Samenvatting literatuur bij Mechanisms of Disease 1 - Week 1 - Geneeskunde UL (2013/2014)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


Genetica van kanker

Risicofactoren voor kanker

Alle kankers zijn aandoeningen van somatische cellen, maar sommige worden veroorzaakt door overgeërfde germline mutaties. Voor veel kankervormen is echter de omgeving belangrijk dan de erfelijke belasting. Een voorbeeld van kankers door omgevingsfactoren zijn industriele kankers, die komen door het werken met chemische stoffen zoals asbest. Gezien niet alle mensen die met deze stoffen in aanraking komen kanker ontwikkelen, is er dus wel een genetische factor; zo lopen mensen met kortere telomeren meer risico. De belangrijkste mutaties die kanker veroorzaken zijn die in tumor suppressor genen (TSG), oncogenen en DNA mismatch repair genen.

Bij vrouwen komt borstkanker het meest voor; maar hoe eerder de eerste zwangerschap hoe minder kans hierop. Epigenitica (erfelijke factoren die niet met de DNAsequence te maken hebben) is hierbij van belang. Verschillende soorten onderzoek dragen bij aan kennis over kankers: epidemiologische, familiaire, tweeling, associatie, biochemische, dierlijke en virale factoren worden onderzocht. Door naar het voorkomen van een kanker in de familie te kijken, kan de erfelijke factor onderzocht worden. Tweelingstudies dragen veel bij aan dit onderzoek. Bloedgroep A geeft extra risico op vooral maagkanker. Uit muizenstudies blijkt dat bepaalde virussen de kans op kanker verhogen, deze bouwen een oncogen in in het DNA of hebben RNA dat de celdeling promoot (wat ook weer in het genoom wordt ingebouwd). Virussen hebben maar drie genen nodig (een voor antigenen, een voor reverse transcriptase en een voor de envelop eiwitten) maar kunnen ook een vierde, oncogene hebben.

Oncogenen

Oncegenen (ook wel c-onc genoemd) zijn varianten van normale genen, proto-oncogenen genoemd, er zijn er nu 50 geïdentificeerd. Waarschijnlijk ontstaan ze door mutaties bij replicatie van virussen. Bij kanker zijn vaak (meerdere) chromosomen aangedaan: er zijn dingen uitgewisseld, herrangschikt of zelfs helemaal weg. Hierdoor kan de activiteit of functie van een proto-oncogen worden verandert. Bij chronische myeloide leukemie wisselen chromosoom 9 en 22 bijvoorbeeld een deel uit, waardoor een gefuseerd eiwit ontstaat. Bij Burkitt Lymphoma wisselen 8 en 14 een deel, waardoor de expressie van het MYC-oncogen meer dan vertienvoudigd wordt. Gen amplificatie, een overlevingsmechanisme waarbij een gen gekopieerd wordt, kan bij proto-oncogenen leiden tot het ontstaan van een oncogen. Hierbij ontstaan heel veel oncoproteïnes. In 10% van de tumoren zien we deze ‘extra (stukjes) chromosoom’. Ras, een gen betrokken bij DNA transfectie, is een vaak gemuteerd bij kanker.

Naast het verlies van de functie van de proto-oncogenen hebben kankercellen vaak ook problemen met de signaal transductie, een pathway die zorgt dat proliferatie en differentiatie goed verloopt. Proto-oncogenen zijn door de evolutie heen goed in stand gebleven: ze zijn dus erg belangrijk. Ze zorgen voor signaal transductie door:

  1. Phosfolisering van serine, threonine en tyrosine, waardoor de kinase activiteit verandert.

  2. GTPase waardoor de GDP-GTP cyclus aangezet wordt.

  3. Eiwitten in de nucleus die de celcyclus, DNA replicatie en gen-expressie regelen.

Typen oncogenen

  • Groeifactoren: stoffen die de cel van G0 naar de start van de celcyclus brengen. Een voorbeeld hiervan is v-SIS.

  • Groeifactorreceptoren: door deze receptoren te continu op ‘aan’ te hebben, wordt er aan de controle voorbijgegaan. Een voorbeeld van een gemuteerde tyrosine kinase is ERB-B. Dit komt meestal niet door translocatie maar door een punt-mutatie.

  • Intracellulaire signaaltransductie factoren: dit kunnen zowel eiwitten met GTPase activiteit als cytoplasmische serine threonine kinases.

  • DNA-bindende kerneiwitten: deze beïnvloeden de genexpressie. Voorbeelden zijn FOS, JUN en ERB-A. MYC en MYB vallen hier ook onder, zij brengen de cel van de G1 naar de S fase, waardoor de cel niet in de rustfase komt.

  • Celcyclusfactoren: door de remming op de celcyclus weg te nemen, komt de cel in constante proliferatie. Zo zorgt bcl-2 dat er geen apoptose plaatsvindt.

Tumor suppressor genen

De functie van TSG is het remmen van ongewenste celproliferatie. TSG zijn de grootste erfelijke veroorzaker van kanker. Deze aandoeningen zijn recessief: als een van de genen nog goed is wordt de tumorvorming nog geremd. Net als bij de oncogenen is een erfelijke variant niet genoeg om kanker te veroorzaken: er moeten nog omgevingsfactoren bij.

Retinoblastoma is een kanker die door een gemuteerd TSG komt, als deze erfelijk is is het vaak bilateraal, anders unilateraal. De two-hit hypothese stelt dat een recessieve kanker het vaakst voorkomt als een allel door een germline mutation defect is en de ander door een somatische mutatie ook kapot gaat. Bij Retinoblastoma gaat het om 13q14. Het RB1 gen codeert voor het p110rb eiwit dat de regulatie van de celcylcus doet. Als dit eiwit gephosfoliseerd is, kan de cel naar de S fase. Dit gebeurt continu bij Rb, waardoor de cel blijft delen. Bij LOH (loss of heterozygosity) is er maar één (soort) allel. Dit kan op verschillende manieren gebeuren, o.a. door mitotische misjunctie of deleties.

P53 is een gen dat met RAS samenwerkt, gemuteerd is het een oncogen. Dit is het gen dat het vaakst gemuteerd is bij kanker. Gezond P53 wordt ook wel de ‘guardian’ van het genoom genoemd: als er teveel mutaties zijn na duplicatie wordt herstel of apoptose ingezet. Dit doet het tussen de G1 en S fase. Gemuteerde P53 is sterker dan normale P53, waardoor het de normale kan inactiveren: het is dus dominant. Het Li-Fraumeni syndroom komt door een erfelijke aandoening van P53.

Epigenetica van kanker

Zowel hypo- als hypermethylatie kan kanker veroorzaken. Hypomethylatie kan leiden tot LOI (loss of imprinting), waardoor delen van het delen geactiveerd worden die inactief hadden moeten zijn. Hierdoor wordt de expressie van een eiwit hoger dan normaal. Ook wordt het chromosoom instabiel, wat een risicofactor voor kanker is. Als laatste kan LOI ook leiden tot het activeren van een oncogen. De meest voorkomende LOI is die van IGF2, waardoor er teveel insuline-like growth factor wordt geproduceerd. Hypermethylatie geeft risico’s als TSG worden geinactiveerd. Hypermethylatie komt het vaakst voor als een C en een G naast elkaar liggen, dit heet een CpG nucleotide eiland. Dit veroorzaakt vaak colonkanker.

Telomeren

Telomeren zijn de uiteindes van chromosomen. De sequence is telkens hetzelfde: TTAGGG. Hier wordt telomerase mee gecodeerd, wat de telomeren verlengd. Bij elke celdeling worden de telomeren korter. Als de telomeren te kort zijn, is het chromosoom niet beschermd bij deling. Veel kankers worden geassocieerd met korte telomeren. Kankers hebben vaak wel veel telomerase, waardoor cellen veel langer door kunnen delen. Hierdoor worden korte telomeren in stand gehouden en het genoom beschermd.

Genetica

1/40 van de mensen in de ontwikkelde landen ontwikkeld colon- of darmkanker. De meeste colorectale carcinomen ontwikkelen uit goedaardige tumoren. Kleine poliepen kunnen in 5 tot 10 jaar tot kanker ontwikkelen. Hoe kleiner de poliep, hoe kleiner de kans dat kanker ontwikkelt. Vooral verlies van allelen op chromosoom 5 leidt tot colonkanker. LOH op 5 en 18 samen met RAS en P53 mutaties zorgen dat een goed adenoma tot carcinoma ontwikkelt.

1% van de mensen met colonkanker heeft de autosomale dominante ziekte FAP. Hierdoor krijg je grote poliepen op de darm, bij meer dan 90% van de mensen ontstaat darmkanker. Een deletie van 5q21 zorgt voor een verband tussen FAP en DNA markers. Meestal komt dit door LOH.

Bij veel colorectale carcinoma’s is een deel van chromosoom 18 gedeletet. Dit gen, DCC, zorgt voor cel-cel en cel-basaal membraan verbindingen. Bij familiaire colorectale kanker zijn er vaak een paar kleine poliepen en zit de kanker vaak rechts. We noemen dit HNPCC (hereditary, non-polyposis colorectal cancer). Ook al zitten er kleine poliepen, het zijn er veel minder dan bij FAP. Het wordt ook wel Lynch Syndrome genoemd. Bij dit syndroom zijn er verrassend genoeg meer allelen aanwezig. Dit komt doordat de DNA mismatch genen aangetast zijn en er microsatelite instability ontstaat. Dit begint als een LOH waarna na een tijdje het tweede allel aangetast wordt. Analyse van tumor DNA of IHC (immunohistochemistry) toont of HNPCC-related mutaties aanwezig zijn.

Er zijn nog een aantal polypose syndromen, deze komen niet vaak voor. Hieronder vallen:

  • MYH polyposis, niet altijd dominant, wordt veroorzaakt door mutatie op 1p33, waardoor mismatch repair minder goed werkt.

  • Bij Juvenile Polyposis Syndrome, een autosomaal dominante aandoening, is het risico op kanker hoog. 18q en 10q22 zijn hierbij betrokken.

  • Bij Cowden ziekte, autosomaal dominant, komt macrocephalie voor. Het verhoogt de kans op borst en thyroid kanker. Dit komt door mutaties van het PTEN gen op 10q23.

  • Bij het Peutz-Jegher Syndroom, autosomaal dominant, geeft donkere melanine vlekjes op de lippen die bij volwassenheid kunnen verdwijnen. Vaak hebben patiënten veel koliekpijnen. Het komt door een mutatie op 19p.

Borstkanker

1/12 vrouwen in het westen krijgt borstkanker, meestal tussen de 40 en 55 jaar oud. 1/3 van de zieke vrouwens krijgt ook metastasen. 1/5 heeft het in de familie zitten. Ovariumcarcinomen in de familie verhogen ook de kans op borstkanker. Er zijn heel veel oncogenen betrokken, veel daarvan met LOH. BRCA1 en BRCA2 genen zijn oncogenen die dus dominant zijn voor borstkanker. BRCA1 ligt op chromosoom 17, BRCA2 op 13. Bij het BRCA1 gen is er 60-85% kans om borstkanker te ontwikkelen. Ook zorgt het voor het ontwikkelen van ovariumcarcinoom en prostaatkanker. Bij BRCA2 is dit verband minder duidelijk maar wel aanwezig. Bij mannen met BRCA2 is de kans op borstkanker 6%, 100 keer zo groot als normaal.

Ovariumcarcinoom

1/70 vrouwen ontwikkelt ovariumcarcinoom, de kans neemt met de leeftijd toe. Meestal ontstaat de kanker in het epitheel. Vaak is het een LOH op 11q25. 5% van de vrouwen met ovariumcarcinoom heeft het in de familie en bij slechts 1% is door een dominante aandoening, meestal komt het door één gen mutatie. Vaak zijn BRCA1 en BRCA2 aangedaan, maar soms ook de genen van het HPNCC/Lynch Syndroom.

Prostaatkanker

Na borstkanker is prostaatkanker de meest voorkomende vorm van kanker. Mannen hebben een kans van 10% om het te krijgen en van 3% om eraan te sterven. Bij 15% zit het in de familie. LOH’s van genen op verschillende chromosomen kunnen het veroorzaken, één enkele dominante locus kan al genoeg zijn om prostaatkanker te doen ontstaan. HPC1 en HPC2 zijn de genen voor erfelijke prostaatkanker, maar er zijn veel meer genen die aangedaan kunnen zijn. Ook BRCA1 en BRCA2 kunnen prostaatkanker veroorzaken. De meeste niet-familiaire prostaatkankers ontstaan na het 65ste levensjaar.

Genetic counseling

Vaak is de familiegeschiedenis erg belangrijk bij kanker. Niet alleen naar dezelfde kanker, maar ook naar gelijksoortige kankers moet worden gevraagd. Een bijzonder lage leeftijd, bilaterale tumoren in twee gelijke organen en tumoren in twee verschillende orgaansystemen van één individu zijn ook verdacht. Zulke families hebben een ‘familiair cancer-disproposing’ syndroom. Het Li-Fraumeni symdroom is daar een voorbeeld van. Bij 50% van de zeldzame kankers is er een gemuteerd gen overgeërfd. Een aantal recessieve ziektes verhoogt ook de kans op kanker omdat ze zorgen voor chromosoom instabiliteit en zelfs chromosoom breking.
Niet alleen de cancer-predisposing symdromen geven aan dat een individu risico loopt door zijn familie; er zijn veel factoren die meespelen. Hieronder valt het aantal mensen met kanker in de familie, hoe dicht deze bij het individu staan en hoe oud ze waren toen de kanker ontstond. Vaak zijn er niet veel mensen met (dezelfde) kanker in de familie en is het maar de vraag of het in dit geval door erfelijke factoren is ontstaan. In zo’n geval kan men zich beroepen op epidemiologische tabellen, waar de waarschijnlijkheid van de erfelijkheid van kankers staat beschreven. Een voorbeeld hiervan is het Manchester Scoring System voor BRCA1 en BRCA2.

Het grootste doel is de kanker vroeg ontdekken of zelfs voorkomen. Dit kan betekenen dat een individu een levenslang dieet, medicijnkuur of screening krijgt. Screening wordt vooral gedaan bij mensen met een familiair risico en bestaat al allerlei diagnostische tests. Deze tests zijn specifiek voor het soort kanker waarvoor het risico vergroot is: zo wordt bij verdenking van FAP gelet op CHRPE’s (Congenital Hypertrophy of the Retinal Pigment Epithelium). Door de ontwikkelingen op het gebied van genen en het onderzoeken van het genotype van patiënten, kan er bij bepaalde bijbehorende fenotypes ook al een sterke verdenking op kanker ontstaan. Hoe meer bekend wordt over genen, hoe meer DNA-testen er gedaan zullen worden. Omdat maar een klein deel van de kankers via Mendeliaanse overerving werkt (zoals gezegd heeft epigenetica een grote rol, bijvoorbeeld met imprinting), werkt genetische screening maar bij een klein deel van alle kankers. Toch is screening vaak kosten effectief, waardoor vrouwen in veel landen op BRCA1, BRCA2 en P53 worden getest en families met colorectale kanker ook regelmatig gescreend worden. Bij cancer-predisposing syndromes is de aandoening vaak dominant, waardoor heterozygoten bijna 100% zekerheid hebben dat ze de aandoening ontwikkelen. Daarom worden deze individuen heel vaak gescreend.

Voor- en nadelen van screenen

Ondanks dat veel mensen erg enthousiast zijn over screenen moet er goed gekeken worden naar wat het kost en wat het oplevert. Zo kost screenen van de meest voorkomende kankers veel energie van zowel patiënt als arts. En wie moet er eigenlijk gescreend worden? Bij zeldzame familiaire ziektes is dat makkelijk te bepalen, maar bij complexere varianten van kanker, zoals retinoblastinacarcinoom, niet. Sommige mensen met Rb hebben het bilateraal maar niet erfelijk, anderen hebben het unilateraal of zelfs helemaal niet, maar hebben het wel geërfd.

De leeftijd waarop gescreened moet worden verschilt per kankervorm. Vaak begint de screening 5 jaar voor de leeftijd waarop het jongste familielid kanker kreeg. Bij kankervormen die al in de kindertijd voorkomen, zoals Rb, begint de screening postnataal. Bij risico op colonkanker is de screening eens in de 5 jaar, de frequentie neemt toe als er een poliep wordt gevonden. Vanaf een leeftijd van 35 hebben vrouwen jaarlijkste mammografie. Vaak is het moeilijk om te bepalen wat precies bekeken moet worden, omdat niet alle kankervormen makkelijk te screenen zijn.

Screenen op veelvoorkomende kankers

Colorectale kanker is het best te screenen. Hiervoor wordt colonoscopie aangeraden, maar hiervoor is een getrainde arts nodig en is er kans op morbiditeit. Om deze reden zijn er drie criteria, de Amsterdam criteria, bedacht: ten minste 3 familieleden met de aandoening, in minstends 2 opvolgende generaties, bij tenminste één iemand voor de leeftijd van 50.

Bij vrouwen is er vaak kans dat de borstkanker tussen de screeningprocedures in ontwikkeld, dit kan liggen aan het feit dat premenopausaal weefsel minder goed gescreend kan worden dan postmenopausaal weefsel. Ook is het mogelijk dat de radiatie van de screening tot kanker kan leiden, dit risico bestaat voornamelijk bij vrouwen die al op jonge leeftijd gescreend worden. Vaak neemt men dit risico voor lief. Voor de leeftijd van 35 wordt nauwelijks gescreend omdat de resultaten dan nog niet goed af te lezen zijn.

Ovariumcarcinomen beginnen vaak asymptomisch. Vroege diagnose kan levens redden maar is moeilijk omdat de kanker moeilijk te screenen is. Ultrasonografie en Doppler kleuring werken het beste. Bij hoge verdenking kan ook laparoscopie worden toegepast. Ook kan gescreend worden op CA125, een glycoproteïne die vaak verhoogd is bij ovariumcarcinoom, maar ook bij andere kankervormen.

De behandeling

Er zijn meerdere manieren om kanker te behandelen. Bij mensen met familiaire cancer-predisposing syndrome wordt vaak voor opereren gekozen, net als bij de meeste veelvoorkomende kankers. Het verwijderen van de baarmoeder, mastectomie, geeft wel weer verhoogd risico op borstkanker. Bij risico op darmkanker wordt een levenslang dieet voorgeschreven. Bij overerfelijke varianten van kanker moet ook over de kinderwens van de patiënt worden nagedacht.

Kanker

Kankercellen prolifereren, infiltreren en metastaseren

Kanker ontstaat wanneer de basale regels van celdeling worden geschonden. Om orde te handhaven binnen lichaamsweefsels moeten cellen zich aan bepaalde gedragsregels houden. Dat wil zeggen dat ze moeten delen wanneer nieuwe cellen van dat betreffende type nodig zijn, en afzien van delen wanneer geen nieuwe cellen nodig zijn; ze moeten lang genoeg leven om hun taken binnen het weefsel te vervullen, en ze moeten sterven wanneer dat nodig is; ze moeten hun gespecialiseerde karakter behouden, en op de juiste plek hun taken uitvoeren; ze moeten niet afdwalen naar andere weefsels en daar gaan delen.

Een genetische mutatie die een cel de mogelijkheid geeft om te overleven en te delen wanneer het niet zou mogen, kan catastrofale gevolgen hebben voor het organisme.

Kankercellen worden gekenmerkt door twee overerfbare eigenschappen:

  1. Ze prolifereren, ongeacht de behoeften/kenmerken van hun weefsel van origine.

  2. Ze infiltreren en koloniseren andere weefsels.

Cellen die enkel de eerste van deze twee eigenschappen hebben, gaan overmatig prolifereren maar blijven geclusterd op hun plek van origine waar ze een massa of tumor vormen. Men spreekt dan van een benigne tumor. Een chirurgische ingreep kan een dergelijke tumor meestal volledig verwijderen.

Een tumor wordt als maligne aangeduid wanneer het de mogelijkheid heeft om andere weefsels binnen te dringen. In dit geval is er ook echt sprake van kanker. Maligne cellen kunnen de primaire tumor verlaten, in de bloed- en/of lymfecirculatie terechtkomen, en distaal secundaire tumoren (metastasen) vormen.

Epidemiologische gegevens kunnen risicofactoren identificeren

Omgevingsfactoren spelen een belangrijke rol in het ontstaan van kanker. Veelvoorkomende maligniteiten wisselen van land tot land, en studies binnen migrantengroepen tonen aan dat het risico op kanker bepaald wordt door de plek waar men woont, en niet het land van herkomst.

Welke omgevingsfactoren belangrijk zijn voor het risico op kanker, is vaak lastig te bepalen. In sommige gevallen, echter, is het gelukt om specifieke factoren te identificeren. Een voorbeeld is de rol van het humaan papillomavirus (HPV), dat seksueel overdraagbaar is, op het ontstaan van baarmoederhalskanker (cervixcarcinoom). Uit epidemiologische gegevens bleek dat cervixcarcinomen veel vaker voorkwamen bij getrouwde vrouwen, waardoor de rol van een seksueel overdraagbare aandoening aanneembaar werd. HPV kan ongecontroleerde proliferatie van de epitheelcellen van de baarmoederhals veroorzaken. Dit wetende, kon men kanker proberen te voorkomen door de infectie te voorkomen. Het is inmiddels gelukt om een vaccin tegen HPV-infectie te ontwikkelen. Dit vaccin biedt bescherming wanneer meisjes gevaccineerd worden als ze jong en nog niet seksueel actief zijn.

