen van screening:
Doelgerichte/familie screening, waarbij er screening wordt gedaan op dragers en heterozygoten. Dit zijn mensen met een significant of hoog risico door hun positieve familiegeschiedenis.
Community genetics, waarbij er screening wordt gedaan op populaties met een laag risico.
In een aantal autosomaal recessieve ziekten kan men dragers herkennen met een hoge graad van zekerheid met behulp van biochemische of hematologische technieken, waarbij DNA-analyse niet nodig is. Er zijn verschillende manieren om dragers van genetische ziekten te herkennen. Dragers voor bepaalde ziekten kunnen milde klinische manifestaties vertonen van een ziekte, zeker wanneer het om een X-gebonden ziekte is, maar soms zijn de manifestaties zo klein dat je ze alleen bij een onderzoek zal zien. Dit betekent echter niet dat ze niet pathogeen zijn. Een voorbeeld is het mosaicpatroon van retinale pigmentatie dat gezien wordt in manifesterende vrouwelijke dragers van het X-gebonden oculaire albinisme. Over het algemeen hebben dragers van ziekten veroorzaakt door een X-chromosoom geen verschijnselen of overlappen deze met normale variaties die in de populatie gezien worden. Klinische manifestaties kunnen dus alleen helpen voor dragers wanneer deze pathologisch zijn.
Een goede manier en meestal ook de belangrijkste manier om te bepalen of iemand een drager is van een autosomaal recessieve of X-gebonden ziekte is de demonstratie van opspoorbare biochemische abnormaliteiten in deze dragers van bepaalde ziekten. Een voorbeeld zijn de dragers van de Tay-Sachs ziekte. De breedte aan enzymactiviteit in deze dragers ligt tussen de niveaus in normale en aangedane mensen. Vaak kan het echter voorkomen dat de enzymactiviteit van de drager overeenkomt met die van een normaal persoon, waardoor er niet goed bepaald kan worden of men te maken heeft met een heterozygote drager of een homozygoot gezond persoon. Een andere moeilijkheid die echter voorkomt bij het testen van mensen op dragerschap van een X-gebonden recessieve ziekte is de random inactivatie van het X-chromosoom.
De opkomst van recombinante DNA-technologieën zorgde voor een revolutie bij het ontdekken van dragers. Gelinkte polymorfische markers werden vaak gebruikt in het bepalen van de dragerstatus van vrouwen in families met Duchenne musculaire dystrofie. Wanneer een bepaald deel van het DNA, dus een bepaald allel, overgeërfd is van de oma op de moeder, zal de dochter ook draagster zijn van hetzelfde allel. Elke ziekte kan gelinkt worden met een polymorfische DNA marker, als de ziekte niet genetisch heterogeen is. Een polymorfische DNA marker is een DNA-sequentie of gen met een bepaalde plek op een chromosoom die gebruikt kan worden om cellen en individuen te herkennen.
Bij het gebruik van gelinkte polymorfische DNA markers zijn er echter ook een aantal zaken waar rekening mee gehouden moet worden:
De kans op recombinatie tussen de DNA marker en de ziektelocus waarop de link wordt vertoond. De kans kan echter geminimaliseerd worden door identificatie van beide intragenische of closely linked markers op beide kanten van de ziektelocus. Deze markers worden ook wel flanking markers genoemd.
Sample availability: hierbij gaat het erom dat er bepaalde samples aanwezig moeten zijn van bepaalde familieleden voor het gebruik van DNA markers. Hierbij is dus de coöperatie van die mensen nodig. Soms kan het zelfs zijn dat de aangedane persoon al gestorven is, voordat jij erachter kon komen of deze persoon drager was of niet.
Polymorfic variation: hierbij gaat het erom of de familie de benodigde variatie bevat in een gelinkte marker. Het wordt ook wel informatief genoemd.
