Samenvattingen literatuur Thema 3 t/m 5 van Stofwisseling 1 - Geneeskunde UU (2015/2016)
- 4092 reads
Absorptie van nutriënten is een functie van de dunne darm. Vocht- en elektrolytenopname vindt in zowel de dunne darm als de dikke darm plaats, door zowel vergelijkbare als door verschillende mechanismen. Secretie vindt in zowel dunne als dikke darm met hetzelfde mechanisme plaats. De dunne darm bestaat uit villi (soort vingertjes) met daaromheen de crypten van Lieberkühn. Beiden worden bedekt door kubische epitheelcellen. De crypten doen voornamelijk secretie, de villi absorptie. Het colon heeft geen villi, maar is glad met crypten/klieren er tussendoor.
Celproliferatie vindt plaats onderin de crypten uit een stamcel progenitorcel. Deze verplaatsen zich in 48-96 uur naar het oppervlak, om daarna met de darminhoud afgevoerd te worden.
Om het lumen verder te vergroten tot zo’n 200m2 heeft de dunne darm vouwen van Kerckring, villi met crypten en microvilli. Het colonoppervlak wordt minder vergroot, doordat het geen villi heeft.
Er is 8-9L vochtaanbod per dag aan de darm. Via de mond nemen we 1.5-2.5L per dag in, er komt 7.5L bij uit speeksel, maagsap, pancreassap en gal en er is 1L secretie uit de darm zelf. 6.5L hiervan wordt opgenomen in de dunne darm, de overige 2L gaat de dikke darm in. Daar wordt vervolgens nog eens 1.9L opgenomen. Netto neemt de dunne darm water, Na+, Cl- en K+ op en secreteert het HCO3- . De dikke darm absorbeert netto water, Na+ en Cl- en secreteert zowel K+ als HCO3-. Met netto wordt hierbij bedoeld, dat wat er overblijft als de vochtstromen in tegengestelde richtingen van elkaar worden afgetrokken. Er is een verschil tussen verschillende stukken van de darm onderling, net als tussen de stukken van het oppervlak en ook tussen gelijksoortige cellen. Darmepitheel heeft een duidelijke basolaterale en apicale kant, gescheiden door de tight junctions. Transport kan zowel actief als passief, en transcellulair of paracellulair plaatsvinden. Waterverplaatsing is secundair aan actief ion transport, voornamelijk paracellulair. Ook kunnen ionen door middel van ‘solvent drag’ met de vloeistof paracellulair meegetrokken worden.
Trans epitheliale weerstand bestaat uit cellulaire en paracellulaire weerstand, en is omgekeerd evenredig met de permeabiliteit. De paracellulaire weerstand is lager dan de transcellulaire, de permeabiliteit hangt hierdoor dus vooral samen met de weerstand van de tight junctions. Hoe verder in de darm, hoe groter de weerstand wordt.
Het meeste natrium wordt geabsorbeerd door het epitheel van de villi in de dunne darm en het oppervlakte-epitheel in de dikke darm. De Na+/ K+-pomp speelt een grote rol in transport van Na+ van cel naar bloed. Deze pomp zorgt ook voor de sterke gradiënt waardoor het Na+ apicaal wordt opgenomen. Er zijn vier apicale processen:
Na+/glucose- en Na+/aminozuren-cotransport in de dunne darm spelen een grote rol bij Na-absorptie postprandiaal (na eten), wat plaatsvindt in de villi. Dit is het enige systeem dat niet geïnhibeerd wordt door cAMP of Ca2+.
De electroneutrale Na+/ H+-exchanger in het duodenum en het jejunum is verantwoordelijk voor Na+-absorptie. Het wordt gestimuleerd door een luminale verhoogde pH of een verlaagde intracellulaire pH. De luminale alkaliteit (verhoogde pH) is het gevolg van pancreas-, gal- en duodenumsecreties.
Parallelle Na+/ H+- en Cl-/HCO3--uitwisseling in het ileum en proximale colon. Dit is het voornaamste mechanisme tussen het eten door.
In het distale colon zorgen epitheliale Na+-kanalen voor elektrogene Na+-absorptie. De groep medicijnen mineralocorticoïden (bijvoorbeeld aldosteron) stimuleert deze absorptie sterk.
Chloridetransport is vaak gekoppeld aan natriumtransport, dan wel door een elektrochemisch gradiënt, dan wel door de pH. In de villi van de dunne darm en het oppervlakte-epitheel van de dikke darm vindt, los van Na+, ook Cl-/HCO3--uitwisseling plaats. Tussen de maaltijden word Cl--absorptie in het ileum en het proximale colon gemedieerd door parallelle Na+/ H+-uitwisseling. Elektrogene secretie vindt plaats in de crypten van zowel dunne als dikke darm. Normaal is er weinig secretie doordat de apicale membraan Cl--kanalen niet aanwezig of gesloten zijn. Activatie gebeurt door middel van bacteriële exotoxinen, hormonen en neurotransmitters, immuunsysteem en laxantia.
Netto wordt K+ geabsorbeerd in de dunne darm en gesecreteerd in de dikke darm, maar de voornaamste K+-regulatie is in de nieren. Het meeste aanbod aan de darmen komt uit pancreassap en gal, niet uit het dieet. In de dunne darm vindt de absorptie waarschijnlijk plaats door solvent drag, passief transport. De dikke darm gebruikt zowel passief als actief transport. Passief wordt gedreven door een voltageverschil paracellulair. Het actieve systeem wordt gedreven door aldosteron (oppervlakte epitheel) en cAMP (crypten). In het distale colon vindt naast absorptie ook actieve secretie plaats, gedreven door een apicale H+/ K+-pomp.
Mediatoren van het enterisch zenuwstelsel (zoals ACh), endocriene cellen (zoals aldosteron) en immuun cellen kunnen zowel helpen bij secretie als bij absorptie. De agonisten, die secretie veroorzaken, worden verdeeld op basis van het type en op basis van de second messenger (cAMP, cGMP of Ca2+) die ze gebruiken. De verschillende typen zijn:
Bacteriële exotoxinen: een toxine die door bacteriën wordt uitgescheiden, maar die los van de bacterie werkt. Een enterotoxine is een exotoxine die zorgt voor verandering in vloeistof- en elektrolyttransport.
Hormonen en neurotransmitters
Producten van immuun cellen
Laxantia
Absorberende mediatoren zijn mineralocorticoïden (bijvoorbeeld aldosteron), die Na+-absorptie en K+-secretie in het distale colon stimuleren, glucocorticoïden, die electroneutrale NaCl-absorptie in zowel dunne als dikke darm stimuleren en somatostatine, dat electroneutrale NaCl-absorptie en HCO3--secretie stimuleert.
Bij congenitale Chloridorroe is er een congenitaal gemis aan apicale Cl-/HCO3--exchanger. Kinderen met deze aandoening hebben een ontlasting met hoge Cl--concentratie en zijn alkalisch door de verhoogde hoeveelheid bicarbonaat die achter blijft. Het gen ligt op chromosoom 7q31.
Secretoire diarree wordt ingedeeld in twee typen naar oorzaak:
Osmotische diarree: door een nutriënt dat niet geabsorbeerd kan worden.
Secretoire diarree: door endogene secreties uit de darmen door een verhoging van de second messengers.
Oral rehydration solution (ORS) is een combinatie van natrium en glucose, dat opgelost dient te worden in water. ORS is een goede behandeling bij secretoire diarree, om grote hoeveelheden vloeistofverlies tegen te gaan en dus dehydratie en metabole acidose te voorkomen.
Voor de meeste onderdelen van ons dieet is absorptie erg efficiënt. Alleen kunnen we de voedingsstoffen meestal niet direct in geschikte vorm opnemen.
Koolhydraten in ons dieet zijn monosacchariden, oligosachariden of polysachariden. De tweede en derde groep moeten eerst door hydrolyse omgezet worden in monosacchariden voor ze geabsorbeerd kunnen worden. De koolhydraten die niet omgezet kunnen worden, zijn vezels. 45-60% van de koolhydraten in de voeding is zetmeel, dat een polysacharide is. Dit is de plantaardige opslagvorm van koolhydraten, de dierlijke vorm is glycogeen. De meest ingenomen oligosachariden (30-40%) zijn sucrose en lactose. De vertering vindt plaats in twee stappen:
Intraluminale hydrolyse: van zetmeel naar oligosachariden. Door speeksel- en pancreataire amylasen uit de acinaire cellen.
Membraanvertering: van oligosachariden naar monosacchariden. Door brush border-disacharidasen in de darm, zoals lactase en maltase. De activiteit is het hoogst in het proximale ileum.
De producten van koolhydraatvertering zijn glucose, galactose en fructose. Deze worden in twee stappen opgenomen in de dunne darm. Apicaal worden glucose en galactose opgenomen door een Na+-gekoppeld actief transport (een Na+/Glucosetransporter) (SGLT1), fructose door GLUT-5. Basolateraal worden alle drie de monosacchariden door middel van gefaciliteerde diffusie uitgescheiden door GLUT-2.
Proteïnen (eiwitten) moeten eerst gehydrolyseerd worden tot oligopeptides of aminozuren voordat ze geabsorbeerd kunnen worden door de enterocyten van de dunne darm. Er zijn vier pathways:
Luminale enzymen van maag en pancreas kunnen de proteïnen hydrolyseren naar peptiden en dan naar aminozuren die opgenomen kunnen worden
Luminale enzymen verteren proteïnes naar peptiden, waarna brush border- enzymen er aminozuren van maken
Luminale enzymen verteren proteïnes naar peptiden, die dan direct als oligopeptiden opgenomen worden door enterocyten. Enzymen in het cytosol maken er dan intracellulaire aminozuren van.
Luminale enzymen verteren proteïnen tot oligopeptiden, enterocyten nemen ze op en scheiden ze direct uit aan het bloed.
Luminale vertering wordt gedaan door maag- en pancreasproteasen. Deze worden uitgescheiden als pro-enzymen. In de maag is dit pepsinogeen (pro-enzym voor pepsine). De enzymen van de pancreas zijn trypsine, chymotrypsine en elastase, welke endopeptidasen zijn, en carboxypeptidasen A en B, welke exopeptidasen zijn. De pathways zijn erg efficiënt, waardoor slechts 4% wordt uitgescheiden in de feces. Dierlijke eiwitten worden beter verteerd dan plantaardige.
Vijftig procent van de eiwitten in de dunne darm worden door het lichaam zelf geproduceerd. Een deel van alle proteïnen wordt essentieel genoemd. Dit betekent dat ze ingenomen moeten worden met voeding, omdat het lichaam ze niet zelf kan produceren.
Kort na de geboorte absorberen epitheelcellen complete eiwitten via endocytose. Dit is een manier om passieve immuniteit van moeder naar kind over te brengen. Na 6 maanden zorgen hormonen ervoor dat dit proces niet meer kan plaatsvinden. Het toedienen van corticosteroïden zorgt voor een vervroegde beëindiging. Een volwassene kan slechts kleine hoeveelheden eiwitten in het geheel opnemen. Het wordt dan afgebroken in enterocyten in lysosomen. In de dunne darm liggen boven de Peyer’s patches M-cellen in plaats van enterocyten. Deze hebben weinig microvilli en kunnen ook direct hele proteïnen opnemen. Ze hebben echter niet de mogelijkheid tot lysosomale eiwitafbraak, maar verpakken de eiwitten (met name antigenen) in blaasjes. Die scheiden ze vervolgens uit naar de lamina propria en diens Peyer’s patches.