De meeste vormen van kanker worden echter niet door virussen veroorzaakt. Epidemiologisch onderzoek heeft andere risicofactoren kunnen identificeren. Obesitas is bijvoorbeeld een belangrijke risicofactor, en dit verband zou causaal zijn. De belangrijkste risicofactor voor kanker is echter roken. De meeste gevallen van longkanker worden door roken veroorzaakt, en roken verhoogt ook de incidentie van vele andere soorten kankers, zoals blaascarcinoom.

Kanker ontstaat door een accumulatie van mutaties

Kanker is anders dan meeste genetische aandoeningen omdat het veroorzaakt wordt door mutaties in de somatische cellen (in tegenstelling tot de kiemcellen). De meeste kankerverwekkende agentia zijn mutagenen: zij veroorzaken veranderingen in het DNA.

Echter, zelfs in een mutageenvrije omgeving zullen DNA-mutaties optreden. Dit komt door de beperkte nauwkeurigheid van de DNA replicatie- en herstelmechanismen. Gemiddeld treedt er één fout op voor elk 109/1010 gekopieerde nucleotide. Kanker is daarom een ouderdomsziekte, aangezien het heel lang duurt voordat genoeg mutaties geaccumuleerd worden binnen een cellijn om kanker te veroorzaken.

Naast het feit dat kankercellen veel DNA-mutaties bevatten, is het genetisch materiaal ook instabiel. Dat wil zeggen dat het karyotype vaak zeer abnormale chromosomen laat zien, waarin veel translocaties hebben plaatsgevonden.

Mutaties geven kankercellen een voordeel

Mutaties die tot kanker leiden, geven de getroffen cel een voordeel boven de naastgelegen cellen. Door natuurlijke selectie, zullen cellen die sneller prolifereren en beter overleven, de overhand nemen.

Wanneer een cel met een mutatie de mogelijkheid krijgt om te overleven en te prolifereren, zullen dochtercellen met dezelfde mutatie en overlevingsvoordeel ontstaan. Een tweede mutatie in deze cellijn kan dan extra overlevingsvoordeel opleveren. Wanneer een derde mutatie invasieve karakteristieken verleent aan de betreffende cellijn, zijn alle factoren bijeen om kanker te veroorzaken.

Kankercellen hebben een aantal gedragskenmerken:

  1. Ze zijn minder afhankelijk van extracellulaire factoren om te delen, groeien en overleven. Dit wordt veroorzaakt door mutaties in de signalling pathways waarmee cellen op externe invloeden reageren. Een mutatie in het RAS gen kan proliferatie triggeren zonder dat de nodige extracellulaire signalen aanwezig zijn.

  2. Ze ondergaan minder snel apoptose. Dit wordt vaak veroorzaakt door mutaties in het intracellulaire death program dat apoptose kan triggeren. Ongeveer 50% van alle kankersoorten wordt veroorzaakt door mutaties in het p53 gen. Het p53 eiwit is onderdeel van een check-point mechanisme waarbij cellen die een mutatie bevatten, niet verder kunnen gaan met delen of apoptose ondergaan. Cellen met instabiele chromosomen zullen normaal gesproken apoptose ondergaan. Wanneer deze cellen een defect p53 gen hebben, krijgen ze de mogelijkheid om door te gaan met prolifereren, en zullen sterk abnormale dochtercellen ontstaan.

  3. Ze zijn onsterflijk. Normale cellen kunnen maar een beperkt aantal keren delen, omdat bij elke celdeling de telomeren iets korter worden, en deze uiteindelijk te kort zijn om verdere celdeling te ondergaan. Kankercellen hebben een enzym (telomerase) dat het verkorten van de telomeren voorkomt.

  4. Ze zijn genetisch instabiel, met een verhoogd mutatie tempo.

  5. Ze zijn invasief, meestal vanwege het ontbreken van specifieke celadhesie moleculen (zoals cadherinen) waarmee cellen normaal gesproken op hun plek worden gehouden.

  6. Ze kunnen in andere weefsels overleven en prolifereren (metastaseren). Normale cellen kunnen niet buiten hun eigen weefsel overleven.

Verschillende genen zijn belangrijk bij kanker

Proto-oncogen: een mutatie in slechts een van de twee kopieën van het gen is voldoende om problemen te veroorzaken. De mutatie heeft dan een dominant karakter. Het corresponderende gemuteerde gen wordt oncogen genoemd.

Tumor-suppressor gen: beide kopieën van het gen moeten gemuteerd zijn om problemen te veroorzaken. De mutatie heeft een recessief karakter, de functie van het gen moet volledig verloren gaan om gevolgen te hebben.

Colonkanker

De meeste gevallen van darmkanker ontstaan bij oudere mensen. Hiervoor kan geen specifieke hereditaire afwijking worden gevonden. In sommige gevallen kan een hereditaire oorzaak echter wel worden gevonden. Patiënten met deze afwijking ontwikkelen op jonge leeftijd honderden of zelfs duizenden poliepen in de dikke darm (colon en rectum). Deze poliepen kunnen op latere leeftijd maligne worden. De poliepen worden veroorzaakt door een mutatie in het APC gen. Patiënten met de hereditaire vorm van coloncarcinoom hebben één normale en één gemuteerde kopie van het APC gen geërfd. De inactivatie van de normale kopie veroorzaakt op latere leeftijd kanker. Het APC gen is dus een tumor-suppressor gen. Het codeert voor een eiwit dat de Wnt signalling pathway inhibeert en celproliferatie in de crypten van het darmslijmvlies remt.

APC faciliteert de afbraak van beta-catenine en voorkomt dat TCF (transcriptie regulator) geactiveerd wordt in afwezigheid van Wnt. Wanneer APC inactief is wordt beta-catenine niet afgebroken en bindt het aan het TCF-complex, waardoor de Wnt pathway hyperactief wordt. Epitheliale cellen in de darmcrypten gaan hierdoor excessief prolifereren, met poliepvorming als gevolg. Binnen de poliepen kunnen additionele mutaties kanker veroorzaken.

Zie de afbeelding in de bijlage.

Begrip van celbiologie is vereist om nieuwe behandelingen te ontwikkelen

Sommige vormen van mamma- en ovariumcarcinoom hebben een hereditaire oorzaak. De inactivatie van de BRCA1 en BRCA2 genen, die een rol spelen in het herstel van dubbelstrengsbreuken in het DNA, veroorzaakt genetische instabiliteit. Kankercellen kunnen deze instabiliteit omzeilen door alternatieve herstelmechanismen te gebruiken, waardoor ze alsnog kunnen prolifereren. Een geneesmiddel dat die alternatieve mechanismen inhibeert, zou uitkomst kunnen bieden. Door de toegenomen instabiliteit (chromosoom breuken) zouden de kankercellen sterven op het moment dat ze gaan delen.

De genproducten van specifieke oncogenen blokkeren zou een andere strategie zijn.

Tumoren van long, pleura en mediastinum

Inleiding

Wereldwijd is longkanker de meest voorkomende vorm van kanker op het gebied van de solide tumoren. De incidentie stijgt elk jaar, echter sinds het einde van de jaren 80 is de incidentie onder mannen gedaald. Nederland vertoont een hoge incidentie van longkanker onder mannen en vrouwen ten opzichte van andere Europese landen. De voorspelling is dat het aantal doden aan longkanker zal stijgen in de toekomst. In Nederland is longkanker de 2e meest voorkomende vorm van kanker onder mannen en de 3e meest voorkomende vorm van kanker bij vrouwen.

Pathologie

Longkanker wordt ingedeeld volgens de WHO-classificatie op basis van histologie. Longkanker bevat vaak verschillende typen histologische weefsels en wordt daarom geclassificeerd volgens de best gedifferentieerde component en gegradeerd naar de slechts gedifferentieerde component. De definitieve classificatie is gebaseerd op een chirurgisch resectiepreparaat.

Een totaal overzicht van de WHO-classificatie is te vinden op pagina 317 van Van de Velde’s Oncologie. De drie belangrijkste groepen zijn de benigne tumoren, pre-invasieve laesies en maligne tumoren. De laatste twee groepen zullen hier besproken worden:

Pre-invasieve laesies

Er wordt onderscheid gemaakt tussen drie typen pre-invasieve laesies:

1) squameuze dysplasie / carcinoma in situ

2) atypische adenomateuze hyperplasie

3) diffuse idiopathische pulmonale neuro-endocriene celhyperplasie (DIPNECH).

Een pre-invasieve laesie leidt niet altijd tot ontwikkeling van een carcinoom.

Squameuze dysplasie kan zich ontwikkelen van metaplasie (niet pre-invasief) via dysplasie (licht, matig of sterk) en carcinoma in situ (pre-invasieve laesie) tot een infiltrerend carcinoom. Het gehele proces kan jaren duren terwijl ontwikkeling van carcinoma in situ tot carcinoom soms in een half jaar plaatsvindt.

Atypische adenomateuze hyperplasie is een focale laesie (omschreven, kleiner dan 5 mm.) waarbij de bronchioli bekleed zijn met monotone, atypische kubische of cilindrische epitheliale cellen. Deze cellen hebben een dicht chromatine, kleine nucleoli en weinig cytoplasma.

DIPNECH is een zeer zeldzaam klinisch-pathologisch syndroom dat ofwel obstructief longlijden begeleidt ofwel toevallig wordt gevonden op een CT-scan. Het bronchusepitheel vertoont beperkte proliferatie van neuro-endocriene cellen in combinatie met carcinoiden. De meeste DIPNECH laesies zijn niet invasief.

Al deze typen vallen onder het niet-kleincellig longcarcinoom. Het kleincellig carcinoom heeft geen morfologisch voorstadium.

Maligne Longtumoren

Het is klinisch erg belangrijk onderscheid te maken tussen het kleincellig en niet-kleincellig carcinoom. Het niet-kleincellig carcinoom bevat onder andere het plaveiselcelcarcinoom, adenocarcinoom, adenosquameus carcinoom en grootcellig carcinoom.

  • Plaveiselcelcarcinoom: 50 tot 60% van de bronchuscarcinomen in Nederland is van het type plaveiselcelcarcinoom. Dit wordt morfologisch gekenmerkt door hoornvorming en/of de aanwezigheid van celbruggen. Immunohistochemisch kan dit met een kernkleuring van p63 worden aangetoond.

  • Kleincellig carcinoom: 20 tot 25% van de bronchuscarcinomen in Nederland is van het type kleincellig carcinoom. Histologisch zijn kleine cellen met een geringe hoeveelheid cytoplasma, granulair chromatinepatroon en afwezigheid van of weinig nucleoli te zien. Naast elkaar gelegen tumorcellen beïnvloeden elkaars kernvorm (“nuclear moulding”) en mitosen zijn talrijk. De cellen kunnen neuro-endocriene differentiatie ondergaan, wat kan leiden tot de ontwikkeling van para-neoplastische verschijnselen.

Het kleincellig carcinoom is meestal centraal gelegen en is bijzonder agressief. Op moment van diagnose zijn metastasen reeds aanwezig bij 50% van de patiënten. Het kleincellig carcinoom wordt gestadieerd volgend het pTNM system. Een variant van het kleincellig carcinoom is een combinatie met een niet-kleincellig component (plaveiselcarcinoom, adenocarcinoom, grootcellig carcinoom).

  • Adenocarcinoom: ongeveer 30% van de bronchuscarcinomen in Nederland is van het type adenocarcinoom. Verschillende typen adenocarcinoom bestaan, afhankelijk van het celtype waaruit het is ontstaan. Voorbeelden zijn: acinair, papillair, bronchiolo-alveolair en een solide type adenocarcinoom. Centrale alveolaire collaps met fibrosering kan optreden bij adenocarcinomen.

  • Adenosquameus carcinoom: Het adenosquameus carcinoom bestaat voor minstens 10% uit zowel adenocarcinoom en plaveiselcelcarcinoom.

  • Grootcellig carcinoom: ongeveer 5% van de bronchuscarcinomen in Nederland is grootcellig ongedifferentieerd. Een van de varianten is het grootcellig neuro-endocrien carcinoom. De prognose van deze tumoren is slecht en vergelijkbaar met die van het kleincellig carcinoom. Dit type carcinoom is onderdeel van de groep neuro-endocriene tumoren die ook het (atypisch) carcinoid en kleincellig carcinoom bevat.

  • Carcinomen met pleomorfe, sarcomatoide of sarcomateuze elementen: deze groep tumoren lijken soms op sarcomen en bevatten spoelvormige en/of reuzentumorcellen. Zij worden om praktische redenen gegroepeerd en als carcinomen beschouwd.

  • Carcinoidtumor: Histologisch vertoont het carcinoidtumor een organoide, trabeculaire groeiwijze met nesten, strengen en diffuus gelegen cellen. Er wordt histologisch onderscheid gemaakt tussen typisch en atypisch carcinoid. Het onderscheid heeft prognostische waarde. De 5-jaars overleving is respectievelijk 87-100% (typisch) en 37-71% (atypisch).

Moleculaire aspecten van het longcarcinoom

In een deel van de adenocarcinomen en soms in plaveiselcelcarcinomen komen EGFR-mutaties (epidermale groeifactorreceptor) voor. Deze kunnen behandeld worden met EGFR-tyrosinekinaseremmers. De mate en duur van respons op deze medicijnen is niet te voorspellen. De mutaties komen vaker voor bij vrouwen, niet-rokers en Aziaten.

Daarnaast kunnen K-ras, STK11 en neurofibromatose mutaties bij adenocarcinomen voorkomen. Plaveiselcelcarcinomen brengen vaker thymidylaat synthase (TS) tot expressie. Deze gegevens kunnen mede bepalend zijn voor de soort therapie.

Klinisch onderzoek en stadiering

Diagnostiek vindt plaats om een histologische en cytologische typering te kunnen maken, die erg belangrijk is voor de soort therapie. Na het stellen van de diagnose wordt een stadiering uitgevoerd volgens het TNM systeem. Het stadium wordt bepaald door de intrathoracale en extrathoracale uitbreiding van de longtumor. De grootte en intrathoracale uitbreiding van de tumor valt onder de T en loopt van T0-T4, verspreiding naar de lymfeklieren valt onder N en loopt van N0-N3, metastasering valt onder M en loopt van M0-M1. Een stadiering zou dus bijvoorbeeld kunnen worden uitgedrukt met T2N1M0.

Aan de hand van de TNM classificatie kan vervolgens een stadium worden bepaald. Dit is erg belangrijk voor therapeutische mogelijkheden en de prognose. Zo komt bijvoorbeeld stadium I overeen met T1-2N0M0 en stadium IV met TxNxM1. Een ‘x’ geeft elke mogelijke waarde aan.

Een zeer beperkte en dus niet volledige weergave van het TNM is hieronder te vinden:

 

T = Tumor

N = Node (Lymfeklier)

M = Metastase

T0: geen tumor

N0: geen aangedane klieren

M0: geen metastasen

T1: tumor ≤ 3cm.

N1: ipsilaterale hilusklieren

M1: wel metastasen

T2: 3cm. ≤ tumor ≤ 7cm.

N2: ipsilaterale mediastinale klieren

 

T3: tumor ≥ 7cm

N3: Contralaterale klieren of ipsilaterale supraclaviculaire klieren

 

T4: willekeurige grootte met ingroei

 

 

De gehele TNM-classificatie in combinatie met de bijbehorende stadia is te vinden op pagina 321-322 van Van de Velde’s Oncologie.

Voor het kleincellig carcinoom geldt een andere indeling. De tumor kan beperkt/limited zijn waarbij de primaire tumor beperkt blijft tot een hemothorax, exclusief pleura en of pericardvocht. De tumor kan ook uitgebreid/extensive zijn, waar elke verdere uitbreiding onder valt.

Het klinisch onderzoek is belangrijk om een maligniteit te detecteren. Symptomen kunnen ontstaan door de tumor, metastasen of paraneoplastisch syndroom. Vaak is een bronchuscarcinoom in het beginstadium symptoomloos. Uit een grote studie blijkt dat 31% van de patiënten bij presentatie nog geopereerd te kan worden; overige patiënten hebben uitgebreide ziekte (36%) of metastasen op afstand (39%).

De volgende symptomen begeleiden het bronchuscarcinoom vaak: hoest (46%), gewichtsverlies (32%), dyspnoe (30%), pijn (30%) en hemoptoe (27%). In een later stadium kunnen botpijn, slechte eetlust, hepatomegalie en neurologische verschijnselen optreden. Ook paraneoplastische verschijnselen zoals hypercalciemie komen voor. Ongeveer een derde van de patiënten presenteert zich met symptomen veroorzaakt door metastasen.

Ook de volgende klinische bevindingen kunnen voorkomen bij een bronchuscarcinoom: vena-cava-superiorsyndroom, hese stem (uitval n. recurrens), trommelstokvingers en het syndroom van Horner (kleine pupil, afhangend ooglid).

Onderdeel van het lichamelijk onderzoek is auscultatie. Dempingen kunnen worden veroorzaakt door pleuravocht of hoogstand van het diafragma ten gevolge van paralyse van de n. frenicus. Bronchusobstructie kan leiden tot ‘wheezing’ of opgeheven ademgeruis. Uitbreiding van de tumor naar peri- en myocard kan een pulsus paradoxus of ritmestoornissen geven. Naast anamnese en lichamelijk onderzoek is bij patiënten ook aanvullende diagnostiek nodig.

Methoden van diagnostiek en stadiering

Stadiering van de primaire tumor

Sputumonderzoek: Cytologisch onderzoek van sputum kan belangrijk zijn in de aanwezigheid van een centraal gelokaliseerd bronchuscarcinoom. De diagnostische sensitiviteit van eenmalig sputumonderzoek is laag in vergelijking met andere onderzoeken zoals bronchoscopie. Sputumcytologie wordt vooral uitgevoerd bij patiënten die geen invasieve diagnostiek kunnen ondergaan.

Rontgendiagnostiek: Een thoraxfoto kan het vermoeden op een bronchuscarcinoom bevestigen. Deze moet zowel in voor-achterwaartse als dwarse richting worden genomen.

Bij tweederde van de patiënten bevindt de tumor zich in een van beide bovenkwabben, bij 40% is dit in de periferie. Een thoraxfoto kan pleuravocht, thoraxwandinvasie, destructie van ribben, hoogstand van hemidiafragma of een verbreed mediastinum laten zien. Onderscheid tussen een primaire tumor en metastase is lastig te maken op een thoraxfoto.

Computertomografie (CT): CT met contrast van de thorax en bovenbuik is het standaard onderzoek voor de stadiering van longkanker.

Magnetic resonance imaging (MRI): MRI van de thorax is geïndiceerd in de volgende gevallen: een tumor die zich uitbreidt in de plexus brachialis en grote bloedvaten, invasie van de tumor in het mediastinum en rontgencontrast-allergie van de patiënt.

Positronemissietomografie (PET): Met PET is het mogelijk om het tumormetabolisme te visualiseren doordat tumoren een verhoogde opname van 18-F-fluorodeoxyglucose (FDG) vertonen. Opname is afhankelijk van de grootte en het metabolisme van de tumor. Sensitiviteit en specificiteit zijn respectievelijk 94% en 85% voor een solitaire nodule. Bevindingen moeten altijd worden geverifieerd met een pathologische diagnose, omdat fout-positieven en fout-negatieve voorkomen.

Bronchoscopie: Centrale tumoren kunnen zichtbaar worden gemaakt met bronchoscopie, waarbij ook biopten kunnen worden verkregen. Perifere tumoren zijn lastiger te benaderen. Ook cytologisch materiaal kan via deze methode worden verkregen of een broncheoalveolaire lavage worden uitgevoerd. Door middel van transbronchiale puncties kunnen de hilaire en mediastinale lymfeklieren worden bereikt. De sensitiviteit voor centrale tumoren is 85% en voor perifere afwijkingen 70%.

Bronchoscopie wordt ook gebruikt om endobronchiale uitbreiding van de tumor vast te stellen. Dit is nodig om een eventuele resectie te kunnen inschatten. Naast lichtbronchoscopie bestaat er ook fluorescentiemicroscopie dat wordt gebruikt om vroege stadia van maligniteiten te detecteren.

Transthoracale punctie: de transthoracale punctie wordt uitgevoerd bij perifere carcinomen die niet anders bereikbaar zijn. Hoewel de sensitiviteit hoog is (90%), is het aantal fout-negatieven erg hoog. Hemothorax en hemoptoe kunnen optreden na uitvoering van de techniek.