Locus heterogeniteit: DNA markers zouden extreem betrouwbaar zijn als de mutatie alleen in één gen van het hele genoom aanwezig zou zijn. Dit komt echter niet vaak voor. Vaak geven mutaties in meerdere genen een bepaald fenotype (polygenetisch).
Veel autosomaal dominante single-gene ziekten hebben een laat ontstaan of een verlaagde penetrantie. Vaak kan er met behulp van klinisch onderzoek, biochemische studies en familie DNA-studies voor het ontstaan van symptomen en signalen de genetische status bepaald worden. We hebben het hier over presymptomatisch onderzoek. Wanneer klinisch onderzoek niet voldoende informatie met zich meebrengt, wordt er over gegaan op het speciale onderzoek met bepaalde systemen. Bij het Marfan syndroom wordt er gebruik gemaakt van ophthalmisch onderzoek voor bewijs van ectopia lentis. Hiernaast kan een echocardiogram worden gebruikt om de diameter van de aorta te meten, etc. De afwezigheid van bepaalde bevindingen betekent echter nog niet dat de diagnose niet gesteld mag worden. Het zorgt alleen voor een verlaging van de mate waarin je zou kunnen denken dat iemand de diagnose heeft. Soms kan hiernaast gebruik worden gemaakt van biochemische testen. Zo kun je gebruik maken van serum cholesterol niveaus in de mensen die een risico hebben om familiare hypercholesterolemie te krijgen.
Doordat koppels erachter kunnen komen of ze een drager zouden kunnen zijn, zou dit er al voor kunnen zorgen dat ze anders zullen gaan denken, om nog maar niet te spreken over wanneer ze echt drager van een bepaalde ziekte zijn en deze dus ook over kunnen dragen aan hun nog ongeboren kind. Het wordt nog moeilijker wanneer de prognose niet met een bepaalde zekerheid kan worden gegeven. Vaak wordt er over zulke zaken zelf in de familie gesproken in plaats van dat de arts het gaat vertellen.
Er zijn verschillende vormen van screening te onderscheiden en er zijn ook bepaalde regels waaraan men zich moet houden. De verschillende criteria zijn:
De ziekte moet alledaags zijn en het moet bepaalde effecten hebben die toegankelijk zijn voor preventie of verbeteringen. Het kan hier gaan om vroege behandelingen van een ziekte of het aanbod van terminatie van een zwangerschap bij een ziekte met een hoge morbiditeit en mortaliteit.
De test moet accuraat en betrouwbaar zijn met een hoge sensitiviteit en specificiteit.
Het programma moet gegeven worden in een goede en billijke manier en moet wereldwijd aanwezig zijn. Participatie moet vrijwillig zijn in het geval van prenatale diagnostiek, maar bij prenatale screening moet men uit gaan van de principes van weldoen en niet-schaden.
Er zijn verschillende vormen van screening te onderscheiden. Hieronder zullen er een paar worden toegelicht:
Populatie screening: bij deze vorm van screening gaat het om screening van individuen die een bepaald risico of specifieke afwijking hebben met garantie op een vervolgonderzoek of behandeling. Hierbij gaat het dus om het ontdekken van deze individuen in een groep van mensen die nog geen medische hulp hebben gebruikt vanwege de symptomen van een ziekte.
Neonatale screening: Deze vorm van screening wordt voornamelijk gebruikt voor bepaalde ziekten waarbij er preventie kan worden toegepast om de ontwikkeling van stoornissen tegen te gaan. Neonatale screening wordt vaak vertegenwoordigd in de ‘hielprik’, waarbij er getest wordt op verschillende aandoeningen die niet tot schade hoeven te leiden mits er adequate medische behandeling wordt ingezet. Deze verschillende ziekten zijn:
Phenylketonurie: hierbij wordt er gebruik gemaakt van biochemische screening. De screeningtest wordt soms ook wel Guthrie test genoemd en wordt gedaan met behulp van een hielprik op de 7e dag. Kinderen krijgen vaak tot hun vroege volwassen leeftijd een low-phenylalanine dieet zodat leerproblemen worden tegengegaan.