Opname van oligopeptiden is een passief proces dat door een proton-gradiënt gaat, in plaats van een Na+-gradiënt. Een cotransporter is efficiënter dan een aminozuurtransporter, waardoor het nuttiger is om medicatie toe te dienen in de vorm van oligopeptiden dan aminozuren. De opname van aminozuren in de enterocyten gebeurt door zeven verschillende unieke transporters. De basolaterale uitscheiding gebeurt door drie verschillende Na+-onafhankelijke transporters. Ook kunnen ze basolateraal worden opgenomen. Dit gebeurt dan door twee typen Na+-afhankelijke transporters.
Lipiden zijn een deel van onze voeding en bestaan uit koolstof, waterstof en zuurstof. Ze zijn niet goed oplosbaar in water. Non-polaire lipiden zijn compleet onoplosbaar, polaire lipiden hebben een hydrofiel en een hydrofoob gedeelte. Triacylglycerol (TAG) is vet, maar de term vetten wordt vaak gebruikt voor alle lipiden. TAG’s zijn de voornaamste voedingslipiden. Daarnaast zijn er ook membraanlipiden (fosfolipiden), vitaminen en vetoplosbare chemicaliën (uit het milieu) in de voeding. De ratio verzadigde vetten/onverzadigde vetten is relatief hoog in dierlijke vetten en laag in plantaardige vetten. Niet-veresterd cholesterol is ook onderdeel van dierlijke celmembranen. Veresterd cholesterol komt bijna alleen voor in voeding die van bloedproducten en lever is gemaakt. Endogene lipiden zijn met name lecithine en cholesterol uit gal en membraanlipiden van intestinale epitheelcellen.
Lipasen katalyseren de hydrolyse van lipiden in het waterige milieu van de darmen, waarna het opgenomen kan worden door enterocyten. De eerste stap is de emulsificatie van de lipiden tot lipidedruppels door voedselbereiding, kauwen en vermaling in de maag. De druppeltjes worden gestabiliseerd om te voorkomen dat ze zich weer samenvoegen. Hierdoor is er meer oppervlakte en wordt het vet gemakkelijker verteerd door lipasen uit speeksel en uit de Chief cells in de maag. De vertering in de maag is ongeveer 15%.
De vertering wordt voltooid in de proximale dunne darm, voornamelijk door enzymen uit de acinaire cellen van de pancreas. Het galzoutlipase uit moedermelk helpt ook bij de vertering. Vetzuren uit de maag bereiken het duodenum, waar ze de afgifte van CCK (cholecystokinine) en GIP (gastric inhibitory polypeptide) triggeren. CCK zorgt voor meer galflow naar het duodenum en voor secretie van pancreasenzymen als lipase en esterasen.
De producten van lipolyse gaan de darm in als blaasjes, gemengde micellen en monomeren.
De verschillende geactiveerde pancreataire lipasen en galzouten, lecithine en cholesterol adsorberen de emulsie druppels. Multilamellaire blaasjes worden eerst getransformeerd tot unilamellaire blaasjes en daarna tot gemende micellen, die bestaan uit galzouten en gemengde lipiden (zoals vetzuren en cholesterol). In de vorm van micellen of monomeren vindt diffusie plaats door de slijmlaag, door de waterlaag op het oppervlak van de jejunale mucosa en door de brush border van de enterocyt. De diffusie van micellen duurt langer dan die van monomeren, maar is wel efficiënter.
In de enterocyt verlaten de monomeren, het cholesterol en de fosfolipiden de micellen. De overblijvende galzouten gaan terug naar het lumen. Daar worden ze passief geabsorbeerd door de gehele darm en actief in het distale ileum. De lipiden producten worden in de enterocyt opnieuw veresterd en vormen samen met verschillende apolipoproteine dan chylomicronen. In plaats van de deeltjes af te afbreken en te verkleinen, worden ze nu dus juist weer vergroot. De chylomicronen worden tijdens de voedingsfase afgegeven aan de lymfe, dat in de v. subclavia sinistra in het bloed terecht komt en uiteindelijk bij verschillende organen. Tijdens vasten geven de enterocyten ver-low-density lipoproteïnen (VLDL’s).
De absorptie van vetoplosbare vitaminen volgt dezelfde pathways als die van de lipiden. Het gaat om de vitamines K, A, D, E. Wanneer de vetabsorptie verminderd is, bijvoorbeeld door leverfalen, medicijnen of een operatie, is er dus ook een deficiëntie aan deze vitaminen. Als gevolg hiervan kunnen blindheid en andere oogproblemen (Vitamine A), botdemineralisatie en -resorptie (Vitamine D), afwijkingen in de erytrocyten, neurologische en neuromusculaire afwijkingen (Vitamine E) en een sterk verminderde of juist verhoogde stolling (Vitamine K) optreden. Foliumzuur wordt gedeconjugeerd door brush border-enzymen, waarna het geabsorbeerd kan worden door een anion-exchanger in het apicale membraan. Een deficiëntie kan zorgen voor verminderde DNA synthese en celdeling. Dit is vooral merkbaar in het beenmerg, omdat daar de cel turnover het hoogst is. Er ontstaat een megaloblastaire anemie. Extra foliumzuur toediening tijdens de zwangerschap vermindert de kans op neurale buisdefecten.
Vitamine B12 bindt aan haptocorrine in de maag en daarna aan intrinsic factor (uit de pariëtale cellen van de maag) in de dunne darm, alvorens endocytose kan plaatsvinden door de enterocyten in het ileum. De helft komt ongeveer uit gal, de andere helft uit voeding. De inname is vooral door dierlijke producten. Een tekort kan zorgen voor hematologische problemen, waaronder megaloblastaire anemie. Daarnaast kan het ook allerlei neurologische en psychiatrische afwijkingen veroorzaken.
Calciumopname wordt primair gereguleerd door vitamine D en vindt plaats via actief transcellulair transport in het duodenum. Daarnaast vindt het onafhankelijk van Vitamine D plaats door middel van paracellulaire diffusie in de dunne darm. Het meeste komt uit de voeding, namelijk uit melk en melkproducten. Vitamine D wordt, als reactie op zonlicht, uit cholesterol geproduceerd door de huid.
Magnesiumabsorptie vindt actief plaats in het ileum. Het is een co-enzym bij veel neurologische geleiding en bij spiercontracties. Een deficiëntie kan dan ook effect hebben op de neuromusculaire, cardiovasculaire en gastro-intestinale functie. Ook is het belangrijk voor de reactie op parathyreoïd hormoon, waardoor een deficiëntie kan zorgen voor een hypocalciëmie. We verkrijgen het vooral uit groente, vlees en graansoorten.
Vrije ijzer en ijzer als onderdeel van heem worden geabsorbeerd in het duodenum bij specifieke cellulaire mechanismen. Een tekort zorgt voor anemie, een overschot voor hemochromatose. Het meeste ingenomen ijzer wordt ook daadwerkelijk gebruikt, maar het slechts 50% tijdens de menstruatie. Het is met name in te nemen via vlees (vooral lever en vis) en groenten. IJzer komt in alle lichaamscellen voor, maar de opslag vindt (in de vorm van ferritine) plaats, in de lever en het reticulo-endotheliale systeem.
Er is geen absolute dagelijkse vereiste aan calorieën, vet of koolhydraten. Over het algemeen zijn minder calorieën nodig bij meer vetweefsel, doordat vetweefsel een laag metabolisme heeft. Mannen hebben hierdoor over het algemeen een iets hogere calorische intake per kg lichaamsgewicht nodig dan vrouwen. Het niveau van activiteit is de voornaamste determinant voor de benodigde intake, zowel actief als wanneer in rust.
Een dieet, laag in calorieën, zorgt voor een verhoogde afbraak van weefseleiwitten en daardoor afbraak van onder andere spier en vet. Dit zorgt voor een hoog gehalte ketonen in het bloed. De dagelijkse eiwitbehoefte is 0.8gr/kg lichaamsgewicht. Dit is hoger voor zwangere vrouwen, postoperatieve patiënten en atleten. De essentiële aminozuren moeten in ieder geval ingenomen worden. Een van de vele functies van eiwitten is die van slijmlaag, als barrière. Hierdoor is bij een gebrek aan eiwitten sprake van een verminderde afweer.
Vitaminen en mineralen zijn niet zozeer energiebronnen, maar ze zijn wel erg belangrijk in verschillende processen in het lichaam. Een teveel kan echter soms slecht zijn, maar soms ook goed. Een teveel aan wateroplosbare vitaminen vormt geen probleem, deze worden uitgeplast.
Lactase activiteit vermindert na de periode van borstvoeding. Veel niet-blanken en een klein aantal blanke volwassenen hebben een lactase deficiëntie. Wanneer lactose wordt ingenomen door melkproducten, maar er een lactasedeficiëntie bestaat, verschijnen allerlei gastro-intestinale klachten zoals diarree, krampen en flatulentie. De enige behandeling is het vermijden van lactose.
Pernicieuze anemie is atrofie van de mucosa van de maagcorpus en een gemis aan pariëtale cellen. Dit zorgt voor te weinig maagzuur en intrinsic factor. Vitamine B12 kan niet goed opgenomen worden door het gemis aan intrinsic factor. Door minder maagzuur, en daardoor minder somatostatine, vindt ook weinig afgifte van gastrine plaats. Door de B12 deficiëntie ontstaat een megaloblastaire anemie en neuropathie. De eerste tekenen zijn perifere neuropathieën. Uiteindelijk zorgt het via aantasting van het ruggenmerg voor ataxie (verstoring van het evenwicht en de bewegingscoördinatie), geheugenverlies, depressie en dementie.
De autosomaal recessieve aandoening hereditaire hemochromatose komt relatief veel voor. Het lichaam absorbeert te veel ijzer uit de voeding. Het teveel wordt opgeslagen in de lever, wat bij hoge concentraties toxisch wordt. Er ontstaat levercirrose, een verhoogd risico op een hepatocellulair carcinoom (of ook wel levercelcarcinoom), pancreasbeschadiging (namelijk diabetes mellitus), verkleuring van de huid, artritis, cardiomyopathie en dysfunctie van voortplantingsorganen en hypofyse. De ziekte wordt opgemerkt na het 30e jaar bij mannen, doordat de opstapeling dan toxisch wordt. Bij vrouwen kan het pas na de menopauze ontstaan, doordat de menstruatie zorgt voor ijzerafvoer. De behandeling is aderlating.
De pancreas heeft twee typen klierweefsel. Het exocriene weefsel, dat verteringsenzymen in het duodenum uitscheidt en het endocriene weefsel, ook wel de eilandjes van Langerhans genoemd. Van deze eilandjes zijn er zo’n 500.000 tot enkele miljoenen en ze bestaan voornamelijk uit de volgende vier typen cellen. De α-cellen secreteren glucagon, de β-cellen zijn het meest talrijk en produceren voornamelijk insuline, de δ-cellen produceren somatostatine en de F-cellen produceren polipeptiden.
De afgifte van deze hormonen wordt door drie verschillende processen bepaald. De humorale communicatie tussen de hormonen wordt veroorzaakt door de manier waarop de verschillende cellen over de eilandjes verspreid liggen (sommige meer centraal, andere meer perifeer). De concentratie van bepaalde hormonen heeft invloed op de afgifte van andere hormonen, vanwege de richting van de bloedstroom. Er is tevens sprake van intercellulaire communicatie, middels gap junctions en tight junctions. Tot slot is er neurale communicatie, dat via de sympathische en parasympatische zenuwen van het autonome zenuwstelsel verloopt.