Stadiering van het mediastinum

CT-thorax: De CT-scan is niet optimaal voor het detecteren van mediastinale lymfekliermetastasen, met een sensitiviteit van 61% en een specificiteit van 79%. Een lymfeklier met kleinste diameter >1cm wordt als verdacht beschouwd.

FDG-PET: FDG-PET heeft een duidelijke meerwaarde bij de mediastinale stadiering, met een sensitiviteit van 85% en een specificiteit van 90%. Om een uitspraak te kunnen doen over de mediastinale klieren moet de primaire tumor FDG-opname vertonen.

Oesofagusechografie (EUS FNA): Door middel van oesofagusscopie in combinatie met echografie is het mogelijk bepaalde paraoesofageale structuren, waaronder mediastinale lymfeklieren, te visualiseren en te punctueren. Ook beoordeling van mediastinale structuren zoals pericard, hart oesofagus en arteria pulmonalis is mogelijk. Sensitiviteit: 90%, specificiteit: 100%.

Endobronchiale echografie (EBUS FNA): Met endobronchiale echografie kunnen sommige mediastinale lymfeklieren worden bereikt. De sensitiviteit is 93%, de specificiteit 100%.

Mediastinoscopie: Via een incisie in de hals kan een mediastinoscoop worden geïntroduceerd die biopten kan nemen van bepaalde mediastinale lymfekleren. De procedure is veilig, maar technisch lastig met een morbiditeit van 2% en mortaliteit van 0,08%. Variaties op de standaard mediastinoscopie bestaan, zoals de parasternale mediastinoscopie, en kunnen specifieke groepen lymfeknopen bereiken.

De indeling van de mediastinale lymfeklieren en welke precies met eerdergenoemde technieken zijn te bereiken is beschreven op pagina 325 van Van der Velde’s Oncologie.

Stadiering van metastasen

In het geval van curatieve therapie is het noodzakelijk te weten of metastasen aanwezig zijn. Verificatie van metastasen met pathologie en cytologie is essentieel.

Anamnese en lichamelijk onderzoek: Anamnese en lichamelijk onderzoek gericht op het vinden van metastasen is noodzakelijk bij een bewezen longtumor. Hier moet gelet worden op hoesten, thoracale pijn, kortademigheid, hemoptoe, heesheid, gewichtsverlies, botpijnen en neurologische symptomen. Ook lymfeklieren in de hals, supraclaviculair en oksels, als hepatomegalie en stuwing in de hals zijn belangrijke indicatoren.

Laboratoriumonderzoek: laboratoriumonderzoek kan worden uitgevoerd bij een niet-kleincellig longcarcinoom. Van enige waarden zijn bepalingen van hemoglobine, calcium, albumine, natrium, lactaatdehydrogenase (LDH) en alkalische fosfatase (AF).

CT thorax/abdomen: Een CT thorax met bovenbuik kan maligniteiten in de contralaterale long, bijnier en lever detecteren.

CT / MRI hersenen: Patiënten met stadium III NSCLC met curatieve opzet en in het geval van neurologische symptomen is een CT/MRI van de hersenen geïndiceerd.

FDG-PET: FDG-PET speelt een belangrijke rol in het detecteren van metastasen in bijnier, lever en bot.

Botscan: Een botscan kan verricht worden bij pijnklachten, verhoogd alkalisch fosfatase en/of calcium.

Pleurapunctie of diagnostische thoracoscopie: Een pleurapunctie dient te worden verricht in aanwezigheid van pleuravocht om onderscheid te maken tussen maligne en niet-maligne pleura-effusie. Met thorascopie is het mogelijk de pleura visceralis en parietalis te inspecteren en te biopteren.

Video Assisted Thoracoscopic Surgery (VATS): Een uitbreiding van de normale thorascopie is de video-assisted thoracoscopic surgery (VATS). Hierbij worden diagnostiek en therapie in pleuraholte, mediastinum en long gecombineerd en onder geleide van endoscopische visualisatie uitgevoerd. Mediastiniale klieren kunnen worden gebiopteerd, longnoduli kunnen worden verwijderd en longhaarden kunnen worden gemarkeerd.

Therapie

Niet-kleincellig longcarcinoom

Chirurgie

Een volledige resectie met negatieve snijvlakken is het belangrijkste doel van een chirurgische interventie, dat kan plaatsvinden bij stadium I, II en resectabele III-A tumoren. Chirurgische behandeling bij invasieve tumoren (N2-3,T4) zijn controversieel en gebeuren alleen bij geïsoleerde metastasen, waarbij ook uitgebreide lymfeklierdissectie plaatsvindt. Slechts 20% van de patiënten met een NSCLC kan worden geopereerd. De vijfjaarsoverleving van patiënten die operatie kunnen ondergaan is minder dan 50%. NSCLC stadium I heeft de beste prognose met een vijfjaarsoverleving van 60-85%.

20% van de patiënten met een operabel geacht NSCLC blijkt tijdens een proefthoracotomie onverwachts mediastinale lymfekliermetastasen te hebben. Resectie vindt alleen plaats wanneer 1 aangedaan ipsilateraal mediastinaal lymfeklierstation is geconstateerd tijdens proefthoracotomie en zowel de primaire tumor als de lymfeklier kan worden verwijderd.

Een incomplete resectie heeft geen enkel overlevingsvoordeel in vergelijking met een proefthoracotomie zonder resectie of in vergelijking met helemaal geen chirurgische therapie. Als chirurgische therapie wordt overwogen is functieonderzoek noodzakelijk. Een beperkte cardiopulmonale functie kan een operatie in de weg staan.

De gemiddelde post-operatieve morbiditeit bedraagt 34%. Veel voorkomende complicaties zijn atelectase, pneumonie en respiratoire insufficientie (samen 41%). Ook myocardinfarct (14%), empyeem en bronchopleurale fistels (11%), bloedingen (7%), longembolieen (6%) en CVA’s (3%) komen voor. Postoperatieve mortaliteit bedraagt 2-3% na lobectomie en 5-10% na pneumonectomie.

Na resectie zal de klinisch patholoog bepalen of de resectie radicaal is geweest. Dit wordt vastgelegd aan de hand van het TNM-stadium. Een derde van de patiënten met stadium I NSCLC ontwikkelt na resectie opnieuw tumoractiviteit. Dit komt vaak voor in hersenen, botten en lever. Deze tumoren ontstaan vaak uit micrometastasen, kleine, circulerende metastasen die al aanwezig zijn voor de operatie.

Adjuvante chemotherapie

Adjuvante chemotherapie wordt geadviseerd bij patiënten met stadium II-III-NSCLC na radicale resectie. Bij stadium IA/B kan adjuvante chemotherapie worden overwogen bij hoog-risico patiënten. Dit zijn patienen met slecht gedifferentieerde tumoren, vasculaire invasie, wigexcisie of positieve resectieranden. Meestal wordt cisplatine of carboplatine gebruikt in 3 tot 4 kuren.

Radiotherapie

Stadium I-II niet operabel: Patiënten met stadium I of II NSCLC kunnen om verschillende redenen niet operabel zijn, zoals ernstige cardiovasculaire comorbiditeit, slechte longfunctie of een algehele slechte conditie. Bij deze patiënten kan in opzet curatieve radiotherapie worden uitgevoerd. Hierbij wordt stereotactische radiotherapie verkozen boven conventionele radiotherapie.

Conventioneel gefractioneerde bestraling bestaat uit 2-3 Gy per fractie per dag met een totale dosis van 60-70 Gy in 5-7 weken. Een nieuwere methode SBRT (Stereotactic Body Radio Therapy) gebruikt zeer hoge doses op kleine, geselecteerde plaatsen in de long. Dit wordt binnen 2-3 weken gegeven en bestaat bijvoorbeeld uit 3 x 20 Gy. Lokale tumorcontrole wordt bij meer dan 85% van de patiënten verkregen met zeer weinig bijwerkingen.

SBRT heeft de conventionele bestraling verdrongen voor de meeste patiënten met stadium I-II NSCLC. Het nadeel is dat recidieven na SBRT met een CT en PET heel lastig kunnen worden gedetecteerd, omdat fibrose ontstaat op de plek van straling en dit op de CT heel erg lijkt op een tumor. Bij straling wordt alleen de primaire tumor bestraald en niet de klierstations, omdat recidieven hier niet vaak ontstaan en de schade groot zou zijn.

Stadium III: Het stadium III NSCLC is zeer heterogeen met varierende overlevingscijfers tussen 5-40%. Het merendeel van de patiënten is inoperabel en voor de behandeling worden meerdere modaliteiten gebruikt, waarbij chemotherapie steeds wordt gegeven vanwege de grote kans op subklinische metastasen.

De rol van postoperatieve radiotherapie is onduidelijk. Sommige studies tonen minder recidieven na radiotherapie terwijl andere studies een hoger overlijdensrisico beschrijven. Dit geldt echter voor patiënten in verschillende stadia en onder verschillende condities. Adjuvante radiotherapie is geindiceerd na primaire chirurgie bij stadium IIIA-NSCLC. Bij deze patiënten daalt het locoregionale recidiefpercentage. Ook na niet-radicale resecties is postoperatieve radiotherapie geindiceerd. Preoperatieve radiotherapie alleen werd in het verleden gebruikt, maar is nu vervangen door het combineren van verschillende behandelingen.

Combinatietherapie (combined modality treatment): Neoadjuvante chemotherapie (chemotherapie voor de operatie) in combinatie met radiotherapie blijkt positieve resultaten te geven. Het idee hierachter is om de tumor eerst te verkleinen, voordat resectie plaatsvindt. Micrometastasen worden hierbij ook aangepakt. Nadeel is dat locoregionale tumorgroei niet direct wordt aangepakt en dat de morbiditeit en mortaliteit na de procedure toegenomen kan zijn.

Uit studies blijkt dat toediening van chemotherapie voor bestraling bij stadium III NSCLC leidt tot een verhoogde 5-jaarsoverleving van 5 naar 10%. Uit studies blijkt verder dat concomitante (gelijktijdige) toediening van radiotherapie en chemotherapie betere resultaten geeft dan sequentiele (opeenvolgende) toediening. Gelijktijdige toediening leidt tot een betere overleving, maar geeft meer toxiciteit voor de oesofagus. Echter, deze zogenaamde radiatieoesofagitis is reversibel. De gelijktijdige toediening van chemotherapie en radiotherapie tot een dosis van 60 Gy is de standaardbehandeling bij de meeste patiënten met stadium III NSCLC op moment van schrijven. Alleen patiënten met een goede algemene conditie, zonder veel comorbiditeit en met adequate orgaanfunctie komen hiervoor in aanmerking. Veel longkankerpatiënten voldoen echter niet aan deze criteria en kunnen gelijktijdige chemoradiatie niet aan. Sequentiele chemoradiatie is dan een optie.

Er is veel onderzoek gedaan naar de plaats van chirurgie in combinatietherapie. Deze blijft echter op dit moment nog experimenteel, maar kan in sommige subpopulatie een betere overleving bewerkstelligen. De standaardbehandeling voor patiënten met stadium III NSCLC is de combinatie van chemotherapie en radiotherapie. Dit kan met curatieve intentie behandeld worden.

Nat’ stadium IIIB en stadium IV: Bij deze patiënten kan radiotherapie palliatief worden gegeven bij klachten ten gevolge van de primaire tumor of klierpathologie. Radiotherapie wordt ook gebruikt bij metastasen, vooral die in het bot en in de hersenen. Palliatie van symptomen in de centrale luchtwegen gebeurt door middel van endobronchiale brachytherapie (interne radiotherapie).

Het gebruik van chemotherapie is in de afgelopen jaren sterk toegenomen. Het kan een langere overleving met betere kwaliteit van leven geven. Standaard chemotherapie bestaat uit cisplatine of carboplatine in combinatie met nieuwere middelen zoals taxanen, gemcitabine, vinorelbine en topo-isomeraseremmers. Dit geldt voor patiënten met een goede conditie. Voor patiënten met een minder goede conditie is de rol van chemotherapie veel onduidelijker. Voor een overzicht van veelgebruike chemotherapien zie pagina 332 van Oncologie.

Targeted therapie: In de afgelopen jaren zijn nieuwe moleculaire inzichten opgedaan, waardoor de tumor behandeld kan worden op basis van specifieke, biologische kenmerken. Deze ‘targeted’ therapien bevatten EGFR-remmers (epidermale groeifactorreceptor-remmers) en angiogenese remmers. EGFR-remmers zijn vooral effectief bij specifieke EGFR-mutaties, die vooral voorkomen bij vrouwen, Aziaten, niet-rokers en adenocarcinomen. Voorbeelden zijn erlotinib en gefitinib en het is effect is een betere overleving. Het angiogenese-remmende VEGF antilichaam bevacizumab als eerstekeusbehandeling met chemotherapie geeft een overlevingswinst van twee maanden bij gemetastaseerd NSCLC.

Endobronchiale therapie: Bij een klein aantal patiënten met een lokaal en zeer klein tumorproces, dat geen doorgroei of uitzaaiingen vertoont, kan endobronchiale behandeling worden overwogen. Hiervoor zijn enkele technieken beschikbaar, zoals cauterisatie en NdYAG-laser die kunnen resulteren in lokale genezing.

Palliatieve therapie: Driekwart van de patiënten met longcarcinoom zal in een situatie komen dat tumor-verkleinende therapie en dus levensverlengende therapie niet meer mogelijk is. Het verbeteren van de kwaliteit van leven van de patiënt wordt het primaire doel.

De meest voorkomende klachten zijn cachexie, hoest, dyspnoe en pijn.

Medicamenteuze behandeling, ondersteunende therapie of een invasieve behandeling kunnen hierbij helpen. Palliatieve radiotherapie wordt overwogen bij metastatische ziekte in slechte algemene conditie of met meer dan 10% gewichtsverlies. Endobronchiale therapie, pijnstilling, orthopedische ingrepen voor facturen, radiotherapie en pleuradrainage zijn voorbeelden van ingrepen om symptomen te verlichten.

Kleincellig longcarcinoom

Van alle longtumoren behoort 16-20% tot het kleincellig loncarcinoom. Slechts zelden blijkt dit type resectabel te zijn; vaak is er al sprake van metastasering bij presentatie. De mediane overleving is 6 weken tot 3 maanden. Chemotherapie is de behandeling van keuze, op dit moment wordt cisplatine-etoposide veel gebruikt. De myelotoxiciteit van deze combinatie is beperkt en kan gemakkelijk gelijktijdig worden gegeven met radiotherapie. Vier kuren cisplatine-etoposide worden als optimaal beschouwd.

Behandeling van patiënten met beperkte ziekte: Chemotherapie kan tumorregressie bewerkstelligen in een beperkte groep patiënten en zelfs tot langdurige overleving en genezing leiden. Vaak treedt echter een tumorrecidief op. Combinatietherapie met een hoge dosering radiotherapie wordt aangeraden. Zeer beperkte ziekte (T1,2N0,1) kan met chirurgie worden behandeld. Combinatietherapie kan een tweejaarsoverleving van 25-40% geven met een mediane overleving van 18-20 maanden.

Combinatietherapie is ook geindiceerd bij behandeling van patiënten met hematogene metastasen. Vier cycli met cisplatine-etoposide wordt aangeraden.

Middelen tegen het kleincellig longcarcinoom bevatten onder andere: alkylerende middelen (cyclofosfamide), topo-isomerase II-remmers (etoposide), antracyclines (doxorubicine), mitoseremmers (vincristine), topo-isomerase I-remmers (irinotecan), platinumderivaten (cisplatine) en antimetabolieten (gemcitabine).

Standaardcombinaties van chemotherapie bevatten: EP (etoposide, cisplatine), CDE (cyclofosfamide, doxorubicine, etoposide), CAV (cyclofosfamide, doxorubicine, vincristine)

Hersenmetastasen: Bij langdurige overleving ontwikkelt meer dan 60% van de patiënten met het kleincellig longcarcinoom hersenmetastasen. Profylactische bestraling wordt toegepast bij alle patiënten, omdat gebleken is dat deze metastasen zich al vroeg ontwikkelen. Dit vermindert de symptomen en verbetert de overleving. Ook patiënten zonder hersensymptomen worden zo behandeld, dus zowel met beperkte als uitgebreide ziekte.

Radiotherapie in combinatie met dexamethason kan voor een korte periode verbetering geven, maar de prognose verslechtert hierdoor. Chemotherapie heeft een soortgelijk effect als radiotherapie en kan ook gekozen worden in de behandeling. Voor NSCLC is behandeling primair radiotherapeutisch. Bij metastasen kunnen zowel radio- als chemotherapie worden gebruikt, eventueel in combinatie met corticosteroïden om oedeem rond de metastasen te verwijderen.

Tweedelijnstherapie: Tweedelijnstherapie wordt toegepast wanneer de eerste therapie is gestopt en tumorrecidieven optreden. Afhankelijk van de gevoeligheid en resistentie van de tumoren wordt vervolgens een juiste therapie vastgesteld.

Metastatische tumoren in de long

Longmetastasering kan op verschillende manieren ontstaan: diffuus door het longparenchym, als solitaire longmetastase en als solitaire bronchusmetastase. Het wel of niet hebben van een metastase is belangrijk voor de diagnose en prognose, maar het ontstaana van een metastase is nog onbegrepen. Wel is er de vaste volgorde: ontstaan van een tumor, verplaating naar lokale lymfeklier en dan naar andere weefsels. Volgens de oligometastasehypothese is er een spectrum aan kankers, die gaat van kankers die nooit verspreiden naar kankers die vanaf het begin al metastaseren. Neovascularisatie, belangrijk bij de groei van een tumor, is belangrijk bij metastaseren. Men zegt daarom dat kankergroei twee fases heeft: lokaal invasief proces en groei in bloed- of lymfevaten.

De incidentie van extrathoracale tumoren naar het longparenchym is 20-54%. Naast de lever, die via de vena porta veel metastasen krijgt, is de long de plaats met de meeste kans op metastasen. Dit komt omdat het veneuze bloed van de organen eerst via de rechter harthelft in de longen komt. Vooral mammacarcinomen, niercarcinomen en uteruscarcinomen metastaseren snel naar de longen.

Perifeer gelegen metastasen veroorzaken pas later klachten, deze zijn aspecifiek: hoesten, pijn, opgeven (soms bloed). Op de thorafoto zijn hematogenen metastasen als rode haarden herkenbaar. HRCT en PET worden gebruikt voor de diagnose. Verschillende bevindingen leiden tot verschillende diagnoses: een holte is vaak plaveiselcelcarcinoom, verkalking vaak door een osteosarcoom of chondrosarcoom. Niet altijd is het een metastaseL het kan ook nog een goedaardige tumor of primair bronchuscarcinoom zijn. Transtoracale punctie kan uitsluitsel geven, net als bronchoscopie bij veel klachten.

De therapie is afhankelijk van de primaire tumor, waardoor er vaak geen curatieve therapie mogelijk is. Als de tumor en de metastase wordedn verwijderd is zelfs genezing mogelijk, dit is vooral bij colorectale tumoren het geval. Meestal wordt thoracotomie gebruikt. Naast de primaire tumor spelen ook het aantal metastasen en de duur voor de operatie (minder dan 11 maanden geeft meer kans op genezing) een rol.

Artikel: ‘DNA damage, repair and mutations’ door Harry Vrieling

Tijdens de S-fase start de replicatie in zogenaamde replicatie origins. Prokaryoten hebben één origin op het chromosoom, terwijl dit er bij eurkayoten meerdere zijn. Na het initiatiesignaal, komen er replicatiefactoren op het origin te zitten, zorgt helicase voor het openen van de helices en kan de rest van de replicatie machine, waaronder polymerase, zich binden. Het polymerase kan alleen van ‘5  ‘3 synthetiseren. Daarnaast zorgt primase voor een RNA primer, met een 3’ hydroxyl basepaar einde, om polymerisatie te starten. De leading strand kan continu doorgaan met repliceren, terwijl de lagging strand uit korte losse Okazaki fragmenten bestaat. Vervolgens worden de RNA primers vervangen door DNA en kan ligase de fragmenten aan elkaar maken. Proofreading, door middel van een exonuclease, vermindert het aantal fouten van DNA polymerase door fout geplaatste nucleotiden te verwijderen. Als mismatch repair (MMR) daarna nog overgebleven fouten herkent, vernietigt het de nieuw gevormde strand.

Mutaties zijn permanente veranderingen in de nucleotidesequentie. Spontane mutatie kan ontstaan als nucleotiden een abnormaal basenpaar vormen. Dit komt doordat iedere base een tautomeer, structurele isomeer, heeft. Doordat de tautomeer weer in zijn normalere vorm verandert, leidt het na replicatie tot een mutatie. Onder de basenpaar substituties vallen transities en transversies. Als een pyrimidine of purine door een base uit dezelfde groep wordt vervangen, noemen we het transitie en anders transversie.