Galactosemie: Hierbij komen er vaak overgeefverschijnselen en ernstige metabolische collaps voor in de eerste 2-3 weken. Ook bij deze ziekte wordt er over gegaan op een dieet om staarvorming, leverfalen en leerproblemen tegen te gaan.
Congenitale hypothyreoïdie: de test is gebaseerd op een assay van of thyroxine of thyreoid-stimulerend hormoon (TSH). Vaak is er een levenslange behandeling van thyroxine vervanging om ernstige ontwikkelingsproblemen tegen te gaan. De ontwikkelingsproblemen worden ook wel ‘cretinisme’ genoemd.
Cystic fibrosis: Bij deze screening wordt er gekeken naar verhoogde bloedniveaus van immunoreactief trypsine wat voor blokkering kan zorgen van pancreatische ducti in utero.
Populatie dragerscreening: deze vorm van screening werd wereldwijd eerst gebruikt voor hemoglobinopathieën, maar wordt nu ook gebruikt voor andere ziekten. De twee belangrijkste hemoglobinopathieën, thalassemie en sikkelcelziekte, zullen verder worden behandeld.
Thalassemie: er bestaan twee vormen, namelijk α- en β-thalassemie. Deze worden veroorzaakt door een abnormale synthese van een globine keten door mutaties in ofwel de de α-, ofwel de β-globine genen of in de promotor gebieden. Beiden worden autosomaal recessief overgeërfd. De α-vorm komt voornamelijk voor in zuidoost Azië en de β-vorm in Cyprus, het mediterrane gebied en het Indische subcontinent.
Sikkelcelziekte: bij deze ziekte werd er screening gedaan met behulp van de zwarte populatie in Noord-Amerika, maar deze bleek echter desastreus te eindigen. Dit kwam doordat ze het dragerschap van sikkelcelziekte, die normaal gesproken geen kwaad kan, verwarden met de homozygote ziekte, die voor een bepaalde morbiditeit kon zorgen.
Verdere informatie over deze twee ziekten komt in een ander hoofdstuk naar voren.
Tot op heden hadden koppels vaak geen andere keuze dan lange-termijn contraceptie, sterilisatie, terminatie van de zwangerschap, adoptie of donor-inseminatie wanneer het ging om het krijgen van een kind met waarschijnlijk een genetische ziekte. Tegenwoordig zijn er echter steeds meer koppels die, ook al kan het bepaalde consequenties met zich meebrengen, gebruik maken van prenataal onderzoek.
Er zijn verschillende technieken die gebruikt kunnen worden voor de prenatale diagnostiek van overervingsziekten en structurele abnormaliteiten. Zo bestaan er non-invasieve, invasieve en endoscopische technieken. Er zullen nu een paar technieken besproken worden.
Bij deze techniek wordt er rond de 16e week van de zwangerschap 10-20 ml amniotische vloeistof opgenomen onder begeleiding van een echo. Er wordt een deel aan cellen gebruikt met foetaal DNA zodat deze zullen groeien en na 14 dagen aan kunnen geven hoe de chromosomen en het DNA zijn. Hiernaast wordt een deel van de vloeistof, namelijk het supernatante gedeelte (gedeelte wat blijft drijven na centrifugering), gebruikt om neurale buisdefecten te ontdekken. Dit gebeurt met behulp van α-foetoproteïne, waar later nog meer over gesproken zal worden. Wanneer een koppel deze techniek wil toepassen, moet er echter rekening gehouden worden met een kans van 0,5 -1,0% op een miskraam.