De ontdekking van insuline heeft veel betekend voor de geneeskunde. Eind 19e eeuw werd de invloed van insuline op de suikerspiegel ontdekt. Daarvóór waren mensen met suikerziekte (diabetes mellitus - DM) ten dode opgeschreven, maar door deze ontdekking kon er vanaf de 20e eeuw aan een behandeling gewerkt worden. Insuline is daarna een van de meest onderzochte lichaamsstoffen geworden, maar toch is er nog veel onbegrepen.
De werking van insuline heeft voornamelijk te maken met het brandstofgebruik tijdens het metabolisme. De voedingsstoffen zitten enerzijds in het bloed voor direct gebruik en anderzijds in de verschillende weefsels ter opslag. In het geval van een periode van vasten zorgt insuline ervoor dat het dreigende tekort aan beschikbare voedingsstoffen wordt gecompenseerd. Dat houdt in dat er voedingsstoffen worden opgenomen in het bloed vanuit de weefsels. In een periode van consumptie werkt het precies de andere kant uit, dan worden er juist voedingsstoffen opgenomen in de weefsels en aldaar opgeslagen voor later. Tevens wordt de productie van onder andere ketonen verminderd.
Voor een goede brandstofbalans zorgt insuline voor een juiste concentratie van glucose in het bloed. Als er te weinig glucose in het bloed zit heet dit hypoglykemie, waarbij mensen flauw kunnen vallen en in coma kunnen raken. Bij een te hoge bloedsuikerspiegel, hyperglykemie, kunnen mensen ernstig uitgedroogd raken. Diabetes Mellitus is een overkoepelende naam voor verschillende ziektes waarbij de bloedsuikerspiegel ontregeld is. Dit geeft een sterk verhoogde kans op schade van bloedvaten, wat onder andere kan leiden tot hart- en vaatziekten, nierfalen en blindheid. Bij Diabetes Mellitus type I is er een autodestructief proces dat de β-cellen vernietigt, waardoor er nauwelijks insulineproductie is. Hierdoor komt er een overschot aan glucose en ketonen in het bloed. Door deze ketonzuren kan er diabetische metabole acidose (verzuring) ontstaan, wat erg schadelijk is voor verschillende organen. De bloedsuikerspiegel van mensen met type I diabetes kan door toediening van insuline goed gereguleerd worden. Dit type heet daarom ook wel insulineafhankelijke diabetes.
Bij type II is de pathogenese die tot hyperglykemie leidt complexer en niet zomaar te behandelen met het toedienen van insuline. Er zijn twee voorname defecten. Enerzijds zijn de β-cellen wel in staat tot het produceren van insuline, maar zijn ze ongevoelig voor glucoseconcentraties in het bloed. Anderzijds zijn de andere weefsels ongevoelig voor insuline. Deze ongevoeligheid gaat vaak samen met hypertensie, obesitas en een verhoogde hoeveelheid vetzuren in het bloed. Deze combinatie van symptomen wordt ook wel het metabool syndroom genoemd. De complicaties van diabetes kunnen zoveel mogelijk voorkomen worden door de glucosespiegel gedurende het leven strak te reguleren. Bij type II gaat dit minder goed met insuline, vanwege de ongevoeligheid hiervoor, maar helpt sulfonylurea wel. Deze stof kan oraal toegediend worden.
De insulinesynthese vindt plaats in de β-cellen en bestaat uit meerdere stappen. Eerst wordt er preproinsuline wordt geproduceerd, dat wordt omgezet in proinsuline. Dit wordt voor een fors gedeelte omgezet in insuline. Bij dit proces ontstaat ook het, verder onwerkzame, C-peptide. Deze drie stoffen worden uiteindelijk gesecreteerd. Veel insuline wordt de eerste keer dat het door de lever komt gemetaboliseerd en daardoor is het moeilijk de insulineproductie rechtstreeks te meten. C-peptide ontstaat in dezelfde molaire verhouding maar wordt niet door de lever afgebroken en is daardoor geschikt als indicatie van de insulineproductie. Overigens is de productie van insuline een ingewikkeld proces. Na veel onderzoek is bekend geworden dat de twee ketens van het insulinemolecuul (A- en B-ketens) bij bijna iedere patiënt hetzelfde zijn, maar bij zeldzame diabetespatiënten kunnen afwijken.
Logischerwijs heeft glucose een grote invloed op de insulinesecretie. Na een nacht slapen (zonder eten) is de concentratie glucose tussen de 4 en 5 mM (mmol per liter), na een forse maaltijd is deze hoger, maar het komt in principe niet boven de 10 mM uit. Dit komt door een toename van insulineproductie bij een glucosestijging in het bloed. Bij een intraveneuze toediening van glucose is de respons sneller dan bij een orale toediening van dezelfde hoeveelheid glucose. De totale insulinerespons is echter bij intraveneus minder groot dan bij oraal. Dit laatste wordt het incretine-effect genoemd.
Als we op cellulair niveau naar de insulinesecretie kijken, zien we dat de belangrijkste factoren de ATP-afhankelijke K+-kanalen en de voltageafhankelijke Ca2+-kanalen zijn. De productie wordt slechts door enkele suikergroepen beïnvloed, namelijk door glucose, galactose en mannose. Er is veel neurale innervatie vanuit het autonome zenuwstelsel van de β-cellen. De β-adrenerge en parasympatische stimulatie zorgen voor een toename van insulinesecretie. De α-adrenerge en sympathische stimulatie zorgen voor een afname van insulinesecretie. Deze afname van secretie is vooral belangrijk tijdens inspanning. Om te voorkomen dat de suikerspiegel te ver zou kunnen dalen en dus hypoglykemie te voorkomen, wordt de secretie van insuline afgeremd door α-adrenerge stimulatie. Tijdens voeding spelen andere mechanismen een voorname rol. Als glucose via orale voeding binnen komt, zijn er een aantal stoffen, geproduceerd in het spijsverteringskanaal, die een extra stimulatie van insulinesecretie teweeg brengt. Deze stoffen heten de incretines.
De receptor voor insuline is van het type thyroxine-kinase-receptor. Deze receptor bestaat uit twee α-ketens (geheel buiten de cel gelegen) en uit twee β-ketens (deels buiten en deels binnen de cel gelegen). Een glucosemolecuul bindt aan de buitenkant, de binnenkant geeft verhoogde thyroxine-kinase-activiteit aan de cel door, door verschillende substraten te fosforyleren. Deze activiteit bestaat uit drie pathways, met elk hun eigen functie. Het effect dat insuline op de doelcellen heeft, is afhankelijk van drie zaken, namelijk het aantal receptoren, de affiniteit van de receptoren met insuline en het vermogen van de receptoren om de signalen naar de cel over te brengen. Structurele afwijkingen aan de receptoren zelf komen voor en kunnen verschillende ziekten veroorzaken, maar zijn meestal niet de oorzaak van diabetes.
Het aantal insulinereceptoren op het celmembraan is van drie factoren afhankelijk, ten eerste de synthese van receptoren, ten tweede het gedeelte receptoren dat endocytose ondervindt en gerecycled wordt en tot slot het gedeelte receptoren dat endocytose ondervindt en afgebroken wordt. Als cellen voortdurend aan een hoge concentratie insuline blootgesteld worden, leidt dit tot een vermindering van het aantal receptoren via deze processen. Dit het downregulatie. Bij mensen met diabetes type II zitten er minder receptoren op het membraan. Bovendien moet er van die receptoren ook nog een groter percentage bezet zijn door insuline om dezelfde werking te hebben. Het grootste probleem bij diabetes type II zit hem echter in het feit dat de activiteit van thyroxine-molecuul naar de cel sterk verminderd is. Samen geeft dit insulineresistentie.
Insuline heeft effect op voornamelijk drie typen weefsel: lever, spierweefsel en vetweefsel. De lever is op twee manieren belangrijk, deels omdat insuline aangrijpt op de lever en deels omdat de lever een groot gedeelte van de insuline afbreekt. In de lever is er een viertal voedingsstof gerelateerde processen dat door insuline beïnvloed wordt.
Zo wordt de synthese van glycogeen, de belangrijkste opslagvorm van glucose in de lever en in spierweefsel, gestimuleerd. Er zijn twee verschillende enzymen actief, met tegengesteld effect op de opslag van glycogeen. Insuline heeft effect op beide, met als netto resultaat dat er glucose wordt opgeslagen als glycogeen.
Het tweede effect is op de glycolyse en gluconeogenese. Insuline promoot deze processen, door aan te grijpen op verschillende stappen van het productieproces. Overigens heeft insuline op een aantal stappen ook een inhiberend effect, maar dit wordt netto overschaduwd door de stimulerende actie van insuline.
Het derde effect is de productie van vet (lipogenese). Insuline zorgt ervoor dat vet opgenomen wordt in de weefsels en inhibeert tevens de verbranding van vetzuren. Via verschillende factoren heeft dit een verhoogde synthese van triglyceriden tot gevolg. Hierdoor komen er vetdeeltjes vrij, die opgeslagen worden in de lever en elders in het lichaam.
Tot slot heeft insuline invloed op de het eiwitmetabolisme. Van het bijbehorende mechanisme wordt veel minder begrepen dan van dat van de koolhydraten en vetten, maar de kern is dat insuline ervoor zorgt dat er meer eiwitten worden geproduceerd en er minder eiwit wordt afgebroken. Dit betekent dat de lever, net als de rest van het lichaam, eerst koolhydraten verbrandt en vervolgens pas eiwitten als brandstof gaat gebruiken.
In spierweefsel heeft insuline ook een aantal belangrijke effecten. De spier heeft, in tegenstelling tot de lever, insulinegevoelige glucosetransporters. Insuline zorgt voor een verhoogde activiteit van die transporters en daarmee voor een verhoogde opname van glucose. Daarnaast zorgt insuline ervoor dat glucose wordt omgezet in glycogeen en dat glucose meer wordt afgebroken en geoxideerd. Tot slot wordt er meer eiwit gemaakt en minder eiwit afgebroken. Het resultaat is een grotere spiermassa en opslag van nuttige brandstoffen voor later.
In vetweefsel oefent insuline ook invloed uit op meerdere gebieden. Er is een vergelijkbare glucosetransporter als in spierweefsel, die ook gestimuleerd wordt door insuline. Ten tweede stimuleert insuline de omzetting van glucose naar metabolieten die geschikt zijn voor triglyceridenproductie. Ook via een ander pad wordt er door insuline extra triglyceride geproduceerd. Tot slot stimuleert insuline de productie van het enzym lipoproteïne lipase. Dit hormoon grijpt aan op vetdeeltjes die in het bloed zitten en vervolgens kunnen hechten aan het endotheel van bloedvaten. Deze deeltjes worden zó door dit enzym bewerkt dat ze weer opgenomen worden in het vetweefsel en niet aan de bloedvaten blijven kleven.
Glucagon is een ander belangrijk hormoon van de pancreaseilandjes en wordt geproduceerd in de α-cellen. Glucagonproductie wordt voornamelijk gestimuleerd door eiwit, hoewel het er wel sterk op lijkt dat er ook andere factoren een (kleine) rol spelen. Glucose inhibeert glucagonproductie. In de darmen zit speciaal zenuwweefsel met een eigen vorm van glucagonproductie. Er worden daar twee stoffen gemaakt, waarvan de ene (GLP-1) vergelijkbare werking heeft en de ander (GLP-2) weinig bekende werking heeft.