Het slippen van de template of nieuw gesynthetiseerde streng kan ook tot replicatiefouten leiden, doordat het polymerase loslaat meestal tijdens het kopiëren van een repeat. Dit leidt tot invoeging of weglating van een DNA sequentie en in de meeste gevallen tot een frame shift mutatie als het zich in de coderende regio van een gen bevindt.
Endo- en exogene bronnen kunnen ook spontaan verlies of schade aan basen veroorzaken. Endogene bronnen leiden onder tot deaminatie, depurinatie, oxitatie en methylatie. Exogene bronnen, die schade toebrengen, zijn ioniserende straling (X-rays), uv-licht en sigarettenrook. Ioniserende schade zorgt voor enkel- en dubbel strand breaks, gemodificeerde DNA basen en apurinische locaties (purine is verwijdert). Uv-licht veroorzaakt vooral covalente bindingen tussen naast elkaar gelegen pyrimidines. Omvangrijke DNA additieproducten, ontstaan door uv-licht of chemische endogene stoffen, verstoren de DNA helix, waardoor het niet goed meer kan basenparen tijdens replicatie.

Er zijn verschillende DNA herstel pathways, die DNA laesies al herkennen en verwijderen vóór de replicatiefase. Anders verstoort het cellulaire processen als transcriptie en replicatie met als gevolg het stilleggen van de celcyclus of geprogrammeerde celdood.

  1. Direct herstel
    Photolyasen zijn enzymen, die fotoproducten van uv-licht in hun oorspronkelijke vorm kunnen omzetten. Andere enzymen, waaronder O6-methyl-G DNA methyltransferase, haalt de alkyl groep van de base af en bindt het zelf aan de polypeptideketen, waarna het inactief wordt en zichzelf vernietigt.

  2. Excisie repair

  3. Base excisie repair (BER)
    Laesie-specifieke DNA glycosylasen hydrolyseren de base-suiker verbinding en verwijderen zo de beschadigde purine of pyrimidine uit het DNA. AP endonuclease creëert vervolgens een enkel strand break in de backbone. Polymerase β pakt het benodigde nucleotide, dRPase verwijdert de ‘oude’ suiker-fosfaatgroep DNA ligase verbindt de keten met het nieuwe nucleotide.

  4. Nucleotide excisie repair (NER)

NER verwijdert vooral mutagene en toxische DNA laesies en herkent vooral de veranderde confirmatie in plaats van de laesie zelf. NER substraten zijn o.a. PAHs, UV geïnduceerde CPDs en (6-4)PPs. XPC-HR23B zorgt voor herkenning van de DNA schade, XPA verifieert dit en RPA is het enkel strand DNA bindingscomplex. Vervolgens wordt de helix geopend en de laesie begrenst. Incisies aan beide kanten van de laesie zorgen voor verwijdering van het DNA, waarna het weer wordt afgelezen, opgevuld en aan elkaar gebonden door ligasen. Er zijn twee typen NER, die werken volgens hetzelfde mechanisme, maar met een andere initiatie van schade herkenning. Global Genome Repair (GGR) herstelt DNA schade overal in het genoom, terwijl Transcriptie-Coupled Repair (TCR) dat effectiever doet in actieve genen op de strand waar transcriptie plaatsvindt.
NER is vooral een belangrijke verdedigingsmechanisme tegen de effecten van uv-licht. Een defect in een van de betrokken eiwitten kan dan ook leiden tot een van de volgende recessieve syndromen: xeroderma prigmentosum, syndroom van Cockayne en trichothiodistrofie.

  1. Dubbel strand break (DSB) herstel
    Exo- en endogene factoren kunnen dubbel strand breaks veroorzaken, wat de transcriptie en replicatie na dit punt blokkeert. Dit kan leiden tot degradatie en daarmee het verlies van genetische informatie. Het herstel gaat via twee pathways.

  2. Homologe recombinatie (HR)
    Genetische informatie wordt afgelezen van een ander homoloog chromosoom, meestal een zusterchromatide. Hierbij kan cross-over of omkering van genen optreden. Zie artikel blz. 9 voor een duidelijk plaatje

Single strand annealing (SSA) is een subpathyway, waarbij korte repeat sequenties de break markeren. Deze repeat units vormen een basenpaar, de niet-complementaire ssDNA uiteinden worden eraf geknipt en er vindt ligatie plaats.

  • Niet-homologe end joining (NHEJ)

Een heterodimer bindt simpelweg de twee eindes rond de break aan elkaar vast. Dit proces leidt dan ook vaak tot verlies van genetische informatie.
Afhankelijk van het soort of het stadium in de celcyclus vindt er HR dan wel NHEJ plaats. HR is namelijk vooral effectief tijdens de S- en G2-fase, als er al zusterchromatiden zijn gevormd. NHEJ speelt een belangrijke rol tijdens G0 en G1. Op de overgang G1-S en G2-M zijn belangrijke checkpoints van de celcyclus.

  1. Mismatch herstel (MMR)
    Replicatiefactoren en mismatch eiwitten herkennen de mismatch, die tijdens replicatie is ontstaan. Vervolgens maken de eiwitten een incisie, zorgt exonuclease voor het verwijderen van de nieuw gevormde strand en DNA polymerase hervat de replicatie.

Als DNA herstel mechanismen de schade niet kunnen herstellen, moet de cel een bypass vormen voor DNA laesies om celdood te voorkomen. Er zijn twee pathways om dit te doen:

  1. DNA schade vermijden
    Een replicatievork, ontstaan door DNA schade, op de template streng stopt de replicatie. De dichtbijgelegen zusterchromatide zal dan als templatestreng dienen om toch het stuk geblokkeerde DNA te repliceren. Na de bypass leest de nieuwgevormde streng weer van de oorspronkelijke templatestreng af.

  2. Translaesie synthese (TSL)

Het replicatie polymerase / kan niet langs een beschadigt nucleotide en wordt vervangen door een TSL polymerase. Deze is niet zo specifief voor de template en kan daarom over het beschadigde nucleotide heen repliceren. Na het bypassen van de schade, neemt het replicatie polymerase het weer over. Doordat TSL niet specifiek is, bouwt het soms het verkeerde nucleotide in, wat in de volgende replicatiecyclus tot een mutatie leidt. Het is dus een grote oorzaak voor mutaties, maar voorkomt celdood.

Op basis van de veranderingen, die ze teweeg brengen, kun je mutaties classificeren.

  • Puntmutaties/Intragene mutaties
    Deze ontstaan door substitutie van een basepaar voor een ander (transitie/transversie) of de additie/deletie van een klein aantal basenparen, wat tot frameshifts leidt. Een mutatie in het coderende deel, noemen we ook wel een intragene mutatie, omdat het meestal maar effect heeft op één gen.

  • Chromosomale mutaties
    Dit zijn deleties, tussenvoegingen, omzetting of duplicaties in het coderende deel van meerdere genen. Samenvoegen van gebroken chromosomen of abnormale distributie over de dochtercellen tijdens het scheiden van de chromosomen is meestal de oorzaak. Deze mutaties kunnen vaak leiden tot een verlies van heterozygositeit (LOH). Veel mutagene events hebben LOH tot gevolg, wat weer nauw samenhangt met het ontstaan van kanker.

Signaal transductie pathways, die de celcyclus stopzetten of apoptose induceren, zijn essentieel voor alle beschermingsmechanismen. Checkpoints van G1-S, tijdens de S-fase en van G2-M kunnen de celcyclus tijdelijk stopzetten, zodat de schade kan worden hersteld. Bij te ernstige schade gaat de cel dood of in een verouderingsachtige staat. Cycline afhankelijke kinasen reguleren de progressie van een cel. Het p53 tumor suppressor gen is betrokken in de controle van checkpoints. Een deficiëntie leidt dan ook tot het verlies van het G1/S checkpoint. Het ATM gen veroorzaakt de ziekte ataxia telangiectasie en upstream regulator van p53. Na ioniserende straling stabiliseert en activeert het namelijk p53.
P53 zelf kan wel apoptose induceren om mutagene consequenties te vermijden.

 

Check page access:
Public
Check more or recent content:

Infectie & Immuniteit (afweer) - Geneeskunde - Bundel

BulletPoint samenvatting bij Infectie & Immuniteit (afweer) II - Geneeskunde - UU

BulletPoint samenvatting bij Infectie & Immuniteit (afweer) II - Geneeskunde - UU


Bullet point samenvatting I&A 2 – week 1

Aangeboren afweersysteem

  • Het lichaam heeft verschillende fysieke barrières voor infectie. Denk hierbij aan de huid, het muco-ciliaire transport in de luchtwegen, de lage PH in de maag en de commensalen in de darm.

  • Wanneer een van deze barrières toch wordt doorbroken, wordt als eerste het aangeboren afweersysteem actief. Er zijn twee belangrijke componenten

    • Cellulaire barrière – cellulaire aangeboren afweer

    • Moleculaire barrière – humorale aangeboren afweer

 

Cellulaire barrière

  • Het aangeboren afweersysteem zorgt voor een snelle reactie met een vast panel aan cellen die in staat zijn het micro-organisme te herkennen en op te ruimen. Daarnaast geven zij instructies voor de verdere ontwikkeling van de adaptieve immuun respons.

  • De volgende cellen spelen een rol bij de aangeboren afweerrespons:

    • Myeloïde component:

      • Neutrofiele granulocyten – fagocytose en bactericide mechanismen

      • Eosinofiele granulocyten – afweer tegen parasitaire infecties

      • Macrofagen – fagocytose, bactericide mechanismen en antigeen presentatie.

        • De voorloper van de macrofaag is de monocyt. Deze cel bevindt zich in het bloed.

      • Mestcellen – afgeven van histamine en andere mediatoren, spelen een grote rol bij allergie

    • Lymfoïde component:

      • NK-cellen (ILC-1 – TH1 cytokine producers) – afdoden van met virus geïnfecteerde cellen en het sturen van het ontstekingsmilieu

      • Th2 cytokine producers (ILC-2) – ontstekinsmilieu sturen

      • IL-17/IL-22 producers (ILC-3) – ontstekinsmilieu sturen

  • Wanneer een micro-organisme de fysiologische barrière doorbreekt ontstaat weefselschade. Er zullen vaso-actieve en chemotactische factoren worden uitgescheiden.

  • De vasoactieve factoren zorgen ervoor dat de bloedvatwand doorlaatbaar wordt en er op het vasculaire endotheel adhesiemoleculen tot expressie komen. Fagocyten kunnen aan de adhesiemoleculen binden (marginatie) en zich vervolgens door de vaatwand heen verplaatsen (extravasatie). Doordat de vaatwand meer doorlaatbaar wordt zal ook vocht uit de bloedbaan treden (exsudaat). Hierin zit onder andere complement en C-reactief proteïne.

  • De chemotactische factoren zorgen dat de afweercellen naar de plek van de infectie worden geleid.

  • Fagocytose is het effector mechanisme van de myeloide aangeboren afweercellen. Het wordt uitgevoerd door de macrofagen en de neurtofielen granulocyten. Mechanisme:

    • Receptoren op het oppervlak van de fagocyten herkennen bepaalde componenten van de het oppervlak van micro-organismen en binden (patroonherkenning).

      • PRR: patern recognition receptor op het membraan van de fagocyt

      • PAMP: pathogen associated molecular pattern op het micro-organisme

    • Het micro-organisme wordt opgenomen in de fagocyt. Er ontstaat een fagosoom.

.....read more
Access: 
Public
Collegeaantekeningen bij Infectie & Immuniteit 1 (2015-2016)

Collegeaantekeningen bij Infectie & Immuniteit 1 (2015-2016)

Deze notes zijn gebaseerd op het collegejaar 2015-2016


Thema 1: Bacteriële infecties 1

HC: Inleiding

Casus

Een zelfstandig wonende weduwe van 90 jaar is twee weken geleden bij u langsgekomen met klachten van dyspnoe (sinds september) en 38 graden koorts.

  • Anamnese: sinds een week hoest mevrouw groen sputum op.

  • Comorbiditeit: onder andere DM2, ziekte van Crohn, hypertensie, jicht, nierfunctiestoornis, osteoporose en atriumfibrilleren. Hiervoor wordt ze medicamenteus behandeld met onder andere furosemide, vitamine D en een ACE-remmer. Voorgeschiedenis van de longen is blanco. Ze rookt niet en heeft dat nooit gedaan. Haar moeder had last van astma.

  • Lichamelijk onderzoek: beiderzijds crepiteren halverwege de longen, expiratoir piepend geluid, tachypneu (22-28 ademhalingen/minuut), helder, verzorgd, doch matig ziek voorkomen.

  • Aanvullend onderzoek: sputumkweek toont leukocytose (wijst op ontsteking). Urinekweek toont leukocyturie. Bloedkweek negatief. Bloedgas is alkalisch (pH = 7,51; dat zou normaal gesproken pH = 7,4 moeten zijn). Dit komt omdat mevrouw vanwege dyspnoe (gestoorde gaswisseling, dus lage pO2) hyperventileert. Een alkalisch bloedgas om deze reden heet een niet-gecompenseerde respiratoire alkalose. Thoraxfoto toont een vergroot hart, infiltraat in de longen en een scheefstaande trachea.

  • Diagnose: community-acquired pneumonie (longontsteking).

Vervolg casus

Dyspnoe kan worden onderverdeeld in acute en chronische dyspnoe. Acute dyspnoe kan passen bij een pneumothorax, longembolie, spieraandoening, toxificatie, pneumonie of een fractuur. Chronische dyspnoe kan wijzen op astma, COPD, hartaandoeningen, obesitas of longaandoeningen.

  • SIRS = systemic inflammatory respiratory respons. Dit is een natuurlijke reactie van het lichaam op de veranderingen in de omgeving. Iemand heeft een SIRS als hij aan twee van de vier volgende criteria voldoet:

  • temperatuur >38C of <36C

  • pols >90 slagen/minuut

  • ademfrequentie >20 keer/minuut

  • leukocytwaarde >12.000 of <4.000

Iemand heeft een SEPSIS als hij/zij lijdt aan een SIRS + een infectie (dus een infectie met bedreiging van de vitale functies). Dit moet behandeld worden met een antibioticum.

HC 1: Koorts/Luchtweginfecties

Luchtweginfecties zijn de meest voorkomende infecties in de huisartspraktijk. Zij komen vooral voor in de winter. In de winter zitten mensen dichter bij elkaar. Overdragen is gemakkelijker. Virussen zijn de belangrijkste verwekkers van bovenste luchtweginfecties. Luchtweginfecties zijn op verschillende manieren in te delen, bijvoorbeeld anatomisch of naar de verwekker. Hoe deze indelingen worden gemaakt staat hieronder uitgelegd.

  • Anatomie luchtwegen

Onderverdeling in bovenste luchtweginfectie en onderste luchtweginfectie, met als scheidingslijn de stembanden. Onder bovenste luchtweginfecties vallen dus de sinusitis, de rhinitis, de otitis, de faryngitis, de tonsillitis en de laryngitis. Onder de onderste luchtweginfecties vallen de tracheïtis, bronchitis, acute exacerbaties van chronische bronchitis en de pneumonie. De verschillende infecties worden door.....read more

Access: 
Public
Collegeaantekeningen bij Infectie & afweer 1 (2013-2014)

Collegeaantekeningen bij Infectie & afweer 1 (2013-2014)

Deze notes zijn gebaseerd op het oude curriculum in het collegejaar 2013-2014


Week 1

Hoorcollege 1

Inleiding

Patiënt

Een weduwe, zelfstandig wonende dame van 90 jaar is twee weken geleden bij u langsgekomen met klachten van dyspnoe (sinds september) en 38C koorts.

Anamnese: sinds een week hoest mevrouw groen sputum op. Comorbiditeit: onder andere DM2, ziekte van Crohn, hypertensie, jicht, nierfunctiestoornis, osteoporose en atriumfibrilleren. Hiervoor wordt ze medicamenteus behandeld met onder andere furosemide, vitamine D en een ACE-remmer. Voorgeschiedenis van de longen is blanco. Ze rookt niet en heeft dat nooit gedaan. Haar moeder had last van astma.

Lichamelijk onderzoek: beiderzijds crepiteren halverwege de longen, expiratoir piepend geluid, tachypneu (22-28 ademhalingen/minuut), helder, verzorgd, doch matig ziek voorkomen.

Aanvullend onderzoek: sputumkweek toont leukocytose (wijst op ontsteking). Urinekweek toont leukocyturie. Bloedkweek negatief. Bloedgas is alkalisch (pH = 7,51; dat zou normaal gesproken pH = 7,4 moeten zijn). Dit komt omdat mevrouw vanwege dyspnoe (gestoorde gaswisseling, dus lage pO2) hyperventileert. Een alkalisch bloedgas om deze reden heet een niet-gecompenseerde respiratoire alkalose. Thoraxfoto toont een vergroot hart, infiltraat in de longen en een scheefstaande trachea.

Diagnose: community-acquired pneumonie.

Aanvullende informatie

Dyspnoe kan worden onderverdeeld in acute en chronische dyspnoe. Acute dyspnoe kan passen bij een pneumothorax, longembolie, spieraandoening, toxificatie, pneumonie of een fractuur. Chronische dyspnoe kan wijzen op astma, COPD, hartaandoeningen, obesitas of longaandoeningen.

SIRS = systemic inflammatory respiratory respons. Dit is een natuurlijke reactie van het lichaam op de veranderingen in de omgeving. Iemand heeft een SIRS als hij aan twee van de vier volgende criteria voldoet:

(1) temperatuur >38C of <36C

(2) pols >90 slagen/minuut

(3) ademfrequentie >20 keer/minuut

(4) leukocyt-waarde >12.000 of <4.000

Iemand heeft een SEPSIS als hij/zij lijdt aan een SIRS + een infectie (dus een infectie met bedreiging van de vitale functies). Dit moet behandeld worden met een antibioticum.

Hoorcollege 2

Luchtweginfecties

Luchtweginfecties zijn de meest voorkomende infecties in de huisartspraktijk. Zij komen vooral voor in de winter. In de winter zitten mensen dichter bij elkaar. Overdragen is gemakkelijker. Virussen zijn de belangrijkste verwekkers van bovenste luchtweginfecties.

Luchtweginfecties zijn op verschillende manieren in te delen, bijvoorbeeld anatomisch of naar de verwekker. Hoe deze indelingen worden gemaakt staat hieronder uitgelegd.

Anatomische indeling
Bovenste luchtweginfectie en onderste luchtweginfectie, met als scheidingslijn de stembanden. Onder bovenste luchtweginfecties vallen dus de sinusitis, de rhinitis, de otitis, de faryngitis, de tonsillitis en de laryngitis. Onder de onderste luchtweginfecties vallen de tracheïtis, bronchitis, acute exacerbaties van chronische bronchitis en de pneumonie. De verschillende infecties worden door verschillende virussen veroorzaakt. Ieder virus heeft een andere predelictieplaats: een plaats waar hij nestelt in de luchtwegen. De predelictieplaats van een virus is afhankelijk van zijn receptoren en die van het weefsel. De predelictieplaats van het rhinovirus betreft.....read more

Access: 
Public
Collegeaantekeningen bij Infectie & afweer 1 (2014-2015)

Collegeaantekeningen bij Infectie & afweer 1 (2014-2015)

Deze notes zijn gebaseerd op het oude curriculum in het collegejaar 2014-2015

Week 1

Hoorcollege 7: Infectieziekten mozaïek: (ernstige) systemische infecties

Casus 1

Een meisje werd tijdens haar vakantie plotseling ziek. Ze kreeg hoge koorts, hoofdpijn en moest braken. In de loop van de dag zag haar moeder een paar kleine rode vlekjes op de huid. Uit lichamelijk onderzoek bleek dat ze 40 graden koorts had, een pols van 160/min, een ademhaling van 28/min en ze was niet meningeaal geprikkeld. Over de huid hadden zich inmiddels veel kleine donkerrode vlekjes verspreid over het hele lichaam.

Bij vlekjes moet je vaststellen of het gaat om roodheid of om een bloeding. In het geval van een bloeding is het epitheel beschadigd. De vlekjes bij het meisje konden niet weggestreken worden (met een glas), wat duidt op een ontsteking van de vaatwand. Dit is een belangrijk klinisch gegeven. Deze puntvormige bloedingen heten petechiën. Bij petechiën moet je meteen denken aan een meningokokkensepsis.

De oorzaak van dit ziektebeeld is dus een meningokokkensepsis. Meningokokken zijn gram-negatieve bacteriën die een patiënt snel ziek kunnen maken. Andere huidmanifestaties bij een meningokokkensepsis zijn: purpura (onderhuidse bloedingen) en ecchymosen (grotere plekken). Een extreme vorm waarbij grote plekken verschijnen, is purpura fulminans. De purpura en ecchymosen ontstaan in korte tijd. Ze zien er eerst rood-blauw uit en worden daarna bruin. Later treedt er ook necrose op.

Meningokokken zijn een belangrijke verwekker van ‘community acquired’ sepsis. In Nederland is groep B het meest frequent. Voor groep B meningokokken is geen vaccin. Er bestaan ook andere varianten meningokokken, zoals C, A, Y en W135. Het merendeel van de patiënten bestaat uit jonge kinderen en jongvolwassenen.

Om de verwekkers van een sepsis vast te stellen, moet men de plaats en het ziektebeeld bestuderen.