Deze techniek kan i.p.v. amniocentesis wel al in het eerste trimester gebruikt worden. In de 11e-12e week wordt er ofwel transcervicaal ofwel transabdominaal een deel van het chorionaal villus weefsel weggenomen. Het bestaat uit de buitenste cellaag van de blastocyst. Chromosoomanalyse kan direct worden uitgevoerd, wanneer er actief delende cellen zijn. Er wordt dan gekeken naar de metafase. Maar het kan ook daarna uitgevoerd worden. Bij directe chromosomale analyse kan er al na 24 uur een resultaat gegeven worden. Tegenwoordig wordt er gebruikt gemaakt van snelle directe fluorescent in-situ hybridization (FISH)-probing of DNA analyse. Een voordeel van een vruchtwaterpunctie is dat het al in het eerste semester diagnostisch kan zijn, maar het brengt wel een risico van 1-2% op een miskraam met zich mee.
Deze techniek kan gebruikt worden voor de locatie van de placenta, de diagnose van meerdere zwangerschappen en prenatale diagnostiek bij structurele abnormaliteiten die niet geassocieerd worden met bekende chromosomale, biochemische of moleculaire afwijkingen. Het is niet schadelijk voor de moeder en het kind, maar het is wel een dure techniek. Tegenwoordig wordt deze techniek aangeboden aan alle zwangere vrouwen rond de 18e week voor screening op structurele abnormaliteiten, zoals neurale buis defecten.
Bij deze techniek wordt met behulp van een endoscoop een foetus in beeld gebracht. Tegenwoordig wordt er echter in plaats van deze techniek gewerkt met de ultrasonografie. De kans op een miskraam bij deze techniek is tussen de 3-5%. Het wordt alleen nog gebruikt bij hoog gespecialiseerde prenatale centra voor diagnostiek.
Met deze techniek kunnen vaten in de navelstreng worden weergegeven, waardoor er een monster uit dat bloed kan worden gehaald. Het bloed wordt routinematig gebruikt bij rhesus iso-immunisatie en kan daarnaast gebruikt worden voor chromosoomanalyse om bepaalde problemen op te lossen.
Met behulp van deze techniek kan vanaf de 10e week het skelet van de foetus in kaart worden gebracht.
Vanaf de jaren ‘70 begon de opmars van de screening. Door de associatie tussen verhoogd maternaal serum α-foetoproteïne en neurale buis defecten kwam de ontwikkeling van de ultrasonografie waarbij er in de jaren ‘80 de identificatie van maternale serum biochemische markers van het Down syndroom naar voren kwamen.
In de 16e week krijgen alle zwangere vrouwen een maternale serum screening waarbij ze getest worden op NTD’s (neurale buis defecten) en Down Syndroom. Met behulp van deze screening kan 75% van de NTD-gevallen en 60-70% van de gevallen van Down syndroom opgespoord worden. Er zal nu verder ingegaan worden op neurale buis defecten en het Down syndroom.
In 1972 kwam men er achter dat bij vele zwangerschappen, een baby met een NTD opgespoord kon worden met assay van AFP (α-foetoproteïne) in maternaal serum (in de 16e week). AFP is het belangrijkste eiwit in foetaal bloed, omdat het de foetale vorm is van albumine. Maternale serum AFO screening voor NTD’s is echter niet 100% sensitief en ook niet 100% specifiek. De niveaus van maternaal serum AFO kunnen overlappen in aangedane- en normale zwangerschappen. Er moet dus sprake zijn van ±2SD voordat er gesteld kan worden dat er een neuraal buis defect aanwezig is. Met behulp van ultrasonografie kan er dan uiteindelijk de diagnose NTD worden gesteld. Andere oorzaken voor een neuraal buis defect zijn tweelingzwangerschappen en bedreigde miskramen.