In de lever, net als in de rest van het lichaam, heeft glucagon ten opzichte van insuline over het algemeen een tegengesteld effect. Glucagon zorgt er voor dat er minder glycogeensynthese plaatsvindt, minder glycolyse plaatsvindt en minder vet wordt opgeslagen. Dit heeft als effect dat de lever, overigens via het enzym cAMP, zorgt voor een verhoogde glucosesynthese en een verminderde opslag van glycogeen. Door al deze tegengestelde effecten van glucagon en insuline is het lichaam in staat een evenwicht te bewaren. Zo raakt het lichaam bijvoorbeeld niet uit balans van een koolhydraatarme maaltijd (insulineproductie, maar geen glucosetoevoer), vanwege glucoseproductie die onder invloed van glucagon altijd plaatsvindt. Glucagon zorgt tevens voor verhoogde oxidatie van vetzuren, waarbij ook ketonzuren kunnen ontstaan. Onder invloed van glucagon kan er ook vetzuur worden omgezet tot ketonzuren. Dit is nodig voor het centrale zenuwstelsel, dat wel ketonzuren kan verbranden maar geen vetzuren. Beide kunnen leiden tot een ophoping van ketonzuren en daarmee de eerder genoemde ketoacidose. Daarnaast zorgt glucagon in vet- en spierweefsel voor afbraak van vetten.
Somatostatine wordt gemaakt in de δ-cellen van de eilandjes, maar ook in speciale cellen van het maagdarmkanaal en in de hypothalamus. Somatostatine onderdrukt de hormoonproductie van verschillende weefsels, zoals insuline, glucagon en groeihormoon (hypothalamus). Dit geeft therapeutische mogelijkheden voor de behandeling van onder andere hormoonafhankelijke tumoren. Doordat de δ-cellen downstream liggen van de β-cellen is de invloed op de insulineproductie beperkt. Er worden nog meer stoffen gemaakt in de eilandcellen, zoals onder andere in de F-cellen, maar daarvan is er weinig bekend over het effect op het metabolisme.
Belangrijke organen in de buik zijn onder andere de slokdarm, maag, dunne darm, dikke darm, lever, alvleesklier, galblaas, milt, nieren, urineleiders, en bijnieren. Verder bevinden zich in de buik allerlei neurovasculaire structuren.
De algemene oriëntatie van de buikholte bestaat uit de centrale darmbuis die is opgehangen aan de achterste buikwand en gedeeltelijk aan de voorste buikwand door middel van dunne laagjes weefsels: de mesenteria. Het ventrale mesenterium is verbonden met de proximale regio’s van de darmbuis. Het dorsale mesenterium is verbonden met de gehele darmbuis. De verschillende delen van de mesenteria worden genoemd naar de organen met welke zij verbonden zijn. De grotere ingewanden die niet verbonden zijn door het mesenteria, worden verbonden met de buikwand. De buikholte is omgeven door het peritoneum, dat bestaat uit een epitheelachtige eencellige cellaag (mesothelium) en een bindweefsellaagje.
Het peritoneum is onder te verdelen in een pariëtaal en visceraal peritoneum:
Het pariëtale peritoneum omgeeft de buikwand;
Het viscerale peritoneum bedekt de opgehangen organen.
De ruimte tussen het pariëtale peritoneum en het viscerale peritoneum zorgt ervoor dat organen en buikwand vrij langs elkaar heen kunnen bewegen. Deze ruimte is gevuld met vocht.
De buikorganen kunnen ingedeeld worden in intraperitoneale en retroperitoneale organen:
Intraperitoneale structuren, zoals spijsverteringsorganen, zijn via mesenteria met de buikwand verbonden. Deze organen zijn bedekt met visceraal peritoneum.
Retroperitoneale structuren, zoals de nieren en de urinebuis, zijn niet via mesenteria aan de buikwand verbonden. Zij liggen tussen het pariëtale peritoneum en de buikwand in.
Sommige organen, zoals delen van de dunne en dikke darm, zijn verbonden door mesenteria, maar worden later retroperitoneaal doordat zij fuseren met de buikwand. Deze organen noemen we secundair retroperitoneaal.
Grote bloedvaten, zenuwen en lymfevaten zijn verbonden met de achterste buikwand langs de mediaan van het lichaam. Vanuit dit gedeelte weerkaatst het peritoneum tijdens de ontwikkeling vanuit het dorsale mesenterium, wat leidt tot de ontwikkeling van de darmbuis. Hierdoor zijn takken van neurovasculaire structuren die naar delen van het maagdarmkanaal gaan, ongepaard, en verplaatsen zich door mesenteria of passeren retroperitoneaal in gebieden waar de mesenteria zorgen voor een secundaire fusie met de wand van het lichaam. Vaten, zenuwen en lymfevaten die naar de buikwand of organen die van oorsprong retroperitoneaal zijn gaan, vertakken lateraal vanuit centrale neurovasculaire structuren en zijn in principe gepaard, met aan elke zijde één tak.
Het peritoneum omgeeft dus de wanden van de buikholte (pariëtaal peritoneum) en bedekt de meeste organen (visceraal peritoneum). Tussen het pariëtaal peritoneum en het visceraal peritoneum is een zekere ruimte, de peritoneaalholte. Organen in de buikholte zijn opgehangen in de buikholte door vouwingen van het peritoneum (de eerder genoemde mesenteria). Daarnaast kunnen organen dus ook buiten het peritoneum gelegen zijn (intraperitoneale en retraperitoneale structuren).
De buikholte is in te delen in de grote holte (greater sac) en een omentale bursa:
De omentale bursa is een smal onderdeel van de peritoneaalholte achter de maag en lever. Deze is verbonden met de ‘greater sac’ door middel van het omentale foramen.
De greater sac omvat eigenlijk de volledige overgebleven holte, beginnend bij het diafragma, tot aan het bekken.
Vele peritoneale vouwingen (mesenteria) verbinden de verschillende organen met elkaar en met de buikwand. Deze ontwikkelen zich uit de oorspronkelijke dorsale en ventrale mesenteria, welke het ontwikkelende maagdarmstelsel in de embryonale periode ophingen. Sommige mesenteria bevatten aders, lymfe en zenuwen voor de organen. De hoofdfunctie is echter het positiebehoud van organen.
De omentae zijn een plooien van het peritoneum, die de maag en darm bedekken. De omentae bestaan uit twee lagen peritoneum en in het lichaam zijn twee soorten omentae te onderscheiden:
Het grotere omentum (greater omentum) is een schortachtige peritoneale vouw, die die gebonden is aan de curvatura major van de maag en het colon transversum. Verder bekleedt deze vouw het jejunum en ileum. Dit grotere omentum bevat altijd veel geaccumuleerd vet. Daarnaast zijn er een rechter- en linkergastro-omentale ader en slagader aanwezig.
Het kleinere omentum (lesser omentum) breidt zich uit vanaf de curvatura minor van de maag naar het eerste deel van het duodenum en onderste deel van de lever. Dit omentum is verdeeld in het hepatogastrische ligament tussen tever en maag, en het hepatoduodenale ligament tussen leven en duodenum. Het hepatoduodenale ligament bevat een vrije rand die dient als de grens van het omentale foramen. In deze grens zijn de leverslagader, poortader en galbuis ingesloten. Daarnaast zijn de linker- en rechtermaagaderen aanwezig.
Bloed vanuit abdominale verteringsorganen en de milt vloeit door een secundair vasculair netwerk in de lever, voordat het terugkeert naar het hart. Veneus bloed van het verteringsstelsel, de pancreas, galblaas en milt komt de lever binnen via de venus portae. Deze vene vertakt vervolgens sterk zodat het bloed verdeeld wordt over de sinusoïden. Vervolgens wordt het bloed weer verzameld in een aantal veni hepaticae, welke overgaan in de venus cava inferior (onderste holle ader). Deze vene gaat door het diafragma en mondt uit in het rechteratrium van het hart.
De belangrijkste regio’s waarbij het portaalsysteem en cavaalsysteem elkaar overlappen zijn rond de oesophagus en rectum. Daarnaast is deze overlapping ook aanwezig bij de smalle aderen die rond het ligamentum teretis (ontstaan uit navelstreng) liggen (bij de navel dus). Deze zorgen voor een belangrijke portacavale verbinding. Het ligament van de lever verbindt de umbilicus van de voorste buikwand met de linkertak van de venus portae, voordat deze de lever ingaat. Andere regio’s waar portale en cavale systemen door elkaar lopen, zijn:
Waar de lever tegen het diafragma ligt;
Waar het darmstelsel direct tegen de buikwand ligt (met andere woorden: in retroperitoneale gebieden);
De achterkant van de pancreas.
De innervatie van buikorganen met zuurstofrijk bloed gebeurt door middel van aftakkingen van de aorta.
de veneuze bloedvoorziening van de milt, pancreas, galblaas en de het abdominale gedeelte van het maag-darmkanaal (behalve het onderste gedeelte van het rectum) is door middel van het portale systeem. De venen vervoeren het bloed vanuit deze structuren naar de lever. De venus portae is de gemeenschappelijke vene voor bloedafvoer uit milt, pancreas, galblaas en het abdominale gedeelte van het maag-darmkanaal. Deze wordt gevormd door het samenkomen van de miltader en de venus mesentrica superior.
Meer naar de lever toe passeert de venus portae de duodenum en gaat het door het kleinere omentum heen. Hierdoor komt de venus portae voor het omental foramen en achter de ductus choledochus (de galgang) te liggen. Dichtbij de lever splitst de venus portae in een linker- en rechtertak. De aftakkingen van de venus portae betreffen:
De linker- en rechteraderen van de maag (vanuit de curvatura minor en de oesophagus);
De cystische aderen (vanuit de galblaas);
De para-umbilicale aderen,) Die de aderen van de voorste buikwand verbinden.
De venus mesentrica superior vervoert bloed vanaf de dunne darm, het ceacum, de colon ascendens en het colon transversum. Dichtbij de pancreas komen de venus mesentrica superior en de miltader samen, zodat zij de venus portae vormen. Aftakkingen zijn:
De rechter gastro-omentale ader;
De anterieure en posterieure inferieure pancreaticoduodenale ader.
De venus mesentrica inferior voert bloed af vanuit het rectum, het sigmoïde colon, de colon descendens en de miltkromming. Het begint als de venus rectum superior en ontvangt vertakkingen van de sigmoïde aderen en de linker colische ader. De venus mesentrica inferior mondt uit in de milt ader.
De slokdarm verbindt de keelholte (pharynx) met de maag (gaster). Het is een 25 cm lange, spierachtige buis die in de middenlijn ligt van de thorax, voor de wervelkolom en achter de luchtpijp. Nadat de oesophagus het diafragma is gepasseerd door de oesophageale hiatus, buigt hij af naar voren en naar links. De oesophagus heeft niet echt een specifieke verteringsfunctie, maar transporteert slechts het ingenomen voedsel. De oesophagus bevat twee lichte voor-achter krommingen, die parallel lopen met de wervelkolom. Dit wordt veroorzaakt doordat de oesophagus is gehecht aan de keelholte en het diafragma.
De oesophagus is een flexibele spierachtige buis, die kan worden bedrukt of vernauwt door omliggende structuren. Dit gebeurt op vier locaties:
Bij de verbinding van de oesophagus met de keelholte in de nek; In het bovenste gedeelte tussen de longen, waar de oesophagus wordt gekruist door de aortaboog;
In het onderste gedeelte tussen de longen, waar de oesophagus wordt gekruist door de hoofdbronchus;
Bij de oesofagiale hiatus in het diafragma.
Deze vernauwde gebieden hebben belangrijke klinische gevolgen. Ten eerste blijft een ingeslikt voorwerp blijft meestal steken in een van deze vernauwde gebieden. Ten tweede veroorzaken ingeslikte irriterende vloeistoffen meer schade in deze gebieden, omdat de vloeistof hier langzamer langsheen stroomt. Tenslotte veroorzaken deze gebieden problemen bij het inbrengen van instrumenten in de slokdarm.
