Repeated measures designs - summary of chapter 15 of Statistics by A. Field (5th edition)

Statistics
Chapter 15
Repeated measures designs

Introduction to repeated-measures designs

Repeated measures: when the same entities participate in all conditions of an experiment or provide data at multiple time points.

Repeated measures and the linear model

Repeated measures can also be considered as a variation of the general linear model.

For example.

Ygi = b0i +b1iXgigi

b0i = b0 + u0i

b1i = b1 + u1i

Ygi for outcome g within person i from the specific predictor Xgi with the error Ɛgi

g is the level of treatment condition
i for the individuals

u0i for the deviation of the individual’s intercept from the group-level intercept

The ANOVA approach to repeated-measures designs

The way that people typically handle repeated measures in IBM SPSS is to use a repeated-measures ANOVA approach.

The assumption of sphericity

The assumption that permits us to use a simpler model to analyse repeated-measures data is sphericity.

Sphericity: assuming that the relationship between scores in pairs of treatment conditions is similar.

It is a form of compound symmetry: holds true when both the variances across conditions are equal and the covariances between pairs of conditions are equal.
We assume that the variation within conditions is similar and that no two conditions are any more dependent than any other two.
Sphericity is a more general, less restrictive form of compound symmetry and refers to the equality of variances of the differences between treatment levels.

For example:

varianceA-B = varianceA-C = varianceB-C

Assessing the severity of departures from sphericity

Mauchly’s test: assesses the hypothesis that the variances of the differences between conditions are equal.
If the test is statistically significant, it implies that there are significant differences between the variances of differences and, therefore, sphericity is not met.
If it is not significant, the implication is that the variances of differences are roughly equal and sphericity is met.
It depends upon sample size.

What’s the effect of violating the assumption of sphericity?

A lack of sphericity creates a loss of power and an F-statistic that doesn’t have the distribution that it’s supposed to have.
It also causes some complications for post hoc tests.

What do you do if you violate sphericity?

Adjust the degrees of freedom of any F-statistic affected.
The greater the violation of sphericity, the smaller the degrees of freedom become.

Or fit the multilevel model or use a MANOVA

The F-statistic for repeated-measures designs

In a repeated-measures design the effect of the experiment is shown up in the within-participant variance.
We look for the experimental effect (the model sum of squares) within the individual rather than within the group.
The types of variances are the same as in independent designs: the total sum of squares, a model sum of squares, and residual sum of squares.

In repeated-measures designs the model and residual of squares are both part of the within-participant variance.

The total sum of squares, SST

SST = s2Grand(N-1)

The grand variance is the variance of all scores when we ignore the group to which they belong. We treat data as one big group

Df = N-1

Within-participant sum of squares SSW

A within-participant variance component, which represents individual differences within participants.

SSW = s2entitiy1(n1-1) + s2entitiy2(n2-1) + s2entitiy3(n3-1) + … + s2entitiyn(nn-1)

Looking at the variation in each individual’s score and then adding these variances for all the entities in the study. The ns represents the number of scores within the person.

The df = n-1

to get the total degrees of freedom we add the df’s for all participants.

The model sum of squares SSM

How much variance is explained by our manipulation and how much is not.

SSM = Σkg-1ng(meang-meangrand)2

df = k -1

Residual sum of squares SSR

how much of the variation cannot be explained by the model.
The amount of variation caused by extraneous factors outside experimental control.

SSR = SSW-SSM

dfR= dfW-dfM

The mean squares MSM

the mean squares represents the average variation explained by the model

MSM = SSM/dfM

MSR = SSR/dfR

The F-statistic

The F-statistic is the ratio of variation explained by the model and the variation explained by unsystematic factors.

F = MSM/MSR

The experimental effect on performance to the effect of unmeasured factors.
If the values is greater than 1, it indicates that the experimental manipulation had some effect above and beyond the effect of unmeasured factors.

The between-participant sum of squares

SST = SSB-SSW

SSB = SST-SSW

SSB is the individual differences between cases.

Assumptions in repeated-measures designs

All sources of potential bias in chapter 6 apply.

Using the ANOVA approach, the assumption of independence is replaced by assumptions about the relationships between differences scores (sphericity)

In the multilevel approach, sphericity isn’t required.

If assumptions are not met, there is a robust variant of one-way repeated-measures ANOVA.