Bij de diagnostiek naar dit syndroom kan er gebruikt worden gemaakt van twee verschillende technieken, namelijk:
De triple test: bij het Down syndroom en andere chromosomale abnormaliteiten kan er gescreend worden met behulp van bepaalde risicofactoren zoals de maternale leeftijd en niveaus van drie biochemische markers in het maternale serum. Dit is gebaseerd op het feit dat het serum AFP en oestradiol-niveau in de 16e week bij foetussen met het Down syndroom lager zijn dan bij normale zwangerschappen. Hiernaast is het niveau van human choriogonadotrophine (hCG) in het maternale serum verhoogd. Wanneer er een hoge waarschijnlijkheid naar voren komt, wordt er pas gedacht aan invasieve onderzoeken als amniocentesis. Wanneer de leeftijd van de moeder hoger is dan 35 en de waarden van deze drie markers zijn zoals hier wordt gezegd, dan is er een waarschijnlijkheid van 60% dat het kind het Down syndroom heeft. Tegenwoordig is er echter nog een 4e marker, inhibin-A, die ook verhoogd is in het maternale serum bij Down syndroom. Wanneer deze vierde marker ook in hoge concentratie gezien wordt, is er een kans van 75% dat er bij een amniocentesis geconcludeerd kan worden dat er sprake is van het Down syndroom.
Ultrasonografie: rond de 12e week van de zwangerschap krijgen alle zwangere vrouwen een “dating”-scan aangeboden. Rond die tijd is er een sterke associatie aanwezig tussen chromosoomabnormaliteiten en de abnormale accumulatie van vloeistof achter de baby’s nek, ook wel verhoogde ‘foetal nuchal translucency’ (verhoogde nekplooidikte) genoemd. Dit wordt gezien bij Down syndroom, Turner syndroom en triploïdie.
Er zijn verschillende indicaties om voor prenatale diagnostiek te kiezen. Er zullen een paar besproken worden:
Verhoogde maternale leeftijd: hoe ouder de moeder is, hoe hoger de kans wordt op het Down syndroom en andere trisomale syndromen. De meeste centra bieden amniocentesis of CVS (vruchtwaterpunctie) aan vrouwen boven de 37 jaar aan.
Een vorig kind met een chromosoomabnormaliteit: wanneer één van de ouders een chromosomale translocatie of pericentrische inversie bezit in zijn genetische profiel, waardoor een kind is geboren met serieuze problemen door een ongebalanceerde chromosoomabnormaliteit, zal het herhalingsrisico tussen de 1-2% en de 15-20% liggen.
Familiaire geschiedenis van een chromosoomabnormaliteit
Familiaire geschiedenis van een single-gen disorder of neuraal buis defect
Abnormaliteit tijdens de zwangerschap
Andere hoge-kans factoren als maternale ziekte of 3 of meer miskramen.
Er kunnen zich verschillende problemen voordoen bij de prenatale diagnostiek. Hierbij kun je denken aan:
Een onverwacht chromosoomresultaat: er kan een structurele chromosomale rearrangement plaats hebben gevonden of een trisomie zijn ontstaan.
Een ambigu chromosoom resultaat: Er kunnen cellen voorkomen met een andere chromosoominhoud. Het kan door verschillende redenen ontstaan:
De sample kan besmet zijn door maternale cellen.
Er is een ware foetale mosaicisme
Het mosaicisme is gelimiteerd tot een deel van de placenta en ontstaat door een error in de mitose tijdens de formatie en ontwikkeling van de trofoblast
Er zijn verschillende niveaus van mosaicisme te onderscheiden:
Level 1 of pseudomosaicisme: hierbij is er één abnormale cel gezien in één celcultuur
Level 2: in twee of meer cellen in één celcultuur
Level 3: in twee of meer cellen in twee of meer culturen.
Er zijn nog andere manieren om een baby te krijgen. Zo is er IVF, in vitro fertilisatie, donor inseminatie en intracytoplasmatische sperma injecties (ICSI).