In de ruimte tussen beide longen (het mediastinum) is de oesophagus gerelateerd aan een aantal belangrijke structuren. De rechterkant is bedenkt met het mediastinale gedeelte van het borstvlies (de parietale pleura). Aan de achterkant van de oesophagus loopt de borstbuis. Daarnaast is aan de linkerzijde de aorta aanwezig. Na de splitsing van de luchtpijp bevinden de linkerbronchus en de longslagader zich voor de oesophagus. Vervolgens passeert de slokdarm het rechteratrium. Daarna gaat de oesophagus door het diafragma via de oesofagiale hiatus.
De abdominale oesophagus is het korte gedeelte van de slokdarm dat in de buikholte is gelegen (voorbij het diafragma). Samen met de slokdarm komen de anterieure en posterieure delen van de zwervende zenuw de buikholte binnen. De oesophagus wordt van bloed voorzien door aftakkingen van de linkermaagslagader en van de linker-diafragmaslagader.
De maag is het meest verwijde deel van het maagdarmkanaal en heeft een J-vorm. De maag wordt onderverdeeld in vier gebieden:
Het cardia, dat de overgang van de slokdarm in de maag omringt;.
De fundus, die het gedeelte van de maag vormt boven het niveau van de cardia;
Het corpus, dat de grootste regio van de maag betreft;
De pylorus, die de overgang van maag naar duodenum betreft. De pylorus bevat een verdikte maagkringspier, de sfincter pylorus.
Andere kenmerken van de maag zijn de eerder genoemde curvatura major, die een bevestigingspunt is voor het ligament gastrosplenicum. De tevens eerder genoemde curvatura minor is een bevestigingspunt voor het kleine omentum (omentum minor). In deze kromming is een kleine inkeping aanwezig: de incisura angularis.
De maag wordt van bloed voorzien door de linker- en rechtermaagarterie en de linker- en rechtergastro-omentale slagader.
De lever heeft twee oppervlakken:
Het middenrifoppervlak: een deel van de lever ligt tegen het diafragma en is glad en gewelfd. Tussen het middenrif en de lever is een ruimte aanwezig, de recessus subphrenicus. Deze ruimte en de lever worden beide door het ligamentum falciforme in een linker- en rechterdeel gesplitst. Dit ligament is afgeleid van het ventrale mesenterium in het embryo.
Het visceraal oppervlak: dit deel van de lever is bedekt met visceraal peritoneum. Verschillende organen liggen hiertegenaan: een deel van de maag en het duodenum, het omentum minor, de galblaas, het colon transversum en de rechternier.
De lever is dus aan de buikwand bevestigd door het ligamentum falciforme. Behalve bij de area nuda, wordt de hele lever omgeven door visceraal peritoneum. In de porta hepatis komen de arteria hepatica propria en de vena portae de lever binnen, en verlaat de ductus choledochus de lever.
De lever is verdeeld in de rechter- en linkerlob door de impressies van de galblaas en de vena cava inferior in de lever. Het rechterdeel is de grootste leverkwab. Deze rechterkwab bevat de quadrate en caudate kwab (lobus quadratus en lobus caudatus). De lobus quadratus wordt begrensd door het ligamentum teres en de galblaas. De lobus caudatus wordt begrensd door het ligamentum venosum en de vena cava inferior. De arteriële bloedtoevoer naar de lever wordt gereguleerd door de arteria hepatica propria.
De lever wordt verdeeld door een sagittaal vlak door de impressies van de galblaas en de vena cava inferior. Hierdoor ontstaat een ongeveer gelijke linker- en rechterhelft. Deze verdeling is anders dan de traditionele achtsegmentenanatomie, die betrekking heeft op de arteria hepatica propria, vena portae en ductus choledochus. De lobus caudatus wordt gedefinieerd als segment I. Vanaf hier wordt genummerd met de klok mee tot segment VIII.
De galblaas is een peervormig zakje, dat aanwezig is op de rechterleverkwab. Het ontvangt gal uit de lever, slaat dit op en voert het af. De galblaas bestaat uit de volgende onderdelen;
De fundus, het afgeronde uiteinde aan de onderkant van de lever;
Het corpus, het grootste gedeelte van de galblaas;
De nek/hals van de galblaas, een smal gedeelte met mucosale plooien.
De bloedtoevoer van de galblaas wordt gereguleerd door aftakkingen van de rechter-arteria hepatica.
Het kanaalsysteem voor gal strekt zich uit vanaf de lever, verbindt de galblaas en mondt uit in het duodenum. Twee leverkanalen vormen samen de ductus hepatica. Dit kanaaltje daalt langs de leverslagader en poortader in in het omentum minor. Het cystische kanaal vanuit de galblaas sluit aan op de ductus hepatica en zij vormen dan de ductus choledochus. Deze blijft dalen en smelt samen met de ductus pancreaticus. Uiteindelijk monden zij uit in de papil van Vater.
De pancreas bevindt zich achter de maag en tegen de achterwand van het duodenum. Het grootste gedeelte ligt retroperitoneaal (een klein deel van de staart van de pancreas is niet retroperitoneaal gelegen). De pancreas is als volgt op te delen:
Het caput: het ‘hoofd’ van de pancreas, gelegen in de holte van het duodenum;
Het corpus: het ‘lichaam’ van de pancreas, met langwerpige vorm en zich uitstrekkend van corpus tot cauda;
De cauda: de ‘staart’ van de pancreas, gelegen tussen de lagen van het splenorenale ligament.
De ductus pancreaticus begint in de cauda van de pancreas, gaat dwars door het corpus en daalt vervolgens in in het corpus. In het onderste deel van het corpus gaat de ductus pancreaticus samen met de galwegen. Samen vormen zij uiteindelijk de pupil van Vater, die de uitmonding in het duodenum betreft. Rondom deze pupil ligt de sfincter van Oddi. Net boven de pupil van Vater is een andere uitmonding van een tak van de ductus pancreaticus. Deze uitmonding wordt de pupil duodenalis minor genoemd.
De dunne darm is het langste deel van het maagdarmkanaal (6-7 meter lang). Deze bestaat uit het duodenum, jejunum en ileum.
Het eerste deel van de dunne darm is de twaalfvingerige darm of duodenum. Deze C-vormige structuur (20-25 cm lang) ligt grotendeels retroperitoneaal. Het duodenum wordt ingedeeld in vier delen:
Het pars superior; het bovenste deel vanaf de pylorus wordt ook wel ampulla genoemd;
Het pars descendens: het dalende deel van de duodenum. Het doorkruist het colon transversum. Dit deel bevat de pupil van Vater;
Het pars horizontalis: het onderste deel van de duodenum;
Het pars ascendens: het stijgende deel van de duodenum.
De buiging van de duodenum is omgeven door een plooi van het peritoneum: het ligament van Treitz.
Het jejunum is ongeveer 2/5 deel van de dunne darm. Het binnenste slijmvlies wordt gekenmerkt door vele significante plooien rond het lumen: de plicae circulares. Daarnaast bevat het jejunum minder arteriële aftakkingen, maar langere rechte slagaders.
Het ileum is ongeveer 3/5 deel van de dikke darm. In vergelijking met het jejunum heeft het ileum dunnere wanden, minder en kleinere plicae circulares, meer mesenteriaal vet en meer arteriële vertakkingen.
Het ileum mondt uit in de dikke darm (in het caecum). Twee flappen steken uit rond de opening in het lumen van de dikke darm (de ileocecale vouw). Spierstelsels die zich in de ileocecale vouw begeven vormen samen een sfincter. De mogelijke functies van de ileocecale vouw zijn het voorkomen van reflux van het cecum naar het ileum en reguleren van de inhoud van ileum naar colon.
De dikke darm is ongeveer 1,5 meter lang en strekt zich uit van ileum tot anus. De voornaamste functie is het absorberen van vocht en zouten uit de darminhoud. De dikke darm bestaat uit deblindedarm (caecum) met de appendix, het colon, het rectum en de canalis analis.
Vanaf het caecum stijgt de colon (colon ascendens). Net onder de lever buigt deze naar links en kruist de buik (colon transversum). Net onder de milt buigt het colon af naar beneden, waardoor de colon daalt (colon descendens). In de bekkenholte vervolgt het colon sigmoïd, dat uiteindelijk eindigt in het rectum.
De dikke darm heeft een aantal karakteristieke kenmerken:
Het bevat een grote inwendige diameter;
Het bevat de zogenaamde appendices omentales: dit zijn peritoneaal bedekte vetophopingen.
Het bevat taeniae: dit zijn geconcentreerde lengtespierlagen die eigenlijk iets te kort zijn voor de colon. Hierdoor trekken de taeniae de colon wat in elkaar.
Het bevat haustra (enkelvoud: haustrum): dit zijn de welbekende ‘zakjes’ die ontstaan door de samentrekkende krachten van de taeniae.
Het caecum bevat de ingang vanuit het ileum. De appendix is een smal, wormvormig aanhangsel, dat aan het caecum is verbonden.
Het colon bestaat uit een eerder genoemde colon ascendens, colon transversum,colon descendens en een sigmoïd deel. De stijgende en dalende delen liggen (secundair) retroperitoneaal. Het colon transversum en colon sigmoïd liggen intraperitoneaal.
Het rectum is een retroperitoneale structuur. Het canalis analis is een voortzetting naar onderen toe vanuit het rectum.
het diafragma is een dunne spierachtige structuur, die de borstholte van de buikholte scheidt. Het is gehecht aan verschillende delen van het lichaam.
Vanaf deze aanhechtingspunten lopen verschillende spiervezels, die samen een centrale pees vormen. Het hartzakje is aan het midden van deze pees gehecht. Structuren die zowel in de borst- als buikholte liggen, doorkruisen het diafragma. Deze structuren betreffen:
De aorta
De borstbuis
De vena cava (holle ader)
De oesophagus
Verschillende zenuwen.
Speekselklieren scheiden speeksel uit in de mondholte via kleine kanaaltjes. De meeste zijn kleine klieren in de submucosa of het slijmvlies van het orale epitheel langs de tong, het gehemelte, de wangen en de lippen. Naast deze kleine klieren zijn er drie grote klieren aanwezig:
De glandula parotis
De glandula submandibularis
De glandula sublinguale.
De glandula parotis is de grootste speekselklier. Deze is onder het oor gelegen en voor de kauwspier. Via een kanaaltje mondt de klier uit in de wang.
De glandula submandibularis is een haakvormige klier, die om de mylohyoïd spier is gelegen. Het submandibulaire kanaal komt uit in het diepe gedeelte van de mondholte, net naast het frenulum van de tong op de sublinguale papilla
De glandulae sublinguales zijn de kleinste speekselklieren van de drie. Het zijn amandelvormige klieren, die direct aan de mediale zijde van de onderkaak gelegen zijn. De klier mondt uit via vele kleine kanalen onder de tong. De superieure grens van de glandula sublinguale vormt een vouw van mucosa die de sublinguale vouw wordt genoemd.
Aderen die de glandula parotis van bloed voorzien, zijn afkomstig van de externe halsslagader. De glandula submandibularis en sublinguale worden van bloed voorzien door aftakkingen van de gezichts- en linguale slagaders. Bloed wordt afgevoerd via de halsader en gezichtsaderen. De speekselklieren worden aangestuurd door parasympatische innervatie door taken van de nervus facialis.
Onder andere via de a. carotis interna worden de hersenen van bloed voorzien. De a. cerebri anterior en a. cerebri media zijn de eindvertakkingen van de a. carotis interna. De a. cerebri anterior voorziet het grootste deel van het mediale en superieure oppervlak en de frontale pool van de hersenen van bloed. De a. cerebri media voorziet het laterale oppervlak en de temporale pool van de hersenen van bloed. De beide a. carotis interna met hun vertakkingen worden ook wel de anterieure circulatie van de hersenen genoemd.