Het meisje had een SIRS (systemisch inflammatoire respons syndroom). Er wordt gesproken van een SIRS als tenminste twee van de volgende kenmerken aanwezig is:

  • lichaamstemperatuur >38 of <36

  • hartfrequentie > 90/min

  • ademfrequentie >20/min

  • leukocyten in het bloed >12000/ml of <4000/ml

Een SIRS kan optreden ten gevolge van een infectie. Er wordt dan gesproken van een sepsis. Een sepsis kan leiden tot een septische shock en multi-orgaan falen.

Het kan effect hebben op het hart, de longen, de nieren, het centraal zenuwstelsel, de darmen, de lever en de stofwisselingsorganen.

Er zijn ook andere verwekkers van sepsis. Bijvoorbeeld een pneumokok vanuit de longen, of een E. Coli vanuit de urinewegen (gramnegatieve bacterie) of streptokokken groep A vanuit de huid. Een SIRS zelf is een systemische inflammatoire respons syndroom (ontstekingsrespons) en kan ook worden veroorzaakt door trauma, verbranding of andere oorzaken.

Patiënten op de intensive care, ouderen, jonge kinderen, patiënten met een chronische ziekte en mensen met een afweerstoornis hebben meer risico op een sepsis.

Meningokokken kunnen het lichaam binnendringen via de nasopharyhnx. De bacterie bindt allereerst aan een receptor op het epitheel (adhesie). De mens is de enige gastheer. Er is sprake van kolonisatie bij 8-20% van de mensen. De bacterie.....read more

Access: 
Public
Infectie en Afweer I Oefenpakket

Infectie en Afweer I Oefenpakket

Deze samenvatting is gebaseerd op collegejaar 2012-2013.


Stamplijst: Begrippenlijst met toelichting

 

.....read more

Indeling luchtweginfecties

bovenste/onderste

type

plaats

verwekkers

bovenste luchtweginfecties

rhinitis

rhinosinusitis

laryngitis

pharyngitis

tonsillitis

otitis media

verkoudheid

onderste luchtweginfecties

bronchitis (acuut en chronisch)

bronchiolitis

pneumonie

pneumonie

cap = community acquired pneumonia

verwekkers: pneumokok, h. influenzae, mycoplasma pneumoniae, legionella pneumofila

hap = hospital acquired pneumonia

pneumonie 3 dagen na opname

verwekkers: niet zo virulent, wel resistant

gram negatieve bacteriën (e.coli), s. aureus

vaccinatieprogramma

Difterie (b), kinkhoest (b), tetanus (b), polio (v), bof (v), mazelen (v), rode hond (v), meningokok (b), haemofilus influenza b (gekapselde b), pneumokok (b), HPV (v)

(b) = bacterie

(v) = virus

afweer

effectief, specifiek, adaptief, geheugen

diversiteit van pathogenen

grootte, opbouw, samenstelling, manier van invaseren, manier van koloniseren, manier van verspreiden

fysiologische barrière tegen pathogenen

mechanisch, chemisch, flora, stroming (kan ook in combinatie)

oog, trachea, bronchi, maag, darm, huid, urinair systeem, vagina

aspecifieke afweer

mechanisch (bijvoorbeeld in luchtwegen)

fagocytose

ontsteking (vaso-actieve en chemotactische stoffen, verhoogde permeabiliteit)

moleculair (complement) (lysis, opsonisatie, chemotaxis)

specifieke afweer

B- en T-lymfocyten

B-lymfocyten

herkenning > proliferatie tot geheugen of effector cellen > productie antistoffen

antistoffen

immunoglobulines

bestaan uit constant en variabel deel

5 klassen: IgG, IgA, IgM, IgE, IgD

T-lymfocyten

herkenning APC > differentiëren in cytotoxische (CD8) of helper (CD4) cellen

rijken indeling

domein, rijk, stam, klasse orde, familie, genus (geslacht), species (soort)

bouw bacteriën

celwand bacterien

gram positief: dikke peptidoglycaanlaag

gram negatief: dunne peptidoflycaanlaag, periplasmatische ruimte, buiten membraan

fimbriae en pilli

aan oppervlak te zien

hechting en uitwisseling van genetisch materiaal

 

flagella

“staart”

motortje in celwand

4 typen: monotrichous polar, amphitrichos, lophotrichous, peritrichous

impetigo

verschijnselen: papel uitgroeiend tot een blaasje, rode hof, rode natte uitslag en korstvorming

oppervlakkige infectie

verwekker: GAS (groep A streptokokken) of S. Aureus

behandeling: lokaal zalf > fusidine of mupirocine

systemisch: flucloxacilline

furunkel

= steenpuist

verschijnselen: diepe plaatselijke acute ontsteking van de huid in een haarfollikel, lokaal huidabsces, ophoping van granulocyten en necrotisch weefsel

behandeling: rijping

Access: 
JoHo members
Samenvatting literatuur bij Mechanisms of Disease 1 - Geneeskunde UL (2016/2017)

Samenvatting literatuur bij Mechanisms of Disease 1 - Geneeskunde UL (2016/2017)

Bevat een gedeelte van de stof bij Global Health


.....read more
Access: 
Public
Study Notes bij Mechanisms of Disease 1 - Geneeskunde UL (2015-2016)

Study Notes bij Mechanisms of Disease 1 - Geneeskunde UL (2015-2016)

Bevat de aantekeningen van de colleges, werkgroepen en patiëntendemonstraties bij het blok uit het collegejaar 2015-16.


Thema 1: Introductie en pathologie van het immuunsysteem

Hoorcolleges:

  • HC-01: Introduction to G2MD1

  • HC-02: Introduction to the Immune System

  • HC-03: Innate and Adaptive Immune Responses

  • HC-04: Pathology of Normal Immune Responses

  • HC-05: Mechanisms of Adaptive Immunity

  • HC-06: B- and T-Cell Generation and Diversity

  • HC-07: Pathology of Inflammatory Reactions – I

  • HC-08: Pathology of Inflammatory Reactions – II

  • HC-09: Tissue Injury and Repair

  • HC-10: Repair Mechanisms

  • PD-01: Abdominal Pain

HC-01: Introduction to G2MD1 (02/09/2015)

Er zijn 7 basis categorieën van ziektemechanismen:

  • Acute and chronic inflammation

  • Disordered immunity

  • Cell/tissue injury and repair

  • Hemodynamische aandoeningen

  • Growth disorders (neoplastic, non-neoplastic)

  • Metabolic and degenerative disorders

  • Congenital abnormalities (Genetic, non-genetic)

De eerste 3 ziektemechanismen gaan we dit eerste blok behandelen en de rest in het volgende blok. De 7 categorieën kunnen elkaar soms overlappen. Stel dat een patiënt het HLA-type gen heeft dan kan deze patiënt als die besmet raak met het virus coxackie B, diabetes mellitus ontwikkelen. Dit is een metabool syndroom. Door de diabetes mellitus kan de patiënt door vasculaire occlusie nierfalen, ontwikkelen waarna de patiënt een nieuwe nier nodig heeft. Hierbij zie je de categorieën hemodynamische aandoeningen en verwonding en herstel. Bij een niertransplantatie wordt het immuunsysteem platgelegd. Hierbij heb je dus een immuundeficiëntie. Dit was een kort voorbeeld om te laten zien dat er vaak niet 1 mechanisme achter een aandoening schuilt maar meerdere.



Dit blok gaan we 6 thema’s behandelen.

  • The immune system

  • Microorganisms

  • Infectious diseases

  • Prevention and control

  • Allergy (Als we het hebben over een allergie dan is het immuunsysteem overactief t.o.v. dingen buiten het lichaam. Als we het hebben over een auto-immuunziekte dan hebben we het over een immuunsysteem dat overactief is tegen het lichaam zelf.)

  • Auto- immunity

  • Transplantation



HC-02: Introduction to the Immune System (02/09/2015)

Het hoorcollege begint met een filmpje: man valt zomaar neer tijdens bowlen voor 10 sec. Dit komt door een autoimmuun disorder, waarbij je spieren verslappen en flauwvalt als je opgewonden bent.

Het menselijke lichaam kan door vele verschillende ziekteverwekkers aangevallen worden. Enkele voorbeelden zijn: HIV, influenza, stafylokokken aureus, Streptococcus pyogenes, Salmonella enteritis en Mycobacterium tuberculosis. Verschillende ziekteverwekkers zorgen voor verschillende immuunresponsies. Het basis defensie mechanisme van het lichaam is in 3.....read more

Access: 
Public
Study Notes bij Mechanisms of Disease 1 - Geneeskunde UL (2014-2015)

Study Notes bij Mechanisms of Disease 1 - Geneeskunde UL (2014-2015)

Bevat de aantekeningen van de colleges, werkgroepen en patiëntendemonstraties bij het blok uit het collegejaar 2014-15.


Thema 1: Normal host response to pathological stimuli

HC-01: Introduction to G2MD1 (03/09/2014)

Er zijn 7 basis categorieën van ziektemechanismen:

  • Acute and chronic inflammation

  • Disordered immunity

  • Cell/tissue injury and repair

  • Hemodynamische aandoeningen

  • Growth disorders (neoplastic, non-neoplastic)

  • Metabolic and degenerative disorders

  • Congenital abnormalities (Genetic, non-genetic)

De eerste 3 ziektemechanismen gaan we dit eerste blok behandelen en de rest in het volgende blok. De 7 categorieën kunnen elkaar soms overlappen. Stel dat een patiënt het HLA-type gen heeft dan kan deze patiënt als die besmet raak met het virus coxackie B, diabetes mellitus ontwikkelen. Dit is een metabool syndroom. Door de diabetes mellitus kan de patiënt door vasculaire occlusie nierfalen, ontwikkelen waarna de patiënt een nieuwe nier nodig heeft. Hierbij zie je de categorieën hemodynamische aandoeningen en verwonding en herstel. Bij een niertransplantatie wordt het immuunsysteem platgelegd. Hierbij heb je dus een immuundeficiëntie. Dit was een kort voorbeeld om te laten zien dat er vaak niet 1 mechanisme achter een aandoening schuilt maar meerdere.



Dit blok gaan we 6 thema’s behandelen.

  • The immune system and its opponents

  • Infectious diseases

  • Allergy (Als we het hebben over een allergie dan is het immuunsysteem overactief t.o.v. dingen buiten het lichaam. Als we het hebben over een auto-immuunziekte dan hebben we het over een immuunsysteem dat overactief is tegen het lichaam zelf.)

  • Auto- immunity

  • Prevention and control

  • Transplantation


HC-02: Introduction to the Immune System (03/09/2014)

Het menselijke lichaam kan door vele verschillende ziekteverwekkers aangevallen worden. Enkele voorbeelden zijn: HIV, influenza, stafylokokken aureus, Streptococcus pyogenes, Salmonella enteritis en Mycobacterium tuberculosis. Verschillende ziekteverwekkers zorgen voor verschillende immuunresponsies. De basis defensie mechanisme van het lichaam is in 3 lagen onder te verdelen, namelijk:

  • De physical barrières

  • Innate immune system

  • Adaptive immune respons



De physical barrières: Het epitheel is een niet penetreerbare laag. Het bekleed de buitenkant van ons lichaam, maar ook verschillende holtes binnenin het lichaam. Denk aan de longen en de gastro-intestinale tractus. Maar ook de urinewegen zijn bekleed met een epitheel.
De epitheelcellen zitten dicht op elkaar. In de long bevatten de epitheelcellen cilia. Deze vegen als het ware de ziekteverwekkers omhoog.
Bij de huid zie je wederom dat de epitheelcellen dicht op elkaar zitten. De huid bevat een hoornlaag waardoor het nog lastiger is voor ziekteverwekkers om binnen te dringen.
Het darmepitheel zie je ook weer de.....read more

Access: 
Public
TentamenTests bij Mechanisms of Disease 1 - Geneeskunde UL

TentamenTests bij Mechanisms of Disease 1 - Geneeskunde UL

Bevat oefenmateriaal bij het blok uit voorgaande collegejaren.

Voor soortgelijke vragen en casussen, zie ook


MOD 1 - Oefententamen 1

1. What structural component contains a Gram-positive bacteria?

  1. Lipopolysaccharide

  2. Lipoteichoic acid

  3. Outer membrane

  4. Periplasmic space

 

2. Which organism can form cysts?

  1. Staphylococcus aureus (S. Aureus)

  2. Entamoeba histolytica

  3. Aspergillus fumigatus

  4. Cytomegalovirus

 

3. Bacteria can transfer resistance in different ways against antimicrobial agents. In which transfer is a bacteriophage (virus) involved?

  1. Conjugation

  2. Transduction

  3. Transformation

  4. Transfection

 

4. A 38-year-old man from Somalia has cervical lymph node TBC. If you take a lymph node biopsy, which histological pattern will most likely be seen?

  1. Acute pyogenic inflammation

  2. Chronic inflammation and fibrosis

  3. Granulomas

  4. Necrosis without inflammation

 

5. A woman of 52-year-old who had a renal transplantation one month ago has dyspnea, fever (39.2), and non-productive cough. On the X-ray of the chest is an interstitial pneumonia visible and a broncho-alveolar lavage shows that cytomegalovirus is present in the lavage fluid. Indicate which disorder of host defence has likely played a major role in the pathogenesis. (1 anwer)

  1. Presence of corpus alienum

  2. Break in skin integrity

  3. Break in mucous membrane integrity

  4. Chronic granulomatous disease

  5. Common variable immunodeficiency

  6. Complement deficiency

  7. Granulocyte function disorder

  8. Granulocytopenia

  9. Leukocyte adhesion deficiency

  10. Spleen dysfunction/asplenia

  11. Incomplete emptying of urinary bladder

  12. Severe combined immunodeficiency (SCID)

  13. Lack of gastric acid

  14. Impaired coughing

  15. Impaired cell-mediated immunity

  16. Impaired intestinal peristalsis

  17. Impaired colonization resistance

  18. Impaired ciliary function

  19. X-linked agammaglobulinaemia

 

6. How can a cytomegalovirus be recognized in histology?

 

7. A pregnant woman has not been vaccinated against rubella. She does not know whether she had rubella in the past. Serology shows that IgG antibodies against rubella are negative and IgM antibodies against rubella are positive. How should this test be interpreted?

  1. She had rubella earlier and the foetus is protected by maternal antibodies

  2. She is recently infected with rubella implicating a risk for the foetus

  3. This has no consequences if she is completetely asymptomatic

.....read more

Access: 
Public
Proeftentamens Infectious Diseases

Proeftentamens Infectious Diseases

Deze samenvatting is gebaseerd op collegejaar 2012-2013 (oude curriculum). Nog steeds bruikbaar bij huidige curricula waar dit onderwerp wordt behandeld.


 

Proeftentamen 1:

 

1. Which of the findings mentioned below can be seen in a sputum Gram

preparation of a patient with pneumococcal pneumonia? (the counts are per

field in an enlargement of 1000x)

 

a. 10-15 squamous epithelial cells; 0-2 leukocytes; 0-2 Gram-positive cocci in chains;

5-10 fine Gram-negative rods; 3-5 Gram-positive cocci in groups.

b. 10-20 polymorphonuclear leukocytes; 20-30 Gram-positive diplococci.

c. 10-20 polymorphonuclear leukocytes; 20-30 Gram-negative diplococci .

d. 0-2 squamous epithelial cells; 5-10 leukocytes, over 100 fine Gram-negative rods.

 

2. Extended-matching question

Options:

a. Adequate heating of food

b. Antimicrobial prophylaxis

c. Asepsis

d. Use of protective gown

e. Protection against mosquito bites

f. Desinfection of skin

g. Desinfection of instruments, surfaces, devices

h. Control of animal reservoir

i. Hand hygiene

j. Use of gloves, nonsterile

k. Use of gloves, sterile

l. Cold storage of food

m. Wearing a face mask, surgical

n. Wearing a face mask, FFP1, FFP2

o. Passive immunisation

p. Sewage treatment

q. Cleaning with water and soap

r. Screening of blood products

s. Sterilisation

t. Vaccination

u. Vector control

v. Nursing in an isolation room

w. Water purification

x. No intervention or control measure necessary

 

Indicate which measure(s) should be taken. Mark compartment x

on the computer form when you are of the opinion that no

measure is necessary.

 

2.1. A 28-year-old man had a motor accident in Greece and was admitted to a local

hospital. After 3 weeks he was transferred directly to a Dutch hospital. One of

his wounds was colonised with methicillin-resistant Staphylococcus aureus

(MRSA). The MRSA is still sensitive for the antibiotic vancomycin. Give four

measures that should be taken in the Dutch hospital

2.2. A 50-year-old refugee from Somalia is admitted into hospital with a lung cavity

due to tuberculosis. He coughs up blood-stained, purulent sputum. Give two

preventive measures.

 

3. A 73 year-old male is in the Intensive Care Unit after heart surgery. He is on

artificial respiration, has an intravenous catheter in the arteria subclavia, and a

urinary catheter. As he has fever and suspected sepsis, he is started on

intravenous antibiotic therapy.

Give your opinion of the patient’s host defence.

a. His barrier function is impaired.

b. His granulocyte function is impaired.

c. His complement function is impaired.

d. His humoral immunity is impaired.

e. His cellular immunity is impaired.

 

4. Why does Haemophilus influenzae only cause invasive disease like meningitis

when it has a capsule?

a. It is impossible for the bacterium to enter the cerebrospinal fluid space

unencapsulated.

b. The capsule causes tissue.....read more

Access: 
Public
Samenvatting literatuur bij Mechanisms of Disease 1 - Week 1 - Geneeskunde UL (2013/2014)

Samenvatting literatuur bij Mechanisms of Disease 1 - Week 1 - Geneeskunde UL (2013/2014)

Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


Genetica van kanker

Risicofactoren voor kanker

Alle kankers zijn aandoeningen van somatische cellen, maar sommige worden veroorzaakt door overgeërfde germline mutaties. Voor veel kankervormen is echter de omgeving belangrijk dan de erfelijke belasting. Een voorbeeld van kankers door omgevingsfactoren zijn industriele kankers, die komen door het werken met chemische stoffen zoals asbest. Gezien niet alle mensen die met deze stoffen in aanraking komen kanker ontwikkelen, is er dus wel een genetische factor; zo lopen mensen met kortere telomeren meer risico. De belangrijkste mutaties die kanker veroorzaken zijn die in tumor suppressor genen (TSG), oncogenen en DNA mismatch repair genen.

Bij vrouwen komt borstkanker het meest voor; maar hoe eerder de eerste zwangerschap hoe minder kans hierop. Epigenitica (erfelijke factoren die niet met de DNAsequence te maken hebben) is hierbij van belang. Verschillende soorten onderzoek dragen bij aan kennis over kankers: epidemiologische, familiaire, tweeling, associatie, biochemische, dierlijke en virale factoren worden onderzocht. Door naar het voorkomen van een kanker in de familie te kijken, kan de erfelijke factor onderzocht worden. Tweelingstudies dragen veel bij aan dit onderzoek. Bloedgroep A geeft extra risico op vooral maagkanker. Uit muizenstudies blijkt dat bepaalde virussen de kans op kanker verhogen, deze bouwen een oncogen in in het DNA of hebben RNA dat de celdeling promoot (wat ook weer in het genoom wordt ingebouwd). Virussen hebben maar drie genen nodig (een voor antigenen, een voor reverse transcriptase en een voor de envelop eiwitten) maar kunnen ook een vierde, oncogene hebben.

Oncogenen

Oncegenen (ook wel c-onc genoemd) zijn varianten van normale genen, proto-oncogenen genoemd, er zijn er nu 50 geïdentificeerd. Waarschijnlijk ontstaan ze door mutaties bij replicatie van virussen. Bij kanker zijn vaak (meerdere) chromosomen aangedaan: er zijn dingen uitgewisseld, herrangschikt of zelfs helemaal weg. Hierdoor kan de activiteit of functie van een proto-oncogen worden verandert. Bij chronische myeloide leukemie wisselen chromosoom 9 en 22 bijvoorbeeld een deel uit, waardoor een gefuseerd eiwit ontstaat. Bij Burkitt Lymphoma wisselen 8 en 14 een deel, waardoor de expressie van het MYC-oncogen meer dan vertienvoudigd wordt. Gen amplificatie, een overlevingsmechanisme waarbij een gen gekopieerd wordt, kan bij proto-oncogenen leiden tot het ontstaan van een oncogen. Hierbij ontstaan heel veel oncoproteïnes. In 10% van de tumoren zien we deze ‘extra (stukjes) chromosoom’. Ras, een gen betrokken bij DNA transfectie, is een vaak gemuteerd bij kanker.