Wanneer bij iemand in de familie een autosomaal dominante ziekte heerst, is er 50% kans dat kinderen van die ouders deze ziekte ook krijgen. Om deze kans goed te berekenen moet er een duidelijke familiegeschiedenis bekend zijn, er moet bekend zijn of er een volledige penetrantie is en er moet betrouwbare informatie zijn over de diagnose van heterozygoten. Het is namelijk belangrijk om te weten of de zieke van een ouder is overgeërfd of dat deze is ontstaan door een mutatie. Als er bepaalde dingen niet bekend zijn, of niet juist bekend zijn, wordt de berekening van de kans moeilijker.
Penetrantie wordt meestal weergeven in de vorm van een percentage. 80% penetrantie wil zeggen dat bij 80% van alle mensen met ten minste één mutant allel de ziekte tot expressie komt. Dit kan ook worden weergeven als P=0.8. Mensen zijn die wel het mutante allel hebben, maar bij wie dit niet tot uiting komt, heet gereduceerde penetrantie. Voorbeeld uit het boek: een vrouw heeft dominante ziekte, met een penetrantie van 0.8. Het risico dat een kind van deze vrouw de ziekte zal ontwikkelen is: ½ x 0.8 = 0.4.
Het wordt echter lastiger als er een berekening gemaakt moet worden voor toekomstige kinderen van bepaalde mensen, diegene zelf is gezond maar de ouders waren ziek. Deze kans kan als volgt berekend worden:
Er worden 10 kinderen verwekt, de penetrantie is 0.8. 5 van de 10 kinderen zullen de ziekte waarschijnlijk krijgen. Maar omdat de penetrantie 0.8 is zullen maar bij 4 van de 5 kinderen de ziekte tot uiting komen. Hierdoor zullen 6 van de 10 kinderen de ziekte niet hebben. Dat kans dat een niet zieke kind wel de drager is van de ziekte 1/8. De kans dat deze persoon een kind krijgt dat ziek wordt is dus 1/8 x ½ x 4/5.
Omdat autosomale ziektes vaak op latere leeftijd tot uiting komen is het belangrijk voor dragers te weten of ze de ziekte nog krijgen of door kunnen geven aan hun kinderen. Het is belangrijk dit dus ook te kunnen berekenen, hierbij wordt de Hardy-Weinberg formule gebruikt.
Een autosomale recessieve ziekte is een ziekte waarbij de ouders van een kind niet ziek zijn, maar beide heterozygoot zijn (of 1 van de ouders is heterozygoot en er vindt een mutatie plaats). Hun kind is echter wel ziek. De ziekte wordt vaak ook niet verder doorgegeven en komt maar in 1 generatie voor. Een kind heeft ¼ kans om de ziekte ‘volledig’ te krijgen. De kans om een drager van een autosomale recessieve te zijn, is ⅔ omdat 2 van de 3 gezonde kinderen wel het gen bevatten.
Een van de belangrijkste aspecten van genetische counseling is het maken van een risico figuur, ook wel het recurrence risico genoemd. Dit risico wordt berekend door rekening te houden met: 1) de diagnose en diens manier van overerven, 2) een analyse van de stamboom van de familie en 3) het resultaat van testen met DNA markers.
Als gekeken wordt naar de kans om iets te hebben, moet er als eerste worden gekeken of het iets is dat elkaar kan uitsluiten, of iets dat onafhankelijk is. Als het iets is wat elkaar kan uitsluiten, is de kans dat de één of de ander tot uiting komt, de som van de kansen van beiden. Dit heet de wet van additie. Als er twee of meerdere uitkomsten zijn die onafhankelijk van elkaar zijn, is de kans dat ze beide tot uiting komen het product van de twee kansen, dit heet de wet van vermenigvuldiging. Een voorbeeld hierbij: als ouders een kindje willen krijgen, is de kans dat het kindje een jongetje of een meisje is 1 (namelijk ½ + ½ = 1, hierbij geldt de wet van additie). Bayes’ regel combineert de kans dat iets wel gebeurt met de kans dat iets niet gebeurt. De beginkans heet de prior probability, dat gebaseerd is op kennis van de familie en voorouders. De observaties die deze prior probability kunnen veranderen zorgen voor conditional probabilities en hiermee kan de uiteindelijke posterior information worden bepaald.