One-way repeated-measures designs

  • one-way repeated-measures designs compares several means, when those means come form the same entities.
  • when you have three or more repeated-measures conditions there is an additional assumption: sphericity.
  • you can test for sphericity using Mauchly’s test, but it is better to always adjust for the departure from sphericity in the data
  • the table labelled Tests of Within-Subject Effects shows the main F-statistic. Other things being equal, always read the row labelled Greenhouse-Geisser. If the value in the column labelled Sig. Is less than 0.05, then the means of the conditions are significantly different.
  • for contrasts and post hoc tests, again look to the columns called sig to discover if you comparisons are significant.

Effect sizes for one-way repeated-measures designs

The best measure of the overall effect size is omega squared ω2.

ω2 = ((k-1)/nk) (MSM – MSR) / (MSR + ((MSB – MSR)/k) +((k-1)/nk) (MSM – MSR))

MSB = SSB/dfB = SSB/(N-1)

Effect size for the contrasts

r = square root ( (F(1,dfR))/ (F(1,dfR) +dfR) )

Reporting one-way repeated-measures designs

F, the correct degrees of freedom, p and effect size.

Factorial repeated-measures designs

  • Two-way repeated-measures designs compare means when there are two independent variables, and the same entities have been used in all conditions
  • You can test the assumption of sphericity when you have three or more repeated-measures conditions with Mauchly’s test, but a better approach is to routinely interpret F-statistics that have been corrected for the amount by which the data are not spherical
  • The table labelled Test of Within-Subject Effects show the F-statistic and their p-values. In a two-way design you will have a main effect of each variable and the interaction between them. For each effect, read the row labelled Greenhouse-Geisser. If the value in the column labelled Sig is less than 0.05, then the effect is significant.
  • Break down the main effects and interactions using contrasts. These contrasts appear in the table labelled Test of Within-Subjects Contrasts. If the values in the column labelled Sig are less than 0.05, the contrast is significant.

Effect sizes for factorial repeated-measures designs

Effect sizes are more useful when they describe a focused effect, so calculate effect sizes for you contrasts in factorial designs.

Reporting the results from factorial repeated-measures designs

We have multiple effects to report and we need to report corrected degrees of freedom for each, and these effects might have different degrees of freedom.

F, degrees of freedom, p and effect size.

Image

Access: 
Public

Image

Join WorldSupporter!
This content is used in:

Summary of Discovering statistics using IBM SPSS statistics by Field - 5th edition

Search a summary

Image

 

 

Contributions: posts

Help other WorldSupporters with additions, improvements and tips

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.

Image

Spotlight: topics

Check the related and most recent topics and summaries:
Institutions, jobs and organizations:
Countries and regions:
WorldSupporter and development goals:
This content is also used in .....

Image

Check how to use summaries on WorldSupporter.org

Online access to all summaries, study notes en practice exams

How and why use WorldSupporter.org for your summaries and study assistance?

  • For free use of many of the summaries and study aids provided or collected by your fellow students.
  • For free use of many of the lecture and study group notes, exam questions and practice questions.
  • For use of all exclusive summaries and study assistance for those who are member with JoHo WorldSupporter with online access
  • For compiling your own materials and contributions with relevant study help
  • For sharing and finding relevant and interesting summaries, documents, notes, blogs, tips, videos, discussions, activities, recipes, side jobs and more.

Using and finding summaries, notes and practice exams on JoHo WorldSupporter

There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

  1. Use the summaries home pages for your study or field of study
  2. Use the check and search pages for summaries and study aids by field of study, subject or faculty
  3. Use and follow your (study) organization
    • by using your own student organization as a starting point, and continuing to follow it, easily discover which study materials are relevant to you
    • this option is only available through partner organizations
  4. Check or follow authors or other WorldSupporters
  5. Use the menu above each page to go to the main theme pages for summaries
    • Theme pages can be found for international studies as well as Dutch studies

Do you want to share your summaries with JoHo WorldSupporter and its visitors?

Quicklinks to fields of study for summaries and study assistance

Main summaries home pages:

Main study fields:

Main study fields NL:

Follow the author: SanneA
Work for WorldSupporter

Image

JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

Working for JoHo as a student in Leyden

Parttime werken voor JoHo

Statistics
3511