Naast het verlies van de functie van de proto-oncogenen hebben kankercellen vaak ook problemen met de signaal transductie, een pathway die zorgt dat proliferatie en differentiatie goed verloopt. Proto-oncogenen zijn door de evolutie heen goed in stand gebleven: ze zijn dus erg belangrijk. Ze zorgen voor signaal transductie door:

    .....read more
    Access: 
    Public
    Samenvatting literatuur bij Mechanisms of Disease 1 - Week 3 - Geneeskunde UL (2013/2014)

    Samenvatting literatuur bij Mechanisms of Disease 1 - Week 3 - Geneeskunde UL (2013/2014)

    Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


    Metabole afwijkingen van de rode bloedcel

    De rode bloedcel heeft geen nucleus, geen mitochondria en geen ribosomen. Een kleine hoeveelheid enzymsystemen zorgt voor de productie van energie die nodig is voor de biconcave vorm, verschillende ion-pompen en hemoglobine. Glucose wordt omgezet in energie door de glycolytische pathway (Embden-Meyerhof) en de hexose monofosfaat pathway. Bij deze reacties komt 2,3-BPG vrij, dat de affiniteit van Hb voor zuurstof verlaagt en de zuurstof dissociatie curve naar rechts beweegt.

    Glucose-6-fosfaat dehydrogenase (G6PD) deficiëntie

    G6PD is onderdeel van de hexose monofosfaat pathway en zorgt ervoor dat NADPH wordt gevormd. Deficiëntie van dit enzym leidt tot hemolytische anemie. Deze aandoening komt vaak voor, vooral in Afrika, rond het Middellandse zeegebied, het Midden-Oosten en in zuid-oost Azië. Het is een X-gebonden aandoening, die vooral bij mannen voorkomt. Omdat er meer dan 400 typen G6PD zijn, zijn er veel verschillende varianten van de aandoening. In de mildere vormen is de hemolyse self-limiting, terwijl in de ernstigere vormen plotselinge anemie kan optreden die tot de dood kan leiden. Het herkennen van de aandoening en urgente transfusie is erg belangrijk in deze gevallen. Symptomen zijn anemie, geelzucht en hemoglobinurie ten gevolge van een snelle intravasculaire hemolyse.

    Hemolyse bij G6PD deficiëntie kan optreden bij:

    -acute medicijn geinduceerde hemolyse

    -favisme: overgevoeligheid voor fava-bonen

    -chronische hemolytische anemie

    -neonatale geelzucht

    -infecties

    -mottenballen die naftaleen bevatten

    Laboratoriumonderzoek toont normale bloedwaarden tussen aanvallen. Tijdens aanvallen zijn de volgende kenmerken te zien: irregulaire, samengetrokken cellen, bite cells, blister cells, Heinz bodies en reticulocytose. Hemolyse is aanwezig en screening testen kunnen de G6PD deficiëntie aantonen. Behandeling bestaat uit het stoppen van uitlokkende medicijnen, behandelen van infecties en bloedtransfusie.

    Pyruvaat kinase deficientie

    Na G6PD deficientie is dit het meest voorkomende defect van het rode bloedcel metabolisme. Het is een autosomale recessieve aandoening die tot hemolytische anemie en splenomegalie leidt. Anemie met een verhoogd 2,3-BPG is aanwezig. Het bloeduitstrijkje vertoont verstoorde (prickle) cellen en reticulocytose. Pyruvaat kinase activiteit is laag. Bloedtransfusie en splenectomie zijn aangewezen behandelingen.

    Pyrimidine 5’ nucleotidase deficientie

    Gebrek aan dit enzym leidt tot ophoping van deels gedegradeerd RNA, wat zichtbaar wordt als basofiele stippels in rode bloedcellen. Dit is ook zichtbaar in lood-vergiftiging, omdat lood dit enzym inhibeert. Voor diagnostiek kan het enzym gemeten worden in erytrocyten.

    Verworven Hemolytische Anemie

    De oorzaken van verworven hemolytische anemie kunnen worden ingedeeld in 3 groepen:

    • Immuun-destructie van erytrocyten: auto-antilichamen, allo-antilichamen, medicijn-geinduceerde antilichamen

    • Non Immuun-destructie van erytrocyten: verworven membraan-defecten, mechanische factoren, secundair aan systemische aandoeningen

    • Overige oorzaken: toxinen, malaria, hypersplenisme, brandwonden, medicijnen en chemicaliën.

    Auto-immuun hemolytische anemie

    Bij.....read more

    Access: 
    Public
    Samenvatting literatuur bij Mechanisms of Disease 1 - Week 4 - Geneeskunde UL (2013/2014)

    Samenvatting literatuur bij Mechanisms of Disease 1 - Week 4 - Geneeskunde UL (2013/2014)

    Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


    Medicamenteuze behandeling tegen kanker

    Bij de behandeling van kankerpatiënten komen vaak lokale (chirurgie en radiotherapie) en systemische behandelingen aan bod. Dit kan tegelijkertijd of elkaar opvolgend. Deze medicijnen werken vaak via mechanismen als de celcyclus, apoptose en signaaltransductiepaden. Geneesmiddelen tegen kanker kunnen we in 4 groepen indelen:
    chemotherapie met celdodende eigenschappen, hormonale behandeling, doelgerichte moleculen die een specifiek proces in de tumor verstoren en immuuntherapie. Bij immuuntherapie versterk je de activiteit van de gastheer tegen de tumor. De behandelstrategie bepaal je door eerst onderscheid te maken of het om een curatieve of palliatieve situatie gaat. Palliatieve zorg is op verbetering van kwaliteit van leven gericht en daarna pas op levensverlenging.

    Chemotherapie bestaat uit chemische of organische moleculen die voornamelijk snel delende cellen doden. Het niet selectief voor kwaadaardige cellen ten opzichte van normale cellen. Deze medicijnen grijpen vooral aan op het DNA. Door cellijnen af te leiden van verschillende ‘solide’ tumoren, kunnen chemotherapeutica nu ook op andere punten aangrijpen in de cel. Nieuwe medicatie, die specifieke functies blokkeren, werken trager en hebben minder bijwerkingen, zoals antimetabolieten. Alkylerende stoffen werken veel sneller en hebben meer bijwerkingen.

    Cytostatica werken in op de actieve celdeling, omdat delende cellen gevoeliger zijn en minder tijd hebben om DNA schade te herstellen. Antimetabolieten grijpen aan op de DNA-synthese, topo-isomerase remmers werken tijdens DNA-verdubbeling (S-fase) en vinca-alkaloïden en taxanen tijdens de daadwerkelijke celdeling (M-fase). Fasespecifieke middelen moeten bij voorkeur gedurende langere tijd continu of frequent toegediend worden. Alkylerende middelen en antibiotica brengen permanente schade aan gedurende de hele cyclus.

    Veel preklinische modellen dienen telkens een bepaalde hoeveelheid chemotherapie toe, die steeds eenzelfde percentage tumorcellen doodt. Logaritmische celdoding/’log kill’ betekent dan ook de activiteit die nodig is om het aantal tumorcellen met één logaritme af te laten nemen. Dit werkt alleen op de groeifractie van de tumor, de cellen die delen, en kan de tumor dus slechts gedeeltelijk doden. Hoe groter de fractie, hoe groter het effect van de chemotherapie. De meeste tumoren vertonen een gompertziaanse groeiwijze, te zien als een S-vormige curve. Het is de som van het aantal groeiende, afstervende en in rust verkerende cellen. In het begin zijn er weinig cellen, maar wel in groeifase, dan komt een steile tweede fase doordat er veel cellen zijn en een hoge groeifractie. In het derde deel zijn er veel cellen, maar weinig in groei, dus vlakt de curve weer af.

    Kleinere laesies hebben grotere fractie, reageren dus sneller en hebben kleinere kans op aanwezige recidieven. Verwijderen van grote letsels voor het behandelen met chemotherapie kan dus heel nuttig zijn. Tevens hebben grote tumoren meer cellen en daarmee meer kans resistent te zijn voor een behandeling.

    Complete remissie (CD), partiële remissie (PD),.....read more

    Access: 
    Public
    Samenvatting literatuur bij Mechanisms of Disease 1 - Week 5 - Geneeskunde UL (2013/2014)

    Samenvatting literatuur bij Mechanisms of Disease 1 - Week 5 - Geneeskunde UL (2013/2014)

    Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


    Radiotherapie bij kanker

    Ongeveer de helft van de mensen met kanker zal worden bestraald. Vaak is dit met als doel genezing, maar ook om de levenskwaliteit te verbeteren (bijvoorbeeld bij een borstbesparende behandeling). Ook bij palliatieve behandelingen wordt radiotherapie ingezet om de levenskwaliteit te verbeteren. De nadelige effecten van radiotherapie worden steeds beter ingedamd. Radiotherapie is mogelijk in vrijwel elk orgaan/orgaansysteem.

    Radiotherapie: biologisch bekeken

    De straling van radiotherapie komt uit radioactive stoffen en wordt deels in het weefsel geabsorbeerd. Hierbij worden elektronen uit het lichaam vrijgemaakt (iosinatie). Deze kunnen samen met vrijgekomen ‘radicalen’ het DNA beschadigen. Bij ernstige beschadiging zal de cel sterven. Als tussen de bestraling en de sterfte nog delingen zitten, spreken we van mitosedood. De cellen kunnen na bestraling vaak niet meer (goed) delen, maar nog wel functioneren. Daarom is het effect van bestraling afhankelijk van de delingssnelheid van het weefsel: bij snel delende cellen merk je het binnen enkele weken, bij andere weefsels kan het maanden duren. Dit komt ook omdat de schade aan het DNA vaak weer hersteld wordt. Vaak zijn normale cellen beter in dit herstellen dan tumorcellen. Soms veroorzaakt de bestraling een nieuwe mutatie en dus een nieuwe vorm van kanker.

    In een celoverlevingscurve wordt de verhouding tussen dosis en effect (celdood) weergegeven, zo overleeft bij 2 Gy 50% van de cellen het niet. Dit neemt exponentieel af, waardoor het erg moeilijk is om de hele tumor te verwijderen. Een steile celoverlevingscurve duidt op een weefsel dat gevoelig is voor bestraling. Bij het doseren van de bestraling wordt ook rekening gehouden met het weefsel om de tumor heen. Bij minder gevoelige tumorcellen zou dit betekenen dat ook het weefsel eromheen gesteriliseerd is. Daarom wordt daarbij een operatie gedaan en is de bestraling alleen om een recidief te voorkomen. Een aantal factoren, zoals de zuurstofspanning, beïnvloedt het effect van bestraling. Door de therapie te combineren met oxidantia, warmte, nicotinamide (ARCON) of het gas carbogeen wordt hierop ingespeeld. Cytostatica zoals cisplatine werken ook.

    Gefractioneerd bestralen

    Door de bestraling in fracties (delen) te geven, krijgen de cellen de kans zich te herstellen. Omdat gezonde cellen dit veel beter kunnen dan tumorcellen, voorkom je zo dat het weefsel om de tumor afsterft. Het verschil in herstelmogelijkheid wordt als het ware uitgebuit. Vooral bindweefsel en endotheel zijn erg goed in het herstellen, sneldelende cellen (zoals tumoren) niet. De weefselkinetiek van het herstel verschilt per weefselsoort, bij bedekkende lagen is er een prikkel dat de delende laag afneemt, waardoor er versnelde proliferatie plaatsvindt. Bij snelgroeiende tumors is het belangrijk dat de tumor niet de kans krijgt om tussen de fracties in verder te groeien.

    Radiotherapie: klinisch bekeken

    Meestal wordt.....read more

    Access: 
    Public
    Notes bij Mechanisms of Disease 2 (2015-2016)

    Notes bij Mechanisms of Disease 2 (2015-2016)

    Bevat de aantekeningen van de colleges, werkgroepen en patiëntendemonstraties bij het blok uit het collegejaar 2015-16.


    HC-01: Opening Lecture (12/10/2015)

    Bij de behandeling van een patiënt met kanker zijn er veel disciplines betrokken. Hierbij kan gedacht worden aan de patholoog, medische oncoloog, de radioloog, de oncoloog, de pulmonoloog en de psycholoog.

    De sociale en mentale omstandigheden van patiënten met kanker zijn erg belangrijk. Wanneer een patiënt weinig familieleden en/of.....read more

    Access: 
    Public
    TentamenTests bij Mechanisms of Disease 2

    TentamenTests bij Mechanisms of Disease 2

    Bevat oefenmateriaal bij het blok uit voorgaande collegejaren.


    Oefententamen 1

    1. Door middel van welk DNA-herstel mechanisme kunnen dubbelstrengs-breuken foutenvrij gerepareerd worden?

    a. Translesie synthese

    b. Homologe recombinatie

    c. Non-homologe end-joining

    d. Nucleotide excisie repair (NER)

     

    2. In tumoren worden vaak mutaties gevonden in MYC proto-oncogenen. Welke van onderstaande gebeurtenissen kan leiden tot activering hiervan?

    a. Methylering van de MYC promotor

    b. Genamplificatie van het MYC proto-oncogen

    c. Deletie van exon 5 van het MYC proto-oncogen

    d. Frameshift mutatie in het MYC proto-oncogen

     

    3. Welke van onderstaande beweringen is onjuist? Een kiembaanmutatie:

    a. Is alleen te vinden in de tumor

    b. Is overerfbaar

    c. Komt in alle cellen van het lichaam voor

    d. Erft in families met kanker meestal autosomaal dominant over

     

    4. Een draagster van de BRCA1 mutatie bespreekt met haar familie de consequenties van dit dragerschap. Welke van haar onderstaande uitspraken is onjuist?

    a. “ De dochters van mijn broer kunnen de mutatie ook geërfd hebben”

    b. “ Ik hoef helemaal geen kanker te krijgen”

    c. “De mutatie kan zowel van mijn vader, als van mijn moeder komen”

    d. “ Ik heb een grotere kans op eierstokkanker dan op borstkanker”

     

    5. Wanneer we spreken van een R2 resectie, betekent dit dat er chemoradiatie als neo-adjuvante behandeling aan vooraf is gegaan.

    a. Onjuist

    b. Juist

     

     

    6. Het fractioneren van de bestralingsdosis heeft te maken met het feit dat gezonde cellen stralingsschade beter kunnen herstellen dan tumorcellen.

    a. Juist

    b. Onjuist

     

    7. Bij een hoge incidentie van een ziekte is screening zinvol:

    a. Onjuist

    b. Juist
     

     

    8. Bij welke van onderstaande vormen van kanker is de rol van omgevingsfactoren het minst duidelijk?

    a. Mesothelioom

    b. Melanoom

    c. Longkanker

    d. Borstkanker

     

     

    9. Een 60-jarige man presenteert zich met een pathologische fractuur van zijn femur. Op de röntgenfoto blijkt een ossale lytische laesie. De patholoog beschrijft het biopt als een epitheliale tumor met buisvorming, omgeven door een stroma reactie. Welke diagnose is het meest waarschijnlijk?

    a. Primair osteosarcoom

    b. Metastase adenocarcinoom

    c. Metastase carcinoom (niet nader gespecificeerd)

    d. Primair adenocarcinoom

     

     

    10. Beschrijf het TNM stadium van onderstaande beschrijving: een ulcererende tumor in de linker borst, met een positieve lymfeklier, zonder metastasen op afstand.

    a. T2N1M0

    b. T2N2M0

    c. T4N0M1

    d. T4N1M0

     

     

    11. Het lynch syndroom is soms geassocieerd met een kiembaanmutatie in:

    a. PTEN

    b. MSH 2

    c. MSH 6

    d. BRCA 1

     

     

    12. Naar welke organen metastaseert een coloncarcinoom het meest frequent?

    a. Lever en hersenen

    b. Lever en Longen

    c. Longen en hersenen.....read more

    Access: 
    Public
    Notes bij Schade, Afweer & Herstel - Geneeskunde - VU (2014-2015)

    Notes bij Schade, Afweer & Herstel - Geneeskunde - VU (2014-2015)

    Bevat de aantekeningen bij de colleges van het blok, gebaseerd op het studiejaar 2014-2015


    WEEK 1

    College 1: Inleiding schade, afweer en herstel (03-09-14)

    Bij apoptose wordt de cel geëlimineerd, zonder dat de inhoud van de cel vrijkomt in het lichaam. Dit is belangrijk omdat als de inhoud van cellen vrijkomt (zoals bij necrose), er een ontstekingsreactie komt. Cellen die beschadigd zijn of redundant gaan in apoptose. Celrijkdom is een gevolg van influx van ontstekingscellen.

    Een ontstekingsreactie:
    - Is in essentie een beschermende respons, maar is ook een belangrijke oorzaak van ziekte.
    - Vernietiging van micro-organismen en van weefselbeschadigende agentia
    - Opruiming van dode/beschadigde/afwijkende cellen
    - Nauw verband met weefselherstel: de eerste fase is eliminatie van afwijkende cellen, daarna moet de cel hersteld worden
    - Maar ook: belangrijke oorzaak van structurele en functionele schade (afweer kan leiden tot collaterale schade)

    Er wordt een onderverdeling gemaakt in een acute ontstekingsreactie en een chronische ontstekingsreactie.

    Necrose haarden zijn bedreigend omdat ze bacterie haarden kunnen worden en een infectie kunnen veroorzaken. Daarom moet een necrotische cel worden opgeruimd. Dode celresten worden vervangen door bindweefsel, dit is stevig en vitaal weefsel.

    Auto-immuniteit komt door een inflammatoir proces dat geïnduceerd wordt door leukocyten die niet goed specificeren tussen lichaams-eigencellen en lichaamsvreemde cellen.

    Oorzaken van ontstekingen:
    1. Infecties
    2. Fysieke of chemische weefselbeschadiging
    3. Necrose
    4. Lichaamsvreemd materiaal
    5. Immuunreacties

    - Macrofagen: eliminatie van microben, bron van mediatoren (cytokines) en rol bij immuunreactie (hebben ook signaalfunctie in herkennen van een bacterie)
    - Epitheelcellen: kunnen herkennen dat er een pathogeen micro-organisme is
    - Mest cel: bron van mediatoren (histamine)
    - Lymfocyten: immuunreactie,.....read more

    Access: 
    Public
    Notes bij Infectie en inflammatie - Geneeskunde - VU (2014-2015)

    Notes bij Infectie en inflammatie - Geneeskunde - VU (2014-2015)

    Bevat de aantekeningen bij de colleges van het blok, gebaseerd op het studiejaar 2014-2015


    College 1 – Inleiding infectie & inflammatie

    01-09-2014

    Inleiding

    Infectie is de invasie van micro-organismen in weefsel (zoals een virus, bacterie of parasiet).

    Inflammatie is de respons van de gastheer op een stimulus, zoals een micro-organisme. Hiertoe behoren bijvoorbeeld weefselmacrofagen (zij opsoniseren bacteriën en geven signalen naar leukocyten) en leukocyten (worden als hulptroepen erbij geroepen vanuit de bloedbaan om de micro-organismen op te ruimen). Dit kan zich uiten in een lokale of systemische reactie:

    • Lokale reacties: A-symptomen

    Een lokale reactie is wanneer je klassieke symptomen van lokale roodheid (rubor), lokale zwelling (tumor), lokale pijn (dolor), lokale warmte (calor), beperkt gebruik (functio laesa) en hoesten hebt.

    • Systemische reacties: B-symptomen

    Bijvoorbeeld ontspoorde stollingscascade bij meningitis. Systemische reacties zijn:

    • Koorts

    • Koude rillingen

    • Malaise

    • Keelpijn

    • Hoofdpijn

    • Verminderde eetlust

    • Gewichtsverlies

    • (nacht)zweten

    • SIRS/sepsis: dit kan je krijgen het lichamelijke systeem echt van slaag gaat.

    Micro-organisme

    Zie het schema op blz 119 vd Meer.

    Als het lastig is om een diagnose te stellen worden schema’s gemaakt van alle mogelijke micro-organismen die infecties kunnen veroorzaken (op volgorde van klein nar groot): virussen, bacteriën, schimmels, protozoa, wormen.

    Overview of bacterial.....read more

    Access: 
    Public

    Samenvattingen, uittreksels, aantekeningen en oefenvragen bij Mechanisms of Disease 1 en 2 - Geneeskunde UL - Studiebundel

    Mechanisms of Disease 1 2020/2021 UL

    Mechanisms of Disease 1 2020/2021 UL

    Deze bundel bevat aantekeningen van alle hoorcolleges van het blok Mechanisms of Disease 1 van de studie Geneeskunde aan de Universiteit Leiden, collegejaar 2020/2021.

    This bundle contains notes of all lectures from the module Mechanisms of Disease 1, Medicine, Leiden University, academic year 2020/2021.

    Mechanisms of Disease 2 2020/2021 UL

    Mechanisms of Disease 2 2020/2021 UL

    Deze bundel bevat uitwerkingen van alle hoorcolleges, patientdemonstraties en eventuele (proef)tentamens van het blok Mechanisms of Disease 2 van de studie Geneeskunde aan de universiteit Leiden.

    Samenvatting literatuur bij Mechanisms of Disease 1 - Geneeskunde UL (2016/2017)

    Samenvatting literatuur bij Mechanisms of Disease 1 - Geneeskunde UL (2016/2017)

    Bevat een gedeelte van de stof bij Global Health


    .....read more
    Access: 
    Public
    TentamenTests bij Mechanisms of Disease 1 - Geneeskunde UL

    TentamenTests bij Mechanisms of Disease 1 - Geneeskunde UL

    Bevat oefenmateriaal bij het blok uit voorgaande collegejaren.