Iemand met een autosomaal dominante aandoening, heeft een risico van ½ dat zijn of haar kinderen het aangedane gen erven. Deze aandoening heeft meestal een volledige penetrantie. Hiermee kan heel makkelijk de kans berekend worden, tenzij:
Verminderde penetrantie: iemand die na een stamboom analyse eigenlijk de ziekte zou moeten hebben, vertoont geen kenmerken van de ziekte. Bij zo’n berekening moet je de kans dat iemand de ziekte heeft vermenigvuldigen met de penetrantie (bijvoorbeeld; een penetrantie van 80% geeft ½ * 0.8 = 0.4)
Ziekte komt op latere leeftijd tot uiting: hier wordt gerekend met Bayes’ regel.
Twee personen met een autosomale recessieve aandoening die heterozygoot zijn, hebben een kans van ¼ dat ze een kind krijgen die twee recessieve allelen heeft. 2/4 kinderen zijn dragers en ¼ van de kinderen is compleet gezond. Daarom is de kans dat een gezonde broer of zus van iemand met de ziekte de ziekte ook heeft 2/3. Bij deze berekeningen moet gekeken worden naar de kans dat de ouders drager zijn, die kansen vermenigvuldigen en dan vervolgens nog een keer met ¼ vermenigvuldigen (omdat de kans ¼ is dat beide ouders het recessieve gen doorgeven en het kind de ziekte krijgt).
X-gebonden recessieve aandoeningen zijn lastig te berekenen. Vaak is een aangedane man niet in staat om kinderen te krijgen, dus de aandoening wordt vaak door een vrouwelijke drager overgegeven. Als een aangedane man wel kinderen krijgt, zijn de zonen niet ziek (die krijgen het Y-chromosoom) en alle dochters zijn draagsters (die krijgen de aangedane X). Er zijn bepaalde testen die aan kunnen tonen of een vrouw draagster is. Het enige nadeel is dat als de test een negatieve uitkomst geeft, dus de vrouw is geen draagster, dan is er alsnog een kans dat de vrouw wel draagster is en dat dit is gemist. Als de test positief is, is hij dat ook altijd positief (er zijn geen fout-positieven), maar er zijn wel meer fout-negatieven.
Multifactoriële overerving is een vorm van overerving waarbij er op meerdere genen zijn met een specifieke eigenschap die een invloed hebben op één kenmerk, bijvoorbeeld lengte.
De kans op overerving van een multifactoriële aandoening in broers/zussen of kinderen kan worden berekend door de wortel te nemen van de incidentie van de ziekte in de hele populatie. Als de incidentie in de populatie 1/1000 is, dan is de kans bij een broer/zus of kind van de aangedane persoon 1/32 of 3%. De wortel van de incidentie wordt genoteerd als: P ½. Voor tweede en derde generatie nakomelingen geldt P ¾ en P7/8.
Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>
In deze bundel zijn samenvattingen samengevoegd voor het vak Van Cel tot Molecuul voor de opleiding Geneeskunde, jaar 1 aan de Universiteit van Leiden
Heb je zelf samenvattingen en oefenmaterialen? Deel ze met je medestudenten!
There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.
Do you want to share your summaries with JoHo WorldSupporter and its visitors?
Main summaries home pages:
Main study fields:
Business organization and economics, Communication & Marketing, Education & Pedagogic Sciences, International Relations and Politics, IT and Technology, Law & Administration, Medicine & Health Care, Nature & Environmental Sciences, Psychology and behavioral sciences, Science and academic Research, Society & Culture, Tourisme & Sports
Main study fields NL:
JoHo can really use your help! Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world
1855 |
Add new contribution