De twee a. cerebri anterior zijn met elkaar verbonden door de a. communicans anterior. Via de a. communicans posterior zijn de twee a. carotis interna met de twee a. cerebri posterior verbonden. De twee a. vertebralis ontspringen uit de linker en rechter a. subclavia. De linker a. vertebralis is meestal groter dan de rechter. De twee a. vertebralis bestaan uit drie delen: de cervicale delen, de atlantische delen en de intracraniale delen. De intracraniale delen komen bij de caudale grens van de pons samen en vormen daar de a. basilaris.
De a. basilaris splitst aan het einde in twee a. cerebri posterior. De a. vertebralis en a. basilaris en hun vertakkingen worden vaak de posterieure circulatie van de hersenen genoemd. De eindvertakkingen van de a. vertebralis liggen in de subarachnoïdale ruimte. De bloedvaten van de hersenen vormen een cirkel, de cirkel van Willis. Hierdoor kunnen de voorste en achterste circulaties van de hersenen met elkaar communiceren. De cirkel van Willis bestaat uit de volgende arteriën:
De a. communicans anterior;
De a. cerebri anterior;
De a. carotis interna ;
De a. communicans posterior ;
De a. cerebri posterior.
De venen van de hersenen steken door het arachnoidea en de dura mater en eindigen in de veneuze sinussen. Deze eindigen voor het grootste deel op de v. jugularis interna. De v. superiores cerebri komen uit op de sinus sagittalis superior, de v. inferiores cerebri en de v. media superficiales cerebri en vervolgens op de sinus rectus, de sinus transversus en de sinus petrosus superior. De v. magna cerebri ontstaat doordat twee venen samenkomen en eindigt samen met de sinus sagittalis inferior door het vormen van de sinus rectus. De vv. cerebelli superiores en inferiores voeren het bloed van het cerebellum af naar de sinus transversus en de sinus sigmoideus.
Het spijsverteringsstelsel begint bij de mond, waar het eten vermalen wordt en speeksel wordt toegevoegd. Hierdoor vindt het begin van de afbraak van koolhydraten en vetten plaats. Via de oesophagus gaat het naar de maag, een tijdelijke opslagplek, waar proteasen en zuren worden toegevoegd. Alleen stukjes kleiner dan 2 mm kunnen door de pylorus naar de dunne darm. De dunne darm is de voornaamste plek voor opname van voedingsstoffen. De dikke darm resorbeert vloeistof en elektrolyten en slaat de feces op voordat dat het lichaam verlaat. De pancreas scheidt verteringsenzymen af in het duodenum, en ook HCO3- (bicarbonaat) om het zuur te neutraliseren. De lever scheidt gal af, dat de galblaas opslaat tot het wordt afgegeven. Het bevat galzuren, die belangrijk zijn in de vertering van vet.
De darmwand varieert in verschillende delen, maar er is wel een karakteristieke opbouw:
Mucosa: epitheel, een lamina propria bestaande uit losmazig bindweefsel en een dunne laag glad spierweefsel. Plooien en villi zorgen voor een vergroting van het oppervlak.
Submucosa: losmazig bindweefsel en grotere vaten, soms ook klieren.
Spierlaag: twee lagen glad spierweefsel, de binnenste circulair en de buitenste longitudinaal. Tussen de lagen zijn er neuronen.
Serosa: Een laag bindweefsel, bedekt door epitheelcellen.
Er kan maar een beperkt aantal nutriënten geabsorbeerd worden door de darmwand. Daarom moeten er een hoop chemische conversies plaatsvinden. Dat begint in de mond met amylase voor koolhydraten en lipase voor lipiden. Eiwitafbraak begint in de maag door proteasen. In de maag wordt ook een kleine hoeveelheid lipase uitgescheiden. In de dunne darm spelen zowel pancreasenzymen zoals lipase, chymotrypsine (voor eiwitten) en amylase een rol, alsmede lokale enzymen.
Verschillende osmoreceptoren, chemische en mechanische receptoren zorgen voor de neuronale respons om de maag- en pancreassappen af te geven.
Naast de voedingsopname, zorgt het spijsverteringsstelsel ook voor de uitscheiding van afvalstoffen, die in gal worden uitgescheiden en niet worden geresorbeerd in de darmen. Ook speelt het spijsverteringsstelsel een grote rol in de vloeistof- en elektrolytenbalans, door meer of minder water uit te scheiden. In de mucosa bevindt zich het gut-associated lymphoid tissue (GALT), waardoor het ook een immunologische functie heeft. GALT biedt bescherming tegen pathogenen en bewerkstelligt tolerantie voor de normaal aanwezige bacteriën en voedingsstoffen.
Ook zijn er non-immunologische afweermechanismen, waaronder zuurafscheiding, peristaltiek en de epitheliale permabiliteitsbarrière. Wanneer de peristaltiek ontbreekt, ontstaan er ophopingen van grote aantallen bacteriën, waardoor diarree of steatorrhoe ontstaat.
Het enterisch zenuwstelsel (ENS) is als een klein brein met sensoren, interneuronen en motorneuronen. Het is naast het sympathische en parasympatische, het derde onderdeel van het autonome zenuwstelsel (ANS). Het controleert de spijsverteringsfunctie zelfstandig, maar kan wel beïnvloed worden door de hersenen. Het is met name gevestigd in de submucosale plexus (in de submucosa van de darmen) en het myenterische plexus, tussen de circulaire en longitudinale spierlaag door het hele maag-darmkanaal. De sensorische (afferente) paden reageren op rek, chemie en mechanische stimulatie. De efferenten hebben effect op allerlei cellen, zoals spier-, epitheliale en endocriene cellen.
ACh (Acetylcholine) is de voornaamste neurotransmitter die zowel secretie als spieractiviteit regelt in het stelsel. Daarnaast is VIP (Vasoactieve Intestinaal Polypeptide) belangrijk voor inhibitie van het gladde spierweefsel en stimulatie van vocht en elektrolytsecretie.
De hersen-darmas is een systeem dat de gastrointestinale functie controleert, voornamelijk middels het parasympatische deel van het autonome zenuwstelsel. Dit gaat voornamelijk via de nervus vagus, gastrointestinale hormonen en het immuunsysteem. De vasovagale respons is de terugkoppeling van de afferenten uit het enterisch zenuwstelsel naar de hersenstam. De connectie werkt twee kanten uit.
Tonische en ritmische contracties van het gladde spierweefsel zorgen voor vermaling, peristaltiek en de reservoir functie. Segmentale contracties zorgen niet voor voortstuwing, waardoor vermaling en vermenging plaatsvindt van de darminhoud. Een progressieve golf van relaxatie en daarna contractie zorgt voor stuwing van de darminhoud. Tot slot zorgt motorische activiteit van holle organen voor samentrekking van sfincters, waardoor ze als reservoir kunnen dienen. De meeste excitatoire activiteit wordt gemedieerd door ACh, de inhibitoire door VIP en NO (stikstofoxide).
Het maagdarmkanaal bevat bijna alleen maar glad spierweefsel, bestaande uit een binnenste circulaire en een buitenste longitudinale laag met daartussen het enterisch zenuwstelsel. Alleen de bovenste oesofagiale sfincter, het bovenste derde deel van de oesophagus en de externe anale sfincter bevatten dwarsgestreept spierweefsel. Verhoogde stimuli (voor een sfincter) zorgen voor ontspanning van de sfincter, terwijl verlaagde stimuli juist voor contractie van de sfincter zorgen, om terugvloed te voorkomen. Er zijn zes sfincters in het maag-darm kanaal:
Bovenste oesofagiale sfincter (UES). Wordt gereguleerd door het slikcentrum in de medulla door hersenzenuwen. Bij de ademhaling is de sfincter gesloten, bij slikken is hij open en de ademweg juist afgesloten.
Onderste oesofagiale sfincter (LES). Zit tussen oesophagus en maag: Relaxatie vindt pas plaats nadat de UES weer op de rustspanning is. Een verlaagde rustdruk kan zorgen voor gastro-oesofageale reflux, waardoor oesofagitis kan ontstaan. Peristaltiek van de oesophagus zorgt dat de bolus (voedselbrok) wordt voortgestuwd. Het is primair wanneer het wordt ingezet door slikken, het wordt secundair genoemd als reactie op distensie van de oesophagus.
Pylorussfincter. Zit tussen maag en duodenum, vrij zwakke sfincter.
Ileocaecale sfincter. Zit tussen ileum en blinde darm.
Interne en externe anale sphincter. De interne bestaat uit circulair en longitudinaal glad spierweefsel en is onvrijwillig. De externe bestaat uit dwarsgestreept spierweefsel en is zowel vrijwillig als onvrijwillig te beheersen.
De sfincter van Oddi. Zit tussen de galwegen en het duodenum.
Een Migrating Motor Complex (MMC) bestaat uit de ritmische contracties van de dunne darm tijdens vasten. Deze vinden elke 90-120 minuten plaats en zorgen voor de afvoer van restmateriaal, zoals bacteriën en stukjes groter dan 2 mm. Een van de determinanten is het hormoon motiline, gesecreteerd door de duodenale mucosa.
De functies van de dikke darm zijn:
Resorptie van grote hoeveelheden vloeistoffen en elektrolyten
Absorptie van vetzuren die gevormd zijn door het metabolisme van koolhydraten die niet door de dunne darm zijn opgenomen
Reservoirfunctie
Defecatie
Om dit te bewerkstelligen, werkt het colon eigenlijk als twee delen: het colon ascendens en transversum zorgen met name voor de eerste twee functies, de descendens en het rectosigmoïd voor de laatste twee. Het eerste gedeelte wordt parasympatisch geïnnerveerd door de n. vagus, het laatste gedeelte door bekkenzenuwen uit het sacrale ruggenmerg. Segmentale contracties zorgen voor vermenging. Er is sprake van zogenaamde massaperistaltiek, die in een keer de bolus 20 cm vooruitduwt. Dit kan worden uitgelokt door eten. Het colon heeft haustrae (zakvormige uitstulpingen), die verdwijnen bij dergelijke peristaltiek.
Bij achalasie is er een vernauwing van de LES, waarboven een verwijding van de oesophagus. Bij onderzoek is zowel een onvermogen voor de LES om te ontspannen, als een verminderde peristaltiek in het onderste twee-derde gedeelte van de oesophagus waar te nemen. Dit is het gedeelte dat uit glad spierweefsel bestaat en gedraagt zich alsof het geen zenuwen meer bevat. Een verlies van neuronen is waarschijnlijk de oorzaak. Behandeling is door de LES dan wel op te rekken, dan wel chirurgisch in te knippen.
Normaliter bij een grotere hoeveelheid feces in het rectum ontspant de uit glad spierweefsel bestaande interne anale sfincter en spant de externe sfincter, dat uit dwarsgestreept spierweefsel bestaat, zich juist samen. De erfelijke Ziekte van Hirschsprung zorgt voor een verlies aan neuronen, waardoor een vernauwd segment van het rectum ontstaat. Hierdoor ontstaan verstopping en een megacolon. De interne sfincter ontspant zich niet goed, de externe werkt normaal. Behandeling bestaat uit chirurgische verwijdering van het segment.
De proximale maag secreteert naast zuur ook slijm, bicarbonaat (beide door oppervlakte-epitheel), pepsinogeen, intrinsic factor en water, om de vertering die in de mond is begonnen voort te zetten en daarnaast de maagwand te beschermen. Het distale gedeelte scheidt twee hormonen uit: gastrine en somatostatine. In totaal is dit 2 liter vloeistof per dag. Er is sprake van een wisselwerking; wanneer er meer zuur (H+) uit de pariëtale cellen komt, komt er minder Na+ uit de non-pariëtale cellen en vice versa.