    Voor soortgelijke vragen en casussen, zie ook


    MOD 1 - Oefententamen 1

    1. What structural component contains a Gram-positive bacteria?

    1. Lipopolysaccharide

    2. Lipoteichoic acid

    3. Outer membrane

    4. Periplasmic space

     

    2. Which organism can form cysts?

    1. Staphylococcus aureus (S. Aureus)

    2. Entamoeba histolytica

    3. Aspergillus fumigatus

    4. Cytomegalovirus

     

    3. Bacteria can transfer resistance in different ways against antimicrobial agents. In which transfer is a bacteriophage (virus) involved?

    1. Conjugation

    2. Transduction

    3. Transformation

    4. Transfection

     

    4. A 38-year-old man from Somalia has cervical lymph node TBC. If you take a lymph node biopsy, which histological pattern will most likely be seen?

    1. Acute pyogenic inflammation

    2. Chronic inflammation and fibrosis

    3. Granulomas

    4. Necrosis without inflammation

     

    5. A woman of 52-year-old who had a renal transplantation one month ago has dyspnea, fever (39.2), and non-productive cough. On the X-ray of the chest is an interstitial pneumonia visible and a broncho-alveolar lavage shows that cytomegalovirus is present in the lavage fluid. Indicate which disorder of host defence has likely played a major role in the pathogenesis. (1 anwer)

    1. Presence of corpus alienum

    2. Break in skin integrity

    3. Break in mucous membrane integrity

    4. Chronic granulomatous disease

    5. Common variable immunodeficiency

    6. Complement deficiency

    7. Granulocyte function disorder

    8. Granulocytopenia

    9. Leukocyte adhesion deficiency

    10. Spleen dysfunction/asplenia

    11. Incomplete emptying of urinary bladder

    12. Severe combined immunodeficiency (SCID)

    13. Lack of gastric acid

    14. Impaired coughing

    15. Impaired cell-mediated immunity

    16. Impaired intestinal peristalsis

    17. Impaired colonization resistance

    18. Impaired ciliary function

    19. X-linked agammaglobulinaemia

     

    6. How can a cytomegalovirus be recognized in histology?

     

    7. A pregnant woman has not been vaccinated against rubella. She does not know whether she had rubella in the past. Serology shows that IgG antibodies against rubella are negative and IgM antibodies against rubella are positive. How should this test be interpreted?

    1. She had rubella earlier and the foetus is protected by maternal antibodies

    2. She is recently infected with rubella implicating a risk for the foetus

    3. This has no consequences if she is completetely asymptomatic

    .....read more

    Access: 
    Public
    Study Notes bij Mechanisms of Disease 1 - Geneeskunde UL (2015-2016)

    Study Notes bij Mechanisms of Disease 1 - Geneeskunde UL (2015-2016)

    Bevat de aantekeningen van de colleges, werkgroepen en patiëntendemonstraties bij het blok uit het collegejaar 2015-16.


    Thema 1: Introductie en pathologie van het immuunsysteem

    Hoorcolleges:

    • HC-01: Introduction to G2MD1

    • HC-02: Introduction to the Immune System

    • HC-03: Innate and Adaptive Immune Responses

    • HC-04: Pathology of Normal Immune Responses

    • HC-05: Mechanisms of Adaptive Immunity

    • HC-06: B- and T-Cell Generation and Diversity

    • HC-07: Pathology of Inflammatory Reactions – I

    • HC-08: Pathology of Inflammatory Reactions – II

    • HC-09: Tissue Injury and Repair

    • HC-10: Repair Mechanisms

    • PD-01: Abdominal Pain

    HC-01: Introduction to G2MD1 (02/09/2015)

    Er zijn 7 basis categorieën van ziektemechanismen:

    • Acute and chronic inflammation

    • Disordered immunity

    • Cell/tissue injury and repair

    • Hemodynamische aandoeningen

    • Growth disorders (neoplastic, non-neoplastic)

    • Metabolic and degenerative disorders

    • Congenital abnormalities (Genetic, non-genetic)

    De eerste 3 ziektemechanismen gaan we dit eerste blok behandelen en de rest in het volgende blok. De 7 categorieën kunnen elkaar soms overlappen. Stel dat een patiënt het HLA-type gen heeft dan kan deze patiënt als die besmet raak met het virus coxackie B, diabetes mellitus ontwikkelen. Dit is een metabool syndroom. Door de diabetes mellitus kan de patiënt door vasculaire occlusie nierfalen, ontwikkelen waarna de patiënt een nieuwe nier nodig heeft. Hierbij zie je de categorieën hemodynamische aandoeningen en verwonding en herstel. Bij een niertransplantatie wordt het immuunsysteem platgelegd. Hierbij heb je dus een immuundeficiëntie. Dit was een kort voorbeeld om te laten zien dat er vaak niet 1 mechanisme achter een aandoening schuilt maar meerdere.



    Dit blok gaan we 6 thema’s behandelen.

    • The immune system

    • Microorganisms

    • Infectious diseases

    • Prevention and control

    • Allergy (Als we het hebben over een allergie dan is het immuunsysteem overactief t.o.v. dingen buiten het lichaam. Als we het hebben over een auto-immuunziekte dan hebben we het over een immuunsysteem dat overactief is tegen het lichaam zelf.)

    • Auto- immunity

    • Transplantation



    HC-02: Introduction to the Immune System (02/09/2015)

    Het hoorcollege begint met een filmpje: man valt zomaar neer tijdens bowlen voor 10 sec. Dit komt door een autoimmuun disorder, waarbij je spieren verslappen en flauwvalt als je opgewonden bent.

    Het menselijke lichaam kan door vele verschillende ziekteverwekkers aangevallen worden. Enkele voorbeelden zijn: HIV, influenza, stafylokokken aureus, Streptococcus pyogenes, Salmonella enteritis en Mycobacterium tuberculosis. Verschillende ziekteverwekkers zorgen voor verschillende immuunresponsies. Het basis defensie mechanisme van het lichaam is in 3.....read more

    Access: 
    Public
    Study Notes bij Mechanisms of Disease 1 - Geneeskunde UL (2014-2015)

    Study Notes bij Mechanisms of Disease 1 - Geneeskunde UL (2014-2015)

    Bevat de aantekeningen van de colleges, werkgroepen en patiëntendemonstraties bij het blok uit het collegejaar 2014-15.


    Thema 1: Normal host response to pathological stimuli

    HC-01: Introduction to G2MD1 (03/09/2014)

    Er zijn 7 basis categorieën van ziektemechanismen:

    • Acute and chronic inflammation

    • Disordered immunity

    • Cell/tissue injury and repair

    • Hemodynamische aandoeningen

    • Growth disorders (neoplastic, non-neoplastic)

    • Metabolic and degenerative disorders

    • Congenital abnormalities (Genetic, non-genetic)

    De eerste 3 ziektemechanismen gaan we dit eerste blok behandelen en de rest in het volgende blok. De 7 categorieën kunnen elkaar soms overlappen. Stel dat een patiënt het HLA-type gen heeft dan kan deze patiënt als die besmet raak met het virus coxackie B, diabetes mellitus ontwikkelen. Dit is een metabool syndroom. Door de diabetes mellitus kan de patiënt door vasculaire occlusie nierfalen, ontwikkelen waarna de patiënt een nieuwe nier nodig heeft. Hierbij zie je de categorieën hemodynamische aandoeningen en verwonding en herstel. Bij een niertransplantatie wordt het immuunsysteem platgelegd. Hierbij heb je dus een immuundeficiëntie. Dit was een kort voorbeeld om te laten zien dat er vaak niet 1 mechanisme achter een aandoening schuilt maar meerdere.



    Dit blok gaan we 6 thema’s behandelen.

    • The immune system and its opponents

    • Infectious diseases

    • Allergy (Als we het hebben over een allergie dan is het immuunsysteem overactief t.o.v. dingen buiten het lichaam. Als we het hebben over een auto-immuunziekte dan hebben we het over een immuunsysteem dat overactief is tegen het lichaam zelf.)

    • Auto- immunity

    • Prevention and control

    • Transplantation


    HC-02: Introduction to the Immune System (03/09/2014)

    Het menselijke lichaam kan door vele verschillende ziekteverwekkers aangevallen worden. Enkele voorbeelden zijn: HIV, influenza, stafylokokken aureus, Streptococcus pyogenes, Salmonella enteritis en Mycobacterium tuberculosis. Verschillende ziekteverwekkers zorgen voor verschillende immuunresponsies. De basis defensie mechanisme van het lichaam is in 3 lagen onder te verdelen, namelijk:

    • De physical barrières

    • Innate immune system

    • Adaptive immune respons



    De physical barrières: Het epitheel is een niet penetreerbare laag. Het bekleed de buitenkant van ons lichaam, maar ook verschillende holtes binnenin het lichaam. Denk aan de longen en de gastro-intestinale tractus. Maar ook de urinewegen zijn bekleed met een epitheel.
De epitheelcellen zitten dicht op elkaar. In de long bevatten de epitheelcellen cilia. Deze vegen als het ware de ziekteverwekkers omhoog.
Bij de huid zie je wederom dat de epitheelcellen dicht op elkaar zitten. De huid bevat een hoornlaag waardoor het nog lastiger is voor ziekteverwekkers om binnen te dringen.
Het darmepitheel zie je ook weer de.....read more

    Access: 
    Public
    Samenvatting literatuur bij Mechanisms of Disease 2 - Deel 1 - Geneeskunde UL (2016/2017)

    Samenvatting literatuur bij Mechanisms of Disease 2 - Deel 1 - Geneeskunde UL (2016/2017)


    Genetica en kanker

    Inleiding

    Alle kankers zijn aandoeningen van somatische cellen, maar sommige worden veroorzaakt door overgeërfde germline mutaties. De risico op kanker wordt bepaald door een combinatie van genetische en omgevingsfactoren. Zo bestaan industriële kankervormen door chemicaliën en kiezen mensen voor een ongezonde levensstijl met roken en alcohol. Mensen met genetisch kortere telomeren hebben meer risico op kanker. De belangrijkste mutaties die kanker veroorzaken zijn die in tumor suppressor genen (TSG), oncogenen en DNA mismatch repair genen. Ook spelen epigenitica een rol. Dit zijn erfelijke factoren die niets met de DNAsequence te maken hebben.

    Verschillende soorten onderzoek dragen bij aan kennis over kankers: epidemiologische, familiaire, tweeling, associatie, biochemische, dierlijke en virale factoren worden onderzocht. Borstkanker is de meest voorkomende kanker bij vrouwen. De incidentie van kanker blijkt te variëren in verschillende populaties blijkt uit epidemiologische studies. Door naar het voorkomen van een kanker in de familie te kijken, kan de erfelijke factor onderzocht worden. Tweelingstudies en muizenstudies bewijzen dat omgevingsfactoren nog meer bepalend zijn dan erfelijke belasting. Uit associatiestudies blijkt dat bloedgroep A extra risico geeft op maagkanker. Sommige biochemische factoren geven een predispositie voor kanker. Uit muizenstudies blijkt dat bepaalde virussen de kans op kanker verhogen, deze bouwen een oncogen in het DNA in of hebben RNA dat de celdeling bevorderd. Retrovirussen hebben maar drie genen nodig (gag: voor antigenen, pol: voor reverse transcriptase en env: voor de envelop eiwitten) maar kunnen ook een vierde, oncogen, hebben voor transformatie.

    Oncogenen

    Cellulaire oncogenen (ook wel c-onc genoemd) zijn gemuteerde varianten van normale genen, proto-oncogenen genoemd, die een grote rol spelen bij differentiatie en celgroei. Virale oncogenen (v-onc) worden door virussen in de cel gebracht. Waarschijnlijk ontstaan ze door mutaties bij replicatie van virussen. Bij kanker zijn vaak (meerdere) chromosomen aangedaan door translocatie, herrangschikking of inserties en deleties. Hierdoor kan de activiteit of functie van een proto-oncogen worden veranderd. Bij chronische myeloïde leukemie wisselen chromosoom 9 en 22 bijvoorbeeld een deel uit door reciproke translocatie, wat leidt tot een Philadelphia Ph1 chromosoom waarbij een gefuseerd eiwit (ABL-BCR) ontstaat. Bij Burkitt Lymphoma wisselen 8 en 14 een deel, waardoor de expressie van het MYC-oncogen meer dan vertienvoudigd wordt door de regulatiefactoren van een immuunglobuline.

    Proto-oncogenen kunnen ook geactiveerd worden door gen amplificatie, een overlevingsmechanisme waarbij er meerdere kopieën van een gen worden aangemaakt. In 10% van de tumoren zien we deze ‘extra (stukjes) chromosoom’, genaamd double minute chromosomes of homogeneously staining regions. Dit treedt vaak op bij de MYC-familie van genen. Het veranderen van een cel door het toevoegen van nieuw DNA heet transfectie. De.....read more

    Access: 
    Public
    Samenvatting literatuur bij Mechanisms of Disease 2 - Deel 2 - Geneeskunde UL (2016/2017)

    Samenvatting literatuur bij Mechanisms of Disease 2 - Deel 2 - Geneeskunde UL (2016/2017)


    Rode bloedcellen en bloedziekten

    Hemorragische diathese

    Hemorragische diathese (verhoogde bloedingsneiging) kan ontstaan ten gevolge van:

    1. Verhoogde fragiliteit van bloedvaten

    2. Bloedplaatjes deficiëntie of dysfunctie

    3. Verstoring van de coagulatie, ofwel bloedstolling

    Er zijn verschillende laboratoriumtesten:

    • Protrombine tijd (PT): beoordeelt de extrinsieke stollingscascade, waarbij de stolling van plasma wordt gemeten in seconden na toevoeging van exogeen tromboplastine. Verlengde PT duidt op deficiëntie van factor V, VII, X, protrombine of fibrinogeen.

    • Partiele tromboplastine tijd (PTT): beoordeelt de intrinsieke stollingscascade, waarbij de stolling van plasma wordt gemeten in seconden na toevoeging van glaspoeder, kaoline, cefaline en Ca2+. Een verlengde PTT duidt op deficiëntie van factor V, VIII, IX, X, XI, XII, protrombine of fibrinogeen.

    • Plaatjes telling: de hoeveelheid bloedplaatjes in het bloed kan een indicatie geven voor bepaalde aandoeningen. De normaalwaarde is 150 – 300 x 103 plaatjes/µL. Trombocytopenie duidt op een samenklontering van bloedplaatjes en een trombocytose duidt op een myeloproliferatieve aandoening.

    • Test van plaatjesfunctie: Op dit moment is er geen test die een adequate toetsing van de functies van bloedplaatjes kan uitvoeren. Experimentele testen zijn in ontwikkeling. Meer gespecialiseerde testen kunnen de hoeveelheid fibrinogeen, fibrine eindproducten en specifieke stollingsfactoren meten. Een plaatjesaggregatietest en bloedingstijd test kunnen iets bepalen over de functie van von Willebrand factor.

    Bloedingsziekten, veroorzaakt door vaatwandafwijkingen

    Deze groep aandoeningen wordt ook wel non-trombocytopenische purpura’s genoemd. Ze komen vaak voor, maar geven meestal kleine bloedingen in de huid of slijmvliezen, waaronder petechiën en purpura. Soms ontstaan echter grotere bloedingen. PT, PTT, plaatjestelling en andere bloedtesten zijn meestal normaal.

    Deze klinische manifestaties kunnen optreden door infecties (meningococcus, endocarditis), medicijnen en genetische aandoeningen. Bij scheurbuik en Ehlers-Danlos syndroom is er aantasting van collageen in bloedvaten, wat tot microvasculaire bloedingen kan leiden. Henoch-Schönlein purpura is een systemische aandoening, die wordt veroorzaakt door deposities van antilichamen in bloedvaten, wat leidt tot purpura uitslag, koliekpijn in de darmen, polyartralgie en acute glomerulonephritis. Hereditaire hemorragische telangiectasia (Weber-Osler-Rendu syndroom) is een aandoening die wordt gekarakteriseerd door uitgezette en kronkelige bloedvaten met dunne vaatwanden en sereuze bloedingen. Bij perivasculaire amyloïdose leidt een complicatie van lichte keten amyloïdose tot verzwakte vaatwanden, leidend tot petechiën.

    Trombocytopenie

    Vermindering in plaatjesaantal kan bloedingen veroorzaken in de huid, de gastro-intestinale en urogenitale slijmvliezen en zelden intracraniaal (zeer ernstig). Trombocytopenie wordt gedefinieerd als minder dan 100 x 103 plaatjes/µL, bloedingen treden op bij minder dan 20 x103 plaatjes/µL. Oorzaken van trombocytopenie zijn:

    • Verminderde productie in het beenmerg of aantasting van megakaryocyten: ten gevolge van leukemie, alcohol, medicijnen, aplastische anemie en HIV.

    • Verminderde bloedplaatjes overleving:

    • .....read more
    Access: 
    Public
    TentamenTests bij Mechanisms of Disease 2

    TentamenTests bij Mechanisms of Disease 2

    Bevat oefenmateriaal bij het blok uit voorgaande collegejaren.


    Oefententamen 1

    1. Door middel van welk DNA-herstel mechanisme kunnen dubbelstrengs-breuken foutenvrij gerepareerd worden?

    a. Translesie synthese

    b. Homologe recombinatie

    c. Non-homologe end-joining

    d. Nucleotide excisie repair (NER)

     

    2. In tumoren worden vaak mutaties gevonden in MYC proto-oncogenen. Welke van onderstaande gebeurtenissen kan leiden tot activering hiervan?

    a. Methylering van de MYC promotor

    b. Genamplificatie van het MYC proto-oncogen

    c. Deletie van exon 5 van het MYC proto-oncogen

    d. Frameshift mutatie in het MYC proto-oncogen

     

    3. Welke van onderstaande beweringen is onjuist? Een kiembaanmutatie:

    a. Is alleen te vinden in de tumor

    b. Is overerfbaar

    c. Komt in alle cellen van het lichaam voor

    d. Erft in families met kanker meestal autosomaal dominant over

     

    4. Een draagster van de BRCA1 mutatie bespreekt met haar familie de consequenties van dit dragerschap. Welke van haar onderstaande uitspraken is onjuist?

    a. “ De dochters van mijn broer kunnen de mutatie ook geërfd hebben”

    b. “ Ik hoef helemaal geen kanker te krijgen”

    c. “De mutatie kan zowel van mijn vader, als van mijn moeder komen”

    d. “ Ik heb een grotere kans op eierstokkanker dan op borstkanker”

     

    5. Wanneer we spreken van een R2 resectie, betekent dit dat er chemoradiatie als neo-adjuvante behandeling aan vooraf is gegaan.

    a. Onjuist

    b. Juist

     

     

    6. Het fractioneren van de bestralingsdosis heeft te maken met het feit dat gezonde cellen stralingsschade beter kunnen herstellen dan tumorcellen.

    a. Juist

    b. Onjuist

     

    7. Bij een hoge incidentie van een ziekte is screening zinvol:

    a. Onjuist

    b. Juist
     

     

    8. Bij welke van onderstaande vormen van kanker is de rol van omgevingsfactoren het minst duidelijk?

    a. Mesothelioom

    b. Melanoom

    c. Longkanker

    d. Borstkanker

     

     

    9. Een 60-jarige man presenteert zich met een pathologische fractuur van zijn femur. Op de röntgenfoto blijkt een ossale lytische laesie. De patholoog beschrijft het biopt als een epitheliale tumor met buisvorming, omgeven door een stroma reactie. Welke diagnose is het meest waarschijnlijk?

    a. Primair osteosarcoom

    b. Metastase adenocarcinoom

    c. Metastase carcinoom (niet nader gespecificeerd)

    d. Primair adenocarcinoom

     

     

    10. Beschrijf het TNM stadium van onderstaande beschrijving: een ulcererende tumor in de linker borst, met een positieve lymfeklier, zonder metastasen op afstand.

    a. T2N1M0

    b. T2N2M0

    c. T4N0M1

    d. T4N1M0

     

     

    11. Het lynch syndroom is soms geassocieerd met een kiembaanmutatie in:

    a. PTEN

    b. MSH 2

    c. MSH 6

    d. BRCA 1

     

     

    12. Naar welke organen metastaseert een coloncarcinoom het meest frequent?

    a. Lever en hersenen

    b. Lever en Longen

    c. Longen en hersenen.....read more

    Access: 
    Public
    Study Notes bij Mechanisms of Disease 2 - Geneeskunde UL (2016-2017)

    Study Notes bij Mechanisms of Disease 2 - Geneeskunde UL (2016-2017)


    HC: Inleiding

    Bij de behandeling van een patiënt met kanker zijn er veel disciplines betrokken. Hierbij kan gedacht worden aan de patholoog, medische oncoloog, de radioloog, de oncoloog, de pulmonoloog en de psycholoog.

