What is a two-sample t-test

A two-sample t-test for independent samples, also known as an independent-samples t-test or Student's t-test, is a statistical hypothesis test used to compare the means of two independent groups. It determines if the observed difference between the means is likely due to random chance or reflects a true difference between the populations the samples were drawn from.

What do you use a two-sample t-test for?

Here are some common applications of a two-sample t-test for independent samples:

  • Comparing the effectiveness of two treatments: Researchers might use a t-test to see if a new medication is significantly more effective than a standard treatment in reducing blood pressure.
  • Analyzing customer preferences: A company might use a t-test to compare customer satisfaction ratings for two different product designs.
  • Examining group differences: A study might use a t-test to see if there's a significant difference in average exam scores between students who participated in a tutoring program and those who didn't.

What to pay attention to while performing a two-sample t-test?

  • Independence of samples: The groups must be independent, meaning there's no connection between the data points in each group (e.g., participants assigned randomly to different groups).
  • Normality of data (sometimes): While not always a strict requirement, the data in each group ideally follows a normal distribution (bell-shaped curve) for more reliable results.
  • Homogeneity of variance: This refers to the assumption that the variances (spread) of the data in both groups are similar. Some versions of the t-test are more robust to violations of this assumption.

Statistical Programs for two-sample t-test

Many statistical software programs can perform a two-sample t-test for independent samples. Here are a few popular options:

  • R: t.test(data1, data2, var.equal = TRUE) (data1 and data2 are your independent samples, var.equal specifies assumption of equal variances)
  • Python (SciPy library): scipy.stats.ttest_ind(data1, data2, equal_var = True) (similar to R code)
  • SAS: PROC TTEST (specify independent samples in the code)
  • SPSS: Analyze > Compare Means > Independent Samples T Test
  • Excel (Data Analysis ToolPak required): =TTEST(data1, data2, 2) (2 indicates a two-tailed test)

These are just a few examples, and most major statistical software packages will have a function for this type of t-test.

Image

Tip category: 
Studies & Exams
Tip: type
Advice & Instructions
Tip: date of posting
05-03-2024

Image

Image

Help other WorldSupporters with additions, improvements and tips

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.

Image

Related activities, jobs, skills, suggestions or topics
Activities abroad, study fields and working areas:
Content access
Content access: 
Public
Statistics
1325