De wandopbouw van de maag is gelijk aan dat in andere delen van het maag-darmkanaal. Wel wordt de maag onderverdeeld in drie (functionele) segmenten:
Cardia: Zit net na de oesophagusovergang, bevat de pariëtale cellen die voor zuur zorgen
Corpus: Is het grootste gedeelte, proximaal heet het de fundus. Hierin zitten onder andere pariëtale cellen, deze produceren zuur en intrinsic factor, dat zorgt voor Vitamine B12 absorptie in het ileum. Ook zitten er ‘Chief cells’, die pepsinogeen produceren, maar geen zuur. Pepsinogeen zorgt voor de start van peptideafbraak, bij een lage zuurtegraad. Er zijn ook mucussecreterende cellen voor de slijmproductie en er zijn een aantal endocriene cellen, waaronder degene die histamine vrijlaten.
Antrum: Heeft geen pariëtale cellen, maar wel endocriene cellen, die onder andere gastrine (G-cellen) en somatostatine (D-cellen) produceren en ‘Chief cells’. Beiden reguleren de zuursecretie.
Vloeistoffen worden primair door glad spierweefsel van de proximale maag geloosd, vaste stoffen door glad spierweefsel van het antrum.
Wanneer zuursecretie gestimuleerd wordt, komen er meer H+/K+-pompen aan het oppervlak van de pariëtale cel, er is dan een groter maagoppervlak, wat te zien is als microvilli. Omeprazol is een medicijn dat pariëtale H+/K+-activiteit inhibeert. De zuursecretie vanuit het apicale membraan door middel van de H+/K+-pomp zorgt voor een verhoogde pH in de pariëtale cel. Dit wordt gecompenseerd door meer passieve opname van CO2 en H2O, die door carbo-anhydrase worden omgezet in HCO3- en H+. HCO3- verlaat de cel door een Cl-/HCO3- -exchanger op het basolaterale membraan.
Acetylcholine, gastrine en histamine induceren zowel direct als indirect zuursecretie door de pariëtale cel. De indirecte actie van ACh en gastrine vindt plaats door de histamine afgifte te bevorderen uit de endocriene ECL-cellen in de lamina propria. Alle drie werken ze door te binden aan ‘G-proteïne-gekoppelde receptoren op het pariëtale celmembraan. De functies van gastrine zijn stimulatie van zuurafscheiding, afgifte van histamine uit ECL-cellen en regulatie van spiergroei in het corpus van de maag, de dunne en de dikke darm.
Somatostatine (uit D-cellen in corpus en antrum), is de voornaamste inhibitor van zuursecretie. Behalve in de maag, wordt het ook uitgescheiden door de deltacellen van de pancreaseilandjes en door neuronen in de hypothalamus. Het werkt direct door als antagonist tegen de stimulerende effecten van histamine te werken. Indirect door zowel histamineafgifte uit ECL-cellen, als gastrine-afgifte uit de G-cellen te blokkeren. Verschillende enterische hormonen en prostaglandinen inhiberen ook de zuursecretie. Negatieve feedback vindt plaats door zuur en vetten vanuit duodenum en jejunum.
Secretine lijkt een van de hormonen die hiervoor verantwoordelijk is, door gastrine afgifte te remmen, somatostatine afgifte te stimuleren en de pariëtale cellen direct te downreguleren. Vetzuren in duodenum en begin van de dunne darm zorgen voor afgifte van GIP (Gastric Inhibitory Polypeptide) en CCK (Cholecystokinine). GIP vermindert zuursecretie direct en indirect door gastrine te remmen. Ook zorgt het voor insulineafgifte door de pancreaseilandjes, bij duodenale glucose en vetzuren. CCK vermindert direct de zuursecretie. Prostaglandine-E2 inhibeert zuursecretie door de histamineactivatie te remmen.
Er zijn verschillende (overlappende) fasen van zuursecretie door de maag:
Basale toestand: Weinig zuur tussen de maaltijden, meer direct na de maaltijd. Het houdt een circadiaans ritme aan: minste zuur ’s ochtends en het meeste ’s avonds. De basale secretie is erg variabel, waardoor normale pH-range 3-7 is.
Cefale fase: Door reuk, zien, smaak, gedachten en slikken van eten wordt de dorsale motorkern van de n. vagus in de medulla geactiveerd, waardoor parasympatische efferenten worden geactiveerd. Een insuline geïnduceerde hypoglycaemie zorgt ook op deze manier voor zuursecretie. Het zorgt voor:
ACh-afgifte in het corpus, waardoor direct meer pariëtale zuursecretie
ACh-afgifte in het corpus, waardoor histamine afgifte uit ECL-cellen
Zenuwen in het antrum geven GRP af, waardoor gastrine-afgifte uit G-cellen
N. vagus inhibeert in antrum en corpus somatostatine-afgifte uit D-cellen.
Deze fase zorgt voor ongeveer 30% van de totale zuursecretie en begint nog voor het eten in de maag beland.
Gastric fase: zorgt voor 50-60% van de zuursecretie
Mucosa wordt uitgerekt door het binnenkomende eten, waardoor de vasovagale reflex en lokale reflexen van het enterisch zenuwstelsel worden geactiveerd.
Gedeeltelijk verteerde proteïnen stimuleren antrale G-cellen.
Klassieke negatieve feedbackloop zorgt voor inhibitie van zuursecretie
Intestinale fase: Aminozuren en gedeeltelijk verteerde peptiden in de proximale dunne darm zorgen voor zuursecretie, via:
Gastrine secretie uit duodenale G-cellen
Het hormoon entero-oxyntine
Eén derde mechanisme door aminozuuropname in de proximale dunne darm.
Deze fase zorgt voor 5-10% van de zuursecretie
Pepsinogenen zijn proteolytische pro-enzymen die worden omgezet in pepsinen. Pepsinen zijn endopeptidasen die zorgen voor hydrolyse van proteïnen. Secretie gaat vaak gepaard met zuursecretie, maar het mechanisme is wel anders. cAMP en Calcium pathways zorgen voor activatie van Chief cells, waardoor pepsinogenen worden vrijgegeven. Secretoire granulen fuseren met het apicale membraan, waardoor exocytose plaatsvindt. De belangrijkste agonist is ACh als gevolg van stimulatie van de n. vagus. Het maagzuur zorgt voor extra pepsinogeensecretie als gevolg van een cholinergische reflex na pH-daling, en door S-cellen in het duodenum meer secretine te laten produceren. Een lage pH (<5) is nodig om pepsinogeen te activeren en is nodig voor pepsine activiteit.
Een fysiologische en anatomische gastrische diffusie barrière zorgt ervoor dat de maagcellen niet zelf verteerd worden door pepsinen of door het zuur én dat de gradiënten aanwezig blijven om de Na+-concentraties en pH te behouden.
Het apicale membraan en de tight junctions zijn relatief impermeabel voor zuur.
Een slijmlaag bedekt de epitheelcellen. Deze bestaat uit mucine, elektrolyten en water. Slijmafgifte wordt zowel gestimuleerd door de n. vagus (via ACh) als door fysieke en chemische irritatie door voedsel.
Er is een bicarbonaatmicroklimaat rond het oppervlakte epitheel, onder de slijmlaag dat zorgt voor een relatief hoge lokale pH. Afgifte van het bicarbonaat wordt gestimuleerd door ACh, zuur en prostaglandinen.
Het zuur dat afgegeven wordt door de klieren, lijkt recht omhoog door de bicarbonaatvloeistof en de slijmlaag te gaan, zonder die omgeving aan te tasten. Dit wordt viscous fingering’ genoemd. Wanneer zuur het duodenum bereikt (pH<4.5), wordt secretine afgegeven door S-cellen. Hierdoor wordt bicarbonaat gesecreteerd door de pancreas en onder invloed van prostaglandinen ook het proximale duodenum. Hierdoor wordt het zuur geneutraliseerd.
Veel Intensive Care-patiënten ontvangen profylactische medicatie die maagzuur neutraliseert, dan wel de secretie remt. Dit is omdat bij mechanische ventilatie of bij coagulatiestoornissen er een verhoogde kans is op bloeden van maagzweren. Ondanks dat het effectief is, zorgt de verhoogde maag-pH dat er een verminderde barrière is voor gramnegatieve bacteriën. Bij de patiënten is er vaak reflux en aspiratie van de reflux, waardoor een pneumonie kan ontstaan.
Gastrinoom of Zollinger-Ellisonsyndroom is een zeldzame aandoening waarbij patiënten met maagzweren meer zuursecretie hebben als gevolg van verhoogde gastrine niveaus. Deze wordt dan uitgescheiden door een cel adenoom in de pancreaseilandjes of door een gastrinoom. De zuursecretie wordt dan niet normaal gereguleerd. Omeprazol is de meest effectieve behandeling. Patiënten met een duodenale zweer hebben juist bijna normale gastrineniveaus in het serum. Patiënten met pernicieuze anemie hebben minder pariëtale cellen en dus minder zuursecretie. Hierdoor wordt de D-cel ook niet gestimuleerd en geen somatostatine afgegeven, waardoor ook er weinig inhibitie van gastrine is. Er is dan dus veel gastrine, maar nauwelijks H+.
Wanneer de maagbarrière wordt afgebroken door onder andere galzuren en ethanol kan dit zorgen voor zweren en rediffusie van zuur. Zuur dat de mucosa in gaat, zorgt voor beschadiging van mestcellen, waardoor inflammatie ontstaat onder invloed van histamine. Wanneer de inflammatie hevig is, worden allerlei inflammatiefactoren vrijgelaten en vindt ernstige beschadiging van het weefsel plaats. Prostaglandinen zorgen voor de mucoseale integriteit, door zuursecretie te remmen, bicarbonaat en slijmafgifte te bevorderen, flow te vergroten en de inflammatoire respons te activeren.
De meeste maagzweren worden veroorzaakt door de bacterie Helicobacter Pylori (H. Pylori). NSAID’s zijn verantwoordelijk voor 20% van de gevallen. Veel mensen met H. Pylori krijgen geen zweren. H. Pylori inhibeert de somatostatine-afgifte door D-cellen in het antrum. Door minder remming is er dan dus meer gastrine. Inhibitie van de zuursecretie vermindert, maar geneest de zweren niet. Antibiotica kan het wel genezen.
Overgeven wordt geactiveerd vanuit de hersencentra. Het begint met het stoppen van de intestinale slow-wave activiteit. Die wordt dan vervangen door retrograde contracties vanaf het ileum naar de maag. De buik en ademhalingsspieren spannen zich samen tegen de gesloten glottis, waardoor de intra-abdominale druk stijgt, de sfincters openen en er wordt overgegeven. Er zijn drie oorzaken:
Irriterende stoffen in de maag en peritonitis, via vagale pathway
Dysfunctie van het binnenoor en wagenziekte, via n. vestibularis
Medicijnen en chemotherapieën activeren een triggerzone in de hersenen
Zowel de pancreas als de speekselklieren zijn exocriene klieren. Speeksel zorgt voor lubricatie van voedsel en voor de vertering van zetmeel. Pancreassap is rijk aan bicarbonaat en verterende enzymen en zorgt voor neutralisatie van de zure maaginhoud (die de dunne darm binnengaat) en voltooit de vertering van koolhydraten, proteïnen en vet. Beide klieren zijn verdeeld in lobuli, die via lobulaire ducti in een hoofdductus en dan in het maagdarmkanaal draineren. Elke secretoire eenheid bestaat uit een acinus en een kleine ductus. Elke acinus bestaat uit 15-100 acinaire cellen die proteïnen synthetiseren en afgeven. In de pancreas zijn dit ongeveer 20 enzymen en hun precursors. In de speekselklier is dit amylase, mucine en proline rijke proteïnen. Ook scheiden ze een transportvloeistof uit, wat tezamen de primaire secretie vormt. Deze wordt nog aangepast door de cellen uit de ductus waar het doorheen loopt. Verder bevatten de klieren sympathische en parasympatische zenuwen en een uitgebreide vasculatuur die, naast zuurstof, ook hormonen vervoeren naar de klier.