    De sociale en mentale omstandigheden van patiënten met kanker zijn erg belangrijk. Wanneer een patiënt weinig familieleden en/of sociale contacten heeft, dan zal deze persoon over het algemeen het ziekteproces (mentaal) zwaarder ervaren dan een patiënt met een groot sociaal netwerk.

    Als een patiënt bestraald is, dan kan het zijn dat het zichtbaar is dat er een bestraling is geweest. Kanker behandelen is één ding, maar het kan mensen voor de rest van hun leven tekenen door zichtbare tekens. Er zijn drie klassen van behandelingen voor kanker: chirurgisch (dus via een operatie een tumor verwijderen), systemisch (chemotherapie) en radiotherapie (bestraling).

    HC: Kanker & biologie

    Kanker is een ziekte die in meerdere stadia ontstaat. Er zijn 6 tot 7 mutaties nodig om.....read more

    Access: 
    Public
    Samenvatting literatuur bij Mechanisms of Disease 1 - Week 1 - Geneeskunde UL (2013/2014)

    Samenvatting literatuur bij Mechanisms of Disease 1 - Week 1 - Geneeskunde UL (2013/2014)

    Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


    Genetica van kanker

    Risicofactoren voor kanker

    Alle kankers zijn aandoeningen van somatische cellen, maar sommige worden veroorzaakt door overgeërfde germline mutaties. Voor veel kankervormen is echter de omgeving belangrijk dan de erfelijke belasting. Een voorbeeld van kankers door omgevingsfactoren zijn industriele kankers, die komen door het werken met chemische stoffen zoals asbest. Gezien niet alle mensen die met deze stoffen in aanraking komen kanker ontwikkelen, is er dus wel een genetische factor; zo lopen mensen met kortere telomeren meer risico. De belangrijkste mutaties die kanker veroorzaken zijn die in tumor suppressor genen (TSG), oncogenen en DNA mismatch repair genen.

    Bij vrouwen komt borstkanker het meest voor; maar hoe eerder de eerste zwangerschap hoe minder kans hierop. Epigenitica (erfelijke factoren die niet met de DNAsequence te maken hebben) is hierbij van belang. Verschillende soorten onderzoek dragen bij aan kennis over kankers: epidemiologische, familiaire, tweeling, associatie, biochemische, dierlijke en virale factoren worden onderzocht. Door naar het voorkomen van een kanker in de familie te kijken, kan de erfelijke factor onderzocht worden. Tweelingstudies dragen veel bij aan dit onderzoek. Bloedgroep A geeft extra risico op vooral maagkanker. Uit muizenstudies blijkt dat bepaalde virussen de kans op kanker verhogen, deze bouwen een oncogen in in het DNA of hebben RNA dat de celdeling promoot (wat ook weer in het genoom wordt ingebouwd). Virussen hebben maar drie genen nodig (een voor antigenen, een voor reverse transcriptase en een voor de envelop eiwitten) maar kunnen ook een vierde, oncogene hebben.

    Oncogenen

    Oncegenen (ook wel c-onc genoemd) zijn varianten van normale genen, proto-oncogenen genoemd, er zijn er nu 50 geïdentificeerd. Waarschijnlijk ontstaan ze door mutaties bij replicatie van virussen. Bij kanker zijn vaak (meerdere) chromosomen aangedaan: er zijn dingen uitgewisseld, herrangschikt of zelfs helemaal weg. Hierdoor kan de activiteit of functie van een proto-oncogen worden verandert. Bij chronische myeloide leukemie wisselen chromosoom 9 en 22 bijvoorbeeld een deel uit, waardoor een gefuseerd eiwit ontstaat. Bij Burkitt Lymphoma wisselen 8 en 14 een deel, waardoor de expressie van het MYC-oncogen meer dan vertienvoudigd wordt. Gen amplificatie, een overlevingsmechanisme waarbij een gen gekopieerd wordt, kan bij proto-oncogenen leiden tot het ontstaan van een oncogen. Hierbij ontstaan heel veel oncoproteïnes. In 10% van de tumoren zien we deze ‘extra (stukjes) chromosoom’. Ras, een gen betrokken bij DNA transfectie, is een vaak gemuteerd bij kanker.

    Naast het verlies van de functie van de proto-oncogenen hebben kankercellen vaak ook problemen met de signaal transductie, een pathway die zorgt dat proliferatie en differentiatie goed verloopt. Proto-oncogenen zijn door de evolutie heen goed in stand gebleven: ze zijn dus erg belangrijk. Ze zorgen voor signaal transductie door:

      .....read more
      Access: 
      Public
      Samenvatting literatuur bij Mechanisms of Disease 1 - Week 2 - Geneeskunde UL (2013/2014)

      Samenvatting literatuur bij Mechanisms of Disease 1 - Week 2 - Geneeskunde UL (2013/2014)

      Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


      Bloedvaten

      Atherosclerose

      Atherosclerose wordt gekenmerkt door lesies van de tunica intima (atheromen of atherosclerotische plaques) die het lumen van het bloedvat binnendringen. Een atheroom bestaat uit een zachte, gele kern van vetten, foam cellen en debris, die bedekt is met een witte, fibreuze kap opgebouwd uit gladde spiercellen, macrofagen, collageen en andere componenten. Atherosclerotische plaques kunnen scheuren wat leidt tot stolling en trombose; ook kunnen ze leiden tot vorming van aneurysmata.

      Atherosclerose is verantwoordelijk voor zeer veel morbiditeit en mortaliteit (ongeveer de helft van alle doodsoorzaken) in de Westerse wereld. Ischemische hart ziekte en myocardinfarct zijn uitingen van atherosclerose en ook CVA’s kunnen hierdoor veroorzaakt worden.

      Epidemiologie: Atherosclerose komt vooral voor in de Westerse wereld en in mindere mate in Centraal en Zuid Amerika, Afrika en delen van Azië. Prevalentie en ziektelast wordt mede bepaald door risicofactoren, waarvan sommige verworven zijn en afhankelijk van leefwijze, terwijl anderen genetisch zijn. Deze risicofactoren versterken elkaar met een vermenigvuldiging: 2 risicofactoren geven ongeveer een 4 keer zo groot risico.

      Voorbeelden van constitutionele (bepaald door het lichaam, niet aanpasbare) risicofactoren zijn:

      • Leeftijd: hoewel atherosclerose progressief is, presenteert het zich klinisch pas rond de 30-50 jaar. De incidentie van myocardinfarct neemt met een 5-voud toe tussen de 40 en 60 jaar. Overlijden ten gevolge van ischemische hartziekte neemt met de leeftijd toe.

      • Geslacht: Mannen hebben over het algemeen een hogere kans om atherosclerose te ontwikkelen dan vrouwen. Vrouwen voor de menopauze zijn redelijk beschermd tegen atherosclerose vanwege de aanwezigheid van oestrogenen. Na de menopauze neemt de incidentie van atherosclerose geassocieerde aandoeningen toe. Geslacht beïnvloed ook andere factoren zoals hemostase, infarct genezing en myocardiale remodelling.

      • Genetica: Familiegeschiedenis is de meest significante onafhankelijke risicofactor voor atherosclerose. Hoewel overerfbare aandoeningen zoals familiale hypercholesterolemie zijn geïdentificeerd, is het grootste gedeelte van overerfbare atherosclerose multifactorieel met overerving van verschillende polymorfismen en familiale clustering van andere risicofactoren zoals diabetes en hypertensie.

      Voorbeelden van aanpasbare risicofactoren zijn:

      • Hyperlipidemie of beter gezegd hypercholesterolemie, met hoge levels van LDL cholesterol geven een hogere kans op atherosclerose. LDL geeft in de periferie cholesterol af aan weefsels, maar kan zich ophopen in wanden van bloedvaten wat leidt tot vorming van atherosclerotische plaques. HDL cholesterol neemt in tegenstelling tot LDL cholesterol op uit weefsels en transporteert het naar de lever voor excretie. Hogere niveaus van HDL zijn dan ook gecorreleerd met minder risico op atherosclerose.

      Dieet dat veel cholesterol en verzadigde vetten bevat (dooiers van eieren, dierlijke vetten, boter) verhoogt.....read more

      Access: 
      Public
      Samenvatting literatuur bij Mechanisms of Disease 1 - Week 3 - Geneeskunde UL (2013/2014)

      Samenvatting literatuur bij Mechanisms of Disease 1 - Week 3 - Geneeskunde UL (2013/2014)

      Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


      Metabole afwijkingen van de rode bloedcel

      De rode bloedcel heeft geen nucleus, geen mitochondria en geen ribosomen. Een kleine hoeveelheid enzymsystemen zorgt voor de productie van energie die nodig is voor de biconcave vorm, verschillende ion-pompen en hemoglobine. Glucose wordt omgezet in energie door de glycolytische pathway (Embden-Meyerhof) en de hexose monofosfaat pathway. Bij deze reacties komt 2,3-BPG vrij, dat de affiniteit van Hb voor zuurstof verlaagt en de zuurstof dissociatie curve naar rechts beweegt.

      Glucose-6-fosfaat dehydrogenase (G6PD) deficiëntie

      G6PD is onderdeel van de hexose monofosfaat pathway en zorgt ervoor dat NADPH wordt gevormd. Deficiëntie van dit enzym leidt tot hemolytische anemie. Deze aandoening komt vaak voor, vooral in Afrika, rond het Middellandse zeegebied, het Midden-Oosten en in zuid-oost Azië. Het is een X-gebonden aandoening, die vooral bij mannen voorkomt. Omdat er meer dan 400 typen G6PD zijn, zijn er veel verschillende varianten van de aandoening. In de mildere vormen is de hemolyse self-limiting, terwijl in de ernstigere vormen plotselinge anemie kan optreden die tot de dood kan leiden. Het herkennen van de aandoening en urgente transfusie is erg belangrijk in deze gevallen. Symptomen zijn anemie, geelzucht en hemoglobinurie ten gevolge van een snelle intravasculaire hemolyse.

      Hemolyse bij G6PD deficiëntie kan optreden bij:

      -acute medicijn geinduceerde hemolyse

      -favisme: overgevoeligheid voor fava-bonen

      -chronische hemolytische anemie

      -neonatale geelzucht

      -infecties

      -mottenballen die naftaleen bevatten

      Laboratoriumonderzoek toont normale bloedwaarden tussen aanvallen. Tijdens aanvallen zijn de volgende kenmerken te zien: irregulaire, samengetrokken cellen, bite cells, blister cells, Heinz bodies en reticulocytose. Hemolyse is aanwezig en screening testen kunnen de G6PD deficiëntie aantonen. Behandeling bestaat uit het stoppen van uitlokkende medicijnen, behandelen van infecties en bloedtransfusie.

      Pyruvaat kinase deficientie

      Na G6PD deficientie is dit het meest voorkomende defect van het rode bloedcel metabolisme. Het is een autosomale recessieve aandoening die tot hemolytische anemie en splenomegalie leidt. Anemie met een verhoogd 2,3-BPG is aanwezig. Het bloeduitstrijkje vertoont verstoorde (prickle) cellen en reticulocytose. Pyruvaat kinase activiteit is laag. Bloedtransfusie en splenectomie zijn aangewezen behandelingen.

      Pyrimidine 5’ nucleotidase deficientie

      Gebrek aan dit enzym leidt tot ophoping van deels gedegradeerd RNA, wat zichtbaar wordt als basofiele stippels in rode bloedcellen. Dit is ook zichtbaar in lood-vergiftiging, omdat lood dit enzym inhibeert. Voor diagnostiek kan het enzym gemeten worden in erytrocyten.

      Verworven Hemolytische Anemie

      De oorzaken van verworven hemolytische anemie kunnen worden ingedeeld in 3 groepen:

      • Immuun-destructie van erytrocyten: auto-antilichamen, allo-antilichamen, medicijn-geinduceerde antilichamen

      • Non Immuun-destructie van erytrocyten: verworven membraan-defecten, mechanische factoren, secundair aan systemische aandoeningen

      • Overige oorzaken: toxinen, malaria, hypersplenisme, brandwonden, medicijnen en chemicaliën.

      Auto-immuun hemolytische anemie

      Bij.....read more

      Access: 
      Public
      Samenvatting literatuur bij Mechanisms of Disease 1 - Week 4 - Geneeskunde UL (2013/2014)

      Samenvatting literatuur bij Mechanisms of Disease 1 - Week 4 - Geneeskunde UL (2013/2014)

      Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


      Medicamenteuze behandeling tegen kanker

      Bij de behandeling van kankerpatiënten komen vaak lokale (chirurgie en radiotherapie) en systemische behandelingen aan bod. Dit kan tegelijkertijd of elkaar opvolgend. Deze medicijnen werken vaak via mechanismen als de celcyclus, apoptose en signaaltransductiepaden. Geneesmiddelen tegen kanker kunnen we in 4 groepen indelen:
      chemotherapie met celdodende eigenschappen, hormonale behandeling, doelgerichte moleculen die een specifiek proces in de tumor verstoren en immuuntherapie. Bij immuuntherapie versterk je de activiteit van de gastheer tegen de tumor. De behandelstrategie bepaal je door eerst onderscheid te maken of het om een curatieve of palliatieve situatie gaat. Palliatieve zorg is op verbetering van kwaliteit van leven gericht en daarna pas op levensverlenging.

      Chemotherapie bestaat uit chemische of organische moleculen die voornamelijk snel delende cellen doden. Het niet selectief voor kwaadaardige cellen ten opzichte van normale cellen. Deze medicijnen grijpen vooral aan op het DNA. Door cellijnen af te leiden van verschillende ‘solide’ tumoren, kunnen chemotherapeutica nu ook op andere punten aangrijpen in de cel. Nieuwe medicatie, die specifieke functies blokkeren, werken trager en hebben minder bijwerkingen, zoals antimetabolieten. Alkylerende stoffen werken veel sneller en hebben meer bijwerkingen.

      Cytostatica werken in op de actieve celdeling, omdat delende cellen gevoeliger zijn en minder tijd hebben om DNA schade te herstellen. Antimetabolieten grijpen aan op de DNA-synthese, topo-isomerase remmers werken tijdens DNA-verdubbeling (S-fase) en vinca-alkaloïden en taxanen tijdens de daadwerkelijke celdeling (M-fase). Fasespecifieke middelen moeten bij voorkeur gedurende langere tijd continu of frequent toegediend worden. Alkylerende middelen en antibiotica brengen permanente schade aan gedurende de hele cyclus.

      Veel preklinische modellen dienen telkens een bepaalde hoeveelheid chemotherapie toe, die steeds eenzelfde percentage tumorcellen doodt. Logaritmische celdoding/’log kill’ betekent dan ook de activiteit die nodig is om het aantal tumorcellen met één logaritme af te laten nemen. Dit werkt alleen op de groeifractie van de tumor, de cellen die delen, en kan de tumor dus slechts gedeeltelijk doden. Hoe groter de fractie, hoe groter het effect van de chemotherapie. De meeste tumoren vertonen een gompertziaanse groeiwijze, te zien als een S-vormige curve. Het is de som van het aantal groeiende, afstervende en in rust verkerende cellen. In het begin zijn er weinig cellen, maar wel in groeifase, dan komt een steile tweede fase doordat er veel cellen zijn en een hoge groeifractie. In het derde deel zijn er veel cellen, maar weinig in groei, dus vlakt de curve weer af.

      Kleinere laesies hebben grotere fractie, reageren dus sneller en hebben kleinere kans op aanwezige recidieven. Verwijderen van grote letsels voor het behandelen met chemotherapie kan dus heel nuttig zijn. Tevens hebben grote tumoren meer cellen en daarmee meer kans resistent te zijn voor een behandeling.

      Complete remissie (CD), partiële remissie (PD),.....read more

      Access: 
      Public
      Samenvatting literatuur bij Mechanisms of Disease 1 - Week 5 - Geneeskunde UL (2013/2014)

      Samenvatting literatuur bij Mechanisms of Disease 1 - Week 5 - Geneeskunde UL (2013/2014)

      Deze samenvatting is gebaseerd op het studiejaar 2013-2014.


      Radiotherapie bij kanker

      Ongeveer de helft van de mensen met kanker zal worden bestraald. Vaak is dit met als doel genezing, maar ook om de levenskwaliteit te verbeteren (bijvoorbeeld bij een borstbesparende behandeling). Ook bij palliatieve behandelingen wordt radiotherapie ingezet om de levenskwaliteit te verbeteren. De nadelige effecten van radiotherapie worden steeds beter ingedamd. Radiotherapie is mogelijk in vrijwel elk orgaan/orgaansysteem.

      Radiotherapie: biologisch bekeken

      De straling van radiotherapie komt uit radioactive stoffen en wordt deels in het weefsel geabsorbeerd. Hierbij worden elektronen uit het lichaam vrijgemaakt (iosinatie). Deze kunnen samen met vrijgekomen ‘radicalen’ het DNA beschadigen. Bij ernstige beschadiging zal de cel sterven. Als tussen de bestraling en de sterfte nog delingen zitten, spreken we van mitosedood. De cellen kunnen na bestraling vaak niet meer (goed) delen, maar nog wel functioneren. Daarom is het effect van bestraling afhankelijk van de delingssnelheid van het weefsel: bij snel delende cellen merk je het binnen enkele weken, bij andere weefsels kan het maanden duren. Dit komt ook omdat de schade aan het DNA vaak weer hersteld wordt. Vaak zijn normale cellen beter in dit herstellen dan tumorcellen. Soms veroorzaakt de bestraling een nieuwe mutatie en dus een nieuwe vorm van kanker.

      In een celoverlevingscurve wordt de verhouding tussen dosis en effect (celdood) weergegeven, zo overleeft bij 2 Gy 50% van de cellen het niet. Dit neemt exponentieel af, waardoor het erg moeilijk is om de hele tumor te verwijderen. Een steile celoverlevingscurve duidt op een weefsel dat gevoelig is voor bestraling. Bij het doseren van de bestraling wordt ook rekening gehouden met het weefsel om de tumor heen. Bij minder gevoelige tumorcellen zou dit betekenen dat ook het weefsel eromheen gesteriliseerd is. Daarom wordt daarbij een operatie gedaan en is de bestraling alleen om een recidief te voorkomen. Een aantal factoren, zoals de zuurstofspanning, beïnvloedt het effect van bestraling. Door de therapie te combineren met oxidantia, warmte, nicotinamide (ARCON) of het gas carbogeen wordt hierop ingespeeld. Cytostatica zoals cisplatine werken ook.

      Gefractioneerd bestralen

      Door de bestraling in fracties (delen) te geven, krijgen de cellen de kans zich te herstellen. Omdat gezonde cellen dit veel beter kunnen dan tumorcellen, voorkom je zo dat het weefsel om de tumor afsterft. Het verschil in herstelmogelijkheid wordt als het ware uitgebuit. Vooral bindweefsel en endotheel zijn erg goed in het herstellen, sneldelende cellen (zoals tumoren) niet. De weefselkinetiek van het herstel verschilt per weefselsoort, bij bedekkende lagen is er een prikkel dat de delende laag afneemt, waardoor er versnelde proliferatie plaatsvindt. Bij snelgroeiende tumors is het belangrijk dat de tumor niet de kans krijgt om tussen de fracties in verder te groeien.

      Radiotherapie: klinisch bekeken

      Meestal wordt.....read more

      Access: 
      Public
      Work for WorldSupporter

      Image

      JoHo can really use your help!  Check out the various student jobs here that match your studies, improve your competencies, strengthen your CV and contribute to a more tolerant world

      Working for JoHo as a student in Leyden

      Parttime werken voor JoHo

      Check more of this topic?
      How to use more summaries?


      Online access to all summaries, study notes en practice exams

      Using and finding summaries, study notes en practice exams on JoHo WorldSupporter

      There are several ways to navigate the large amount of summaries, study notes en practice exams on JoHo WorldSupporter.

      1. Starting Pages: for some fields of study and some university curricula editors have created (start) magazines where customised selections of summaries are put together to smoothen navigation. When you have found a magazine of your likings, add that page to your favorites so you can easily go to that starting point directly from your profile during future visits. Below you will find some start magazines per field of study
      2. Use the menu above every page to go to one of the main starting pages
      3. Tags & Taxonomy: gives you insight in the amount of summaries that are tagged by authors on specific subjects. This type of navigation can help find summaries that you could have missed when just using the search tools. Tags are organised per field of study and per study institution. Note: not all content is tagged thoroughly, so when this approach doesn't give the results you were looking for, please check the search tool as back up
      4. Follow authors or (study) organizations: by following individual users, authors and your study organizations you are likely to discover more relevant study materials.
      5. Search tool : 'quick & dirty'- not very elegant but the fastest way to find a specific summary of a book or study assistance with a specific course or subject. The search tool is also available at the bottom of most pages

      Do you want to share your summaries with JoHo WorldSupporter and its visitors?

      Quicklinks to fields of study (main tags and taxonomy terms)

      Field of study

      Access level of this page
      • Public
      • WorldSupporters only
      • JoHo members
      • Private
      Statistics
      2409
      Comments, Compliments & Kudos:

      Add new contribution

      CAPTCHA
      This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
      Image CAPTCHA
      Enter the characters shown in the image.
      Follow the author: Medicine Supporter