De acinaire cellen zijn epitheelcellen gespecialiseerd in het synthetiseren van grote hoeveelheden proteïnen. Ze bevatten daarom veel endoplasmatisch reticulum en veel granulen die de proteïnen opslaan. De secretoire proteïnen verlaten het Golgicomplex in gecondenseerde vacuolen, die een erg lage pH hebben. Ze worden opgeslagen in zymogene granulen in de apicale regio van de cel. De proteïnen worden uitgescheiden doordat de granule fuseert met de celmembraan, waardoor exocytose plaatsvindt.
Ductuscellen zijn epitheelcellen gespecialiseerd in transport van vocht en elektrolyten als reactie op neurohumorale stimuli. Ze hebben veel mitochondriën om de energie te leveren voor het vele actieve transport. Ook hebben ze plooien om een groter oppervlak te bewerkstelligen. Gobletcellen scheiden mucine uit, dat voor slijmvorming (mucus) zorgt.
Pancreataire acinaire cellen scheiden verteringsenzymen zowel neurohumoraal gestimuleerd, als ongestimuleerd (op een laag niveau) uit. De secretie is dan monofasisch, dan wel bifasisch. Monofasisch houdt in dat een agonist een dosis-respons relatie creëert tot een maximumniveau, dat niet afneemt wanneer de concentratie hoger wordt. Bifasisch houdt in dat de secretie zal afnemen nadat er een maximumniveau is bereikt. De secretie wordt gereguleerd door CCK en muscarinerge (ACh) receptoren. Activatie van verschillende pathways kan een additief effect hebben. Ook kan het er voor zorgen dat een cel die eerder gestimuleerd is, tijdelijk in een herstelfase is en niet gestimuleerd kan worden. Dit wordt desensitisatie genoemd. Een verhoging van de Ca2+-concentratie is de voornaamste second messenger voor proteïnesecretie. Een toename van de frequentie van oscillaties is de belangrijkste activator. Daarnaast spelen ook cGMP en cAMP een rol. Behalve proteïnen, wordt ook een NaCl-rijke plasma-achtige vloeistof uitgescheiden om het gesecreteerde proteïnerijke materiaal te hydrateren. Het vormt ongeveer 25% van de totale pancreataire vloeistofsecretie.
De pancreataire ductuscel secreteert isotonische NaHCO3, dat de proteïnerijke primaire secretie alkaliseert en hydrateert. De cel zorgt voor ongeveer 75% van de totale pancreataire secretie. Drie basolaterale transporters zorgen direct of indirect voor de intracellulaire HCO3- die nodig is voor de secretie: een elektrogene Na+/HCO3--transporter, een Na+/H+-exchanger en een H+-pomp. Secretine (via cAMP) en ACh (via calcium) stimuleren de HCO3--secretie. Chloridekanalen zijn belangrijk voor de neurohumorale regulatie. Secretine kan zorgen voor secretie van glycoproteïnen naast de belangrijkere afgifte van water en HCO3-. De samenstelling is anders dan die van het slijm gevormd door de slijmbekercellen. Waarschijnlijk beschermen ze tegen beschadiging door proteasen.
Elke dag produceren we ongeveer 1.5L pancreassappen. De pancreas produceert allerlei proteïnen, grotendeels (pro-)enzymen. Ze worden verdeeld in proteasen (hydrolysatie van proteïnen), amylase (vertering van koolhydraten), lipasen en fosfolipasen (lipide afbraak) en nucleasen (vertering van nucleïnezuren). Hiernaast is het pancreassap rijk aan HCO3- en Calcium. Het bicarbonaat neutraliseert in het duodenum de zure maagsappen om verteringsenzymen goed te kunnen laten werken. Tijdens vasten, is de secretie maximaal 10-20% van de hoeveelheid tijdens eten. Dan is de secretie wel variabel, namelijk met de motiliteit van de darm. Tijdens een MMC is de secretie dan dus maximaal. De regulatie is parasympatisch. CCK uit neuro-endocriene duodenale cellen stimuleert direct en indirect (door middel van het parasympatisch zenuwstelsel) enzymsecretie door de acini. Secretine uit S-cellen stimuleert HCO3- - en vochtsecretie door de ducti. De exocriene pancreas wordt ook beïnvloed door insuline, andere hormonen die door de pancreaseilandjes worden uitgescheiden én andere hormonen uit de darmen.
Een maaltijd triggert cefale, gastrische en intestinale fasen van pancreassecretie, die worden gemedieerd door een complex netwerk van neurohumorale interacties.
Cefale fase: zien, proeven en ruiken van eten zorgt voor een kleine vermeerdering van vocht- en elektrolytensecretie. Wél zorgt het voor een sterke vermeerdering van de enzymsecretie. Er is vagale stimulatie door Ach en blokkade door atropine. Het wordt gemedieerd door de stimulatie van muscarinerge receptoren op de acinaire cel.
Gastrische fase: aanwezigheid van voedsel in de maag stimuleert pancreassecretie door hormoonafgifte (onder andere gastrine), neurale pathways (via een vasovagale reflex als reactie op rek op de maag) en door aangepaste pH en beschikbaarheid van nutriënten in de proximale dunne darm.
Intestinale fase: onder andere maagzuur dat de darm binnenkomt en afgifte van secretine stimuleert, waardoor ductuscellen HCO3- en vocht gaan afgeven. Ook stimuleren lipiden CCK-afgifte uit duodenale cellen waardoor acinaire cellen verteringsenzymen gaan afgeven. Tot slot is er de vasovagale reflex die acinaire cellen stimuleert.
Het patroon en de hoeveelheid van secretie is sterk afhankelijk van de hoeveelheid en de ingrediënten van de ingenomen voeding. De pancreas kan zijn reserves aanpassen aan de hand van een langdurig voedingspatroon. Het heeft de grootste reserves van enzymen voor de vertering koolhydraten en proteïnen. Ondanks dat de reserve voor lipiden een stuk kleiner is, is het mogelijk om 80% van de pancreas weg te halen voordat de vetafbraak wordt aangetast. De secretie van pancreassap wordt afgeremd doordat het vet aankomt in het einde van de dunne darm. De inhibitie vindt plaats door peptide YY, somatostatine en glucagon.
De pancreas verteert zichzelf niet, door de volgende mechanismen.
Verteringsenzymen zijn vaak inactief en verpakt in granulen
Het granulaire membraan is impermeabel voor proteïnen
In elke granule zitten inhibitors van enzymen
Enzymactiviteit wordt geremd door een lage pH, condensatie en ion conditie
Enzymen die prematuur actief worden binnen de acinaire cellen worden gedegradeerd of direct uitgescheiden.
De opbouw van de speekselklier is gelijksoortig als dat van de pancreas. De acinaire cellen zijn echter verdeeld in twee groepen, die elk andere proteïnen secreteren. De cellen van de parotisklier secreteren een waterachtig secreet met veel amylase. De linguale klieren secreteren een slijmachtig product bestaand uit mucine-glycoproteïnen. De submandibulaire klieren bevatten beide typen cellen. De secretie wordt niet (zoals in de pancreas) hoofdzakelijk humoraal geregeld, maar vooral neuronaal door het autonome zenuwstelsel. ACh en norepinefrine zijn de grootste agonisten. Proteïne secretie is net als in de pancreas afhankelijk van toename van cAMP en Calcium. Gestimuleerd bestaat 90% van de secretie uit vocht en elektrolyten.
De ductuscellen produceren een hypotonische vloeistof arm in NaCl en rijk aan KHCO3. Parasympatische stimulatie (ACh) zorgt voor verminderde Na+-absorptie, het hormoon aldosteron vermeerdert deze absorptie juist. De ductuscellen secreteren ook proteïnen, waaronder verteringsenzymen zoals amylase. Dit wordt sympathisch geregeld.
Afhankelijk van de proteïnen, kan de secretie uit speekselklieren waterachtig (veel amylase), slijmachtig (veel mucine) of een mengvorm (sublinguaal, submandibulair) zijn. Parotis- en submandibulair speeksel is vooral erg rijk aan prolinerijke proteïnen. Deze werken antimicrobieel, bevochtigen het voedsel en spelen een belangrijke rol in het neutraliseren van tannine, dat anders epitheel zou kunnen beschadigen. Zonder speeksel neemt smaak en deels ook reuk sterk af. De pancreas kan alleen wel alle soorten voeding verteren. Wanneer de pancreas afwezig is, kan speeksel een klein deel van de vertering opvangen.
Bij lage flow is speeksel hypotoon en rijk aan kalium. Bij een hogere flow is het meer plasma-achtig. De speekselsecretie wordt verhoogd door parasympatische stimulatie. Normaal is dit 1.5L per dag. Sommige medicijnen hebben een anticholinergisch effect, wat een droge mond als bijwerking heeft. Het sympathisch zenuwstelsel kan ook de speekselproductie beïnvloeden, door de bloedflow naar de klieren aan te passen.
Cystische fibrosis (CF), taaislijmziekte, is de meest voorkomende lethale genetische ziekte (chromosoom 7) onder blanken. Verdikte secreties zorgt voor orgaandysfunctie, met name insufficiëntie van pancreas en longen. Er is een verkeerd gevouwen CFTR eiwit. Een dikke, taaie laag slijm in de longen zorgt voor een inflammatoire afbraak van het weefsel. De ziekte wordt meestal bij kinderen gediagnostiseerd door een onbestrijdbare hoest en terugkerende luchtweginfecties.
Acute pancreatitis wordt meestal veroorzaakt door alcohol of galstenen. Een over stimulatie door ACh of CCK kan ook zorgen voor pancreatitis door een premature activatie van zymogenen.
Het syndroom van Sjögren is een progressieve en chronische auto-immuunziekte. Antilichamen reageren op speekselklieren, waardoor minder speekselsecretie kan plaatsvinden. Het kan als primaire ziekte voor komen, of secundair bij andere auto-immuunziekten zoals reumatoïde artritis. Het komt vooral voor bij vrouwen, en wordt niet systemisch. Patiënten hebben een droge mond (xerostomie) en droge ogen (keratoconjunctivitis sicca), waardoor smaak, kauwen en soms spraak zijn aangetast. Er is geen behandeling, anders dan oogdruppels en het innemen van veel vocht.
Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>
In deze bundel zijn samenvattingen, oefenmaterialen en aantekeningen samengevoegd voor het vak Stofwisseling 1 voor de Bachelor Geneeskunde aan de Universiteit Utrecht.
Heb je zelf samenvattingen en oefenmaterialen? Deel ze met je medestudenten!
There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.
Do you want to share your summaries with JoHo WorldSupporter and its visitors?
Main summaries home pages:
Main study fields:
Business organization and economics, Communication & Marketing, Education & Pedagogic Sciences, International Relations and Politics, IT and Technology, Law & Administration, Medicine & Health Care, Nature & Environmental Sciences, Psychology and behavioral sciences, Science and academic Research, Society & Culture, Tourisme & Sports
Main study fields NL:
JoHo can really use your help! Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world
3032 |
Add